
Improving Hardware Reusability: Software Defined Hardware
Adam Izraelevitz, Jack Koenig, Richard Lin, Chick Markley, Jim Lawson,

Christopher Celio, Colin Schmidt, Patrick Li, Elad Alon, Borivoje Nikoli

´

c, Jonathan Bachrach

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
{adamiz, jack.koenig4, rlin, chick, ucbjrl, celio, colins, psli, elad, bora, jrb}@eecs.berkeley.edu

Abstract—Modern software engineering techniques such as
reusable libraries and retargetable compilers have allowed high
productivity and fast design cycles, but hardware development
practices lag far behind. We hypothesize that better hardware
construction languages and compiler infrastructures will help
close the gap, and evaluate this approach with several processor
designs written in the Chisel hardware construction language and
compiled through the FIRRTL compiler infrastructure.

Index Terms—RTL; Design; FPGA; ASIC; Hardware; Model-
ing; Reusability;
Introduction
The end of Moore’s law has slowed technology scaling,
eliminating the associated power, performance, and area im-
provements. Given that a specialized hardware implementation
has enormous energy/performance improvements over software,
specialization is likely the future of hardware design. This
trend will manifest in an increased demand for chip diversity
containing different RTL designs.

Meeting this demand with existing methodologies will be
difficult. Some companies require two years between initial
idea and profitable silicon[1], as this process requires design
space exploration, RTL development, and verification.

In contrast, software industry’s fast design cycle allows for
one engineer to go from idea to profitable code in under two
weeks. What tricks can the hardware industry learn from the
software community?

Software libraries enable code reuse and are pervasive
throughout software development. Reusing code via libraries
significantly reduces development time and costs of new
applications. Reuse has other advantages as well—verification
costs of libraries are amortized over all its uses.

In comparison, reuse is pitifully rare in hardware designs,
and there does not exist any semblance of a standard library of
hardware components. However, if hardware projects reused
more code, engineers would spend less time designing and
(more importantly) less time verifying the new design. Given
these clear benefits, why don’t hardware engineers write
reusable libraries?

The main contributions of this paper are as follows:
• Two hypotheses to account for the stagnation of hardware

library development: As detailed below, we assert that
(1) existing hardware-description-languages are deficient
in supporting hardware libraries, and (2) that diverse
underlying tradeoffs require RTL modifications, thus
making general purpose RTL less useful.

• A reemphasis on hardware construction languages
(HCL) as primary tools for hardware libraries: Previously,
many influential works have introduced and expanded
upon the concept of a hardware construction language.

This paper revisits them in the sole context of providing a
platform for which to develop reusable hardware libraries.

• The concept of a hardware compiler infrastructure
(HCI): Like how software compilers transform general-
purpose code into specialized assembly, we assert that a
similar solution can transform general RTL into specialized
RTL. By formalizing these transformations into a compiler
infrastructure, we can enable robust and reusable RTL
transformations.

• An evaluation of whether HCLs and HCIs meet their
claims of superior reusability: We evaluate RocketChip,
an existing hardware library written in Chisel[2] (an HCL)
that uses FIRRTL[3] (an HCI) on its parameterization
power, code expressivity, code reuse, and transformation
reuse.

Two Hypotheses
Software libraries enable code reuse and are pervasive in
software development. Reusing code through libraries signifi-
cantly reduces development time of new applications. Modern
software relies on thousands of libraries (Ubuntu 14.04 has
>35,000 packages installed natively).

Reuse has a second advantage: the verification costs, not
just the development costs, are amortized over all library uses.

In direct comparison, hardware designers don’t commonly
reuse modules from project to project, let alone develop
extensive and reusable libraries of the magnitude seen in
software. Recently, we have seen an increase in reusing large
complex custom IP blocks, which has had many benefits[4].
However, this is a far cry from the current state of software
library ubiquity.

To reiterate: why don’t hardware engineers write libraries?
Incorrect Hypotheses: We assert the lack of hardware li-
braries is not from a lack of effort—many companies have
tried internally to establish standard libraries of hardware
components to reuse among multiple projects. However, in
our experience, these never gain traction and ultimately fail.

One may claim that software libraries are built upon a
vibrant open-source community, and since hardware has fewer
engineers and a very small open-source community, libraries
have not had enough engineers to succeed. We counter this
claim by example: D3[5], the popular JavaScript visualization
library, was primarily written by a single engineer, but has
still seen widespread use. Although a large community helps,
writing a useful software library does not require one.

Clearly, there is something more fundamental in modern
software engineering which has enabled writing reusable code.

Hypothesis 1—Existing HDLs are deficient: Modern advance-
ments have made programming languages like Java, C++,
Python, and Perl very powerful. Using features like object-
orientation, polymorphism, and higher-order functions, one
can write software using good software engineering principles,
including abstraction, separation of concerns, and modularity.
Good software is reusable software, and reusable software can
easily be turned into a library used by others.

Logic synthesis successfully raised the level of abstraction
most hardware designers use to write RTL; gone are the
days of manual SPICE modeling and hand-drawn layout.
Unfortunately, since the 1980s when the majority of current
RTL languages were designed (Verilog, VHDL), programming
languages have seen significant improvements. Existing HDLs
are sorely lagging behind.

Take the following example: an adder reduction tree, param-
eterized by the number of elements. Verilog and VHDL cannot
express recursive generate statements—instead, the designer
must manually roll out the loop and do index calculations.
Another example is a module that filters packets. Either the filter
module must encode the filter condition (violating the principle
of separating concerns) or a separate module must evaluate
the filter condition (violating the principle of encapsulation). A
modern software engineer would recognize that a higher-order
function would elegantly solve this problem.

SystemVerilog is one attempt to improve on existing HDLs.
Created in 2002, this language mixes modern ideas like object-
oriented programming with classic Verilog elements. The result
is a complicated language, intractable to support, confusing
to learn, and still missing modern features like functional
programming. To the authors’ knowledge, no commercial
SystemVerilog compiler implements the entire specification.
Hypothesis 2—Underlying complexity influences RTL: In
spite of the success of logic synthesis, many underlying
constraints still influence RTL design.

For example, in modern technologies, SRAMs are designed
specially by the fabrication company, as their size and latency
are extremely critical. RTL designers, to make use of these
custom blocks, must manually instantiate them in their design.
However, this locks the RTL into a specific technology node and
eliminates reusability. Other constraints of ASIC technologies
can also bleed into the RTL, including buffer insertion and
custom layout.

Fig. 1: Underlying Constraints

FPGAs are no different—many have hardened logic blocks to
improve design quality. By modifying the RTL to be friendlier
to the FPGA synthesis tools, a designer can receive a significant
performance advantage. These changes, however, may be
detrimental to an ASIC implementation of the RTL.

To address these issues, designers in industry have had to
choose from a multitude of existing but insufficient options.

Manually changing the RTL limits reuse by obfuscating and
specializing the RTL. CAD tool scripting is insufficient for
inevitable unsupported use cases in custom flows. Company-
specific closed-source RTL modifiers work but are not shared
among academics or between companies. Finally, many design-
ers write custom Python/Perl scripts to automatically edit their
RTL. These scripts are not reusable, robust, or composable.
Hardware Construction Libraries
A hardware construction language is simply a software library
whose classes mimic true RTL synthesizable constructs. For
example, many HCLs have classes to represent registers, muxes,
adders, wires, ports, modules, constants, etc. Note that the
interpretation of each HCL hardware class is very simple.
abstract class HW { // Represents a synthesizable piece of hardware

def emit: String // Emits corresponding Verilog representation

}

class Register(name: String, width: Int) extends HW { ...

def connect(r: HW) = ...

def emit = "reg [" + width + ":0] " + name + ";"

}

class Mux(cond: HW, ifTrue: HW, ifFalse: HW) extends HW {...}

Users can manipulate these classes by instantiating them and
calling their methods. For example, a designer can instantiate
the Register class, and call its connect method.
class Top { ... // Start of program

val my_register = new Register("my_register", 32)

my_register.connect(my_mux)

}

Once a design is written, the designer compiles and executes
their code. During this execution, the HCL records the
sequence of instantiations and method calls to directly build a
datastructure representing the hardware design; this process is
called elaboration. Finally, the string representation is emitted.

Through careful library design, an HCL can closely mimic
the experience of writing in a hardware description language.
Designers instantiate the HCL’s Register class (instead of
declaring a reg in Verilog) or the HCL’s Mux class (instead
of using Verilog’s ternary operator).

HCLs themselves do not usually provide any new hard-
ware abstractions; any hardware design written in Verilog
can, line by line, be translated into calls and instantiations into
the HCL, giving a designer complete control over their design.
Software Engineering Benefits: Many HCLs at baseline do
not provide additional hardware abstractions; instead, their
strength lies in allowing the designer to use all abstraction
mechanisms of the underlying programming language that the
HCL is implemented in.

For example, an HCL implemented in Python would be
able to use a Python for-loop to instantiate a sequence of
wires in replacement of a Verilog generate statement. An HCL

implemented in Java would be able to employ object-oriented
verification instead of using SystemVerilog.

Ultimately, the benefit of any HCL is allowing the pro-
grammer access to a general purpose programming language
to powerfully wrap, modularize, abstract, and encapsulate
their construction of hardware.
Chisel—An Example HCL: Chisel is an open-source hard-
ware construction language that is based in Scala [6], a modern
object-oriented and functional programming language.

Users of Chisel have built hardware libraries that provide
new abstractions, possibilities for parameterizations, and more.

Chisel users created a decoupled interface that supports
forward and back-pressure. Built upon this abstraction are
functions which generate control logic based off of the number
of incoming and outgoing decoupled interfaces. A user of this
decoupled interface library can make use of the interface at a
higher abstraction level, without knowing the precise underlying
Chisel-constructed hardware.

In the previous module filter example, a Chisel user can
make a Filter module which takes, as a parameter, a higher-
order-function that creates the condition-checking hardware.
The user of this module can later, when instantiating the Filter,
create and pass in a function which constructs their checking
condition. Similarly, a Chisel user can write a recursive Scala
function which generates the correct adder-reduction tree. Note
that Scala, not Chisel, gives users this power and expressivity.

Hardware Compiler Infrastructure
Background on LLVM—A Modern Software Compiler:
LLVM[7] takes general purpose code and specializes it for
different machine types. Its structure consists of (1) frontends,
(2) transformations, and (3) backends. A frontend parses a
programming language into LLVM intermediate representation
(LLVM-IR). Transformations then take LLVM-IR and modify
it, returning new LLVM-IR. Finally, a backend generates its
target ISA assembly, e.g. ARM or x86.

This structure of translating an input language into an
intermediate representation enables reusing transformations
among multiple compilers. If we applied this concept to
hardware, what would it look like?
Hardware Compiler Infrastructure: A hardware compiler
infrastructure (HCI) takes general purpose RTL and specializes
it for different technology nodes and design requirements.
Exactly like LLVM, its structure consists of frontends, trans-
formations, and backends. Again like LLVM, it has an
intermediate representation upon which all transformations
are developed. This enables reusing transformations between
different compilers.
FIRRTL—An HCI: FIRRTL stands for Flexible Intermediate
Representation for RTL, and defines the intermediate represen-
tation for its corresponding hardware compiler infrastructure.
Chisel directly generates FIRRTL, and then this intermediate
form is simplified and optimized. Finally, the resulting FIRRTL
is passed to a backend tailored for one of three specific targets:
(1) a FIRRTL interpreter for simulation (FIRRTL); (2) an

FPGA for fast emulation (Verilog); (3) a 28nm ASIC process
node (Verilog).

Due to FIRRTL’s modular framework structure, transforma-
tions are commonly reused in spite of a variety of underlying
targets.

Preliminary Evaluation
This paper claims that HCLs and HCIs promote reuse, enable
flexible hardware libraries, and enable targeting multiple
simulation/emulation/fabrication technologies.

Given those assumptions, we would also expect that: (1)
HCL/HCI libraries will have powerful parameterization; (2)
HCL/HCI codebase will have less code than similar HDL
codebases; (3) an HCL/HCI project will reuse more code than
it authors; (4) an HCL/HCI project can reuse transformations
when targeting different technology nodes, FGPAs, and soft-
ware simulation.
Parameterization: While difficult to qualitatively evaluate
the flexiblility, magnitude, and degree of parameterization that
the general purpose programming language provides an HCL,
we can qualitatively evaluate the parameters of an existing
hardware library, written in an HCL.

RocketChip [8] is an open-source hardware library, written
in Chisel, that can generate many different instantiations of a
symmetric multi-processor system (SMP).

Some of the parameters available are:

• Out-of-order parameters: fetch width (1, 2, 4), issue
width (1, 2, 3, 4), branch predictors (BTB, GShare, TAGE)

• Data parallelism: number of parallel data operations (4
through 32), precision (half, word, double)

• Multi-core: number of cores (1, 2, 4, 16)
• Datapath: 5-stage pipeline, 3-stage pipeline, microcoded

multi-cycle
• Cache: size (64KB to 2MB), associativity (direct-mapped,

two-way), type (scratchpad, blocking, non-blocking)

Note that the cross product of these parameters are all
valid, and many (but not all) of these design points have
been experimented with or even realized in silicon.

Furthermore, many parameters are not simply bit-widths,
but impact the control logic, interface definitions, and commu-
nication protocols. The generated hardware is therefore very
different for each design point, and this is only possible given
the power of the underlying programming language, Scala.
Expressiveness: Using software engineering methods enabled
by modern programming languages, we should expect fewer
lines of code to express similar projects.

OpenPiton [9] is a research project in Verilog that uses
OpenSparc cores with a custom interconnect and coherency
framework.

OpenPiton and RocketChip have many similarities from
10,000 feet—both are SOC generators, containing cores, caches,
network protocols, coherency domains, tests, and much more.
Both are used for computer architecture research, have been
realized in silicon, and boot Linux.

Transforms 28nm ASIC FPGA Emulation Simulation
Constant Propagation x x x
Dead Code Elim. x x x
Sub-Expression Elim. x x x
FIRRTL Backend x
Verilog Backend x x
Decouple Target Time x
Scan Chains x
SRAM Replacement x

TABLE I: Different downstream targets can still reuse many
FIRRTL transformations.

A cursory look at the size of the projects reveals a startling
difference—RocketChip contains 40,000 lines of Scala, while
OpenPiton has 264,000 lines of Verilog (6.7x more code).

While clearly an apples-to-oranges comparison, the sheer
magnitude of code-size differences between OpenPiton and
RocketChip cannot be explained solely by their differing feature
sets. We believe the choice of a HCL over an HDL has given
RocketChip a significant expressiveness advantage.
Hardware Reusability: A major claim in this paper is that
HCLs and HCIs enable writing and reusing hardware libraries.
We analyzed BOOM [10], an out-of-order machine written
in Chisel, to understand how much of its code was actually
reused. As shown in Figure 2, BOOM uses more external code
(modules from other projects) than internal code.

Fig. 2: Lines of code used by BOOM, grouped by project: BOOM
(out-of-order core), Rocket (in-order core), Uncore (L2 cache and
networks), and Hard oat (oating point units).

BOOM is not unique among reuse—our data-parallel accel-
erator, our three-stage core, and many other designs constantly
reuse one-another’s codebases. In addition, using approximately
20,500 lines of code to implement a correct out-of-order
implementation is extremely impressive.
Transformation Reusability: We claim HCIs give transfor-
mation reusability, and the preliminary results in Table I that
depict transformation reuse qualitatively demonstrates this fact.

We are currently converting more existing manual changes
and downstream scripts into this framework, and as a conse-
quence these results are preliminary.
Related Work
As opposed to HCLs, other work has used modern languages
to act as a macro processing language for an underlying HDL,
including Genesis2 [11], JHDL [12], and HML [13]. Other
HCLs include MyHDL [14] and Bluespec [15]. Yosys [16]
is an open-source framework for Verilog RTL synthesis, and

maps Verilog to ASIC standard cell libraries or Xilinx FPGAs.
Unlike FIRRTL, its main focus is logic synthesis, not RTL to
RTL transformations.
Conclusion
In summary, we contributed two hypotheses accounting for
the stagnation of hardware library development, reemphasized
HCLs ability to enable hardware libraries, and established the
concept of a hardware compiler infrastructure (HCI).

Our evaluation demonstrated the ability of HCLs and HCIs
to support powerful hardware parameterization, new hardware
abstractions, and expressive hardware construction.

Specialization is the future of hardware design, and increas-
ing reusability within our hardware design methodologies is
critical to meeting the incoming demand for chip diversity.
Acknowledgements
Research partially funded by DARPA Award Number HR0011-
12-2-0016; the Center for Future Architecture Research, a
member of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA; and ASPIRE Lab
industrial sponsors and affiliates Intel, Google, HPE, Huawei,
LGE, Nokia, NVIDIA, Oracle, and Samsung.
References

[1] “Accelerating time to market - RocketSim - rocketick.”
http://www.rocketick.com/rocketsim/accelerating-time-to-market, 2017.

[2] J. Bachrach, H. Vo, B. Richards, Y. Lee, et al., “Chisel: constructing
hardware in a scala embedded language,” in Proceedings of the 49th
Annual Design Automation Conference, pp. 1216–1225, ACM, 2012.

[3] P. S. Li, A. M. Izraelevitz, and J. Bachrach, “Specification for the firrtl
language,” Tech. Rep. UCB/EECS-2016-9, EECS Department,
University of California, Berkeley, Feb 2016.

[4] “IP vendor selection.” http://armipexchange.com/Vendor/ARM, 2017.
[5] M. Bostock, V. Ogievetsky, and J. Heer, “D #x0b3; data-driven

documents,” vol. 17, no. 12, pp. 2301–2309.
[6] M. Odersky, S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman,

M. Zenger, and et al., “An overview of the scala programming
language,” tech. rep., 2004.

[7] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in Proceedings of the
International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, CGO ’04, (Washington,
DC, USA), pp. 75–, IEEE Computer Society, 2004.

[8] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, et al., “The rocket
chip generator,” Tech. Rep. UCB/EECS-2016-17, EECS Department,
University of California, Berkeley, Apr 2016.

[9] J. Balkind, M. Mckeown, Y. Fu, T. Nguyen, S. Payne, X. Liang,
M. Matl, and D. Wentzlaff, “OpenPiton : An Open Source Manycore
Research Framework,” in ASPLOS, 2016.

[10] C. Celio, D. A. Patterson, and K. Asanović, “The Berkeley Out-of-Order
Machine (BOOM): An Industry-Competitive, Synthesizable,
Parameterized RISC-V Processor,” Tech. Rep. UCB/EECS-2015-167,
EECS Department, University of California, Berkeley, Jun 2015.

[11] O. Shacham, S. Galal, S. Sankaranarayanan, M. Wachs, et al.,
“Avoiding game over: Bringing design to the next level,” in DAC Design
Automation Conference 2012, pp. 623–629, June 2012.

[12] P. Bellows and B. Hutchings, “JHDL-an HDL for reconfigurable
systems,” in Proceedings. IEEE Symposium on FPGAs for Custom
Computing Machines (Cat. No.98TB100251), pp. 175–184, Apr. 1998.

[13] “HML, a novel hardware description language and its translation to
VHDL,” ResearchGate.

[14] Jan Decaluwe, “MyHDL Manual,” July 2016.
[15] R. Nikhil, “Bluespec System Verilog: efficient, correct RTL from high

level specifications,” in Second ACM and IEEE International
Conference on Formal Methods and Models for Co-Design, 2004.
MEMOCODE ’04. Proceedings, pp. 69–70, June 2004.

[16] C. Wolf, “Yosys open synthesis suite.” http://www.clifford.at/yosys/.

http://www.clifford.at/yosys/

	References

