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Abstract - A digital delay-locked-loop (DLL) suitable for
generation of multiphase clocks in applications such as time-
interleaved and pipelined ADCs locks in a very wide (40X)
frequency range. The DLL provides 12 uniformly delayed
phases that are free of false harmonic locking. The digital
control loop has two stages: a fast-locking coarse acquisition is
achieved in four cycles using binary search; a fine linear loop
achieves low jitter (8.9 ps rms @ 600 MHz) and tracks PVT
variations. The DLL consumes 20 mW and occupies a 470 m
X 800 m areain 0.13um CMOS.

I. INTRODUCTION

Time-interleaved and pipeline ADC’s require generation of

multiple clock phases in a very wide operating frequency
range with challenging jitter requirements in the upper
frequency range. DLLs are often used in these applications,
but they face design tradeoffs between the requirements for
low jitter, fast locking, wide frequency-range and low
power. Low voltage headroom, associated with supply
voltages in scaled technologies presents a challenge for
analog control loops in a DLL to achieve a very wide
locking range. This limitation is solved by using digital
control loops that ideally can use longer wordlengths to
extend the dynamic locking range [1-11]. Jitter in digital
DLL’s is determined by the size of the DAC LSB that
controls the delay line. However, the interaction of the wide
dynamic range control with the delay line dramatically
impacts other performance metrics such as the locking time,
jitter, power consumption and silicon area.

In this DLL, a novel architecture allows the design to
achieve 40X locking range together with fast locking, and
low jitter at high trequencies in steady state. This locking
range enables a wide set of operating modes as well as the
testability of the ADC system that uses it. A 10-bit digital
control is used to control the jitter, and the locking range. It
is used to adjust the delay of the current-starved inverter
based delay line, where the 4 most significant bits (MSB’s)
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coarsely select the frequency range (15MHz - 600MH:z
using a fast binary search, and a binary-weighted DA
replicated at each delay cell. The 6 least significant bit
(LSB’s) linearly control the delay elements for a low jitte
in steady state. The unit-element LSB DAC is share
among all delay cells. This split-control architecture enable
the delay adjustment of delay elements with low suppl
voltage in the desired operating range. This design als
allows for low power consumption and a moderate silico
area for a DLL with 12 clock phases.

II. ARCHITECTURE

Figure 1 shows the basic block diagram of the propose
DLL. The binary search brings the total delay D of the dela
line within the locking range, 37/4 < D < 5774, If 37/4 < I
the UNDER signal is activated by the false-lockin,
detection logic, Table 1.
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Fig. 1: Block diagram of the DLL.



Similarly, if D > 57/4, the OVER signal is activated. The
UNDER and OVER signals are correctly detected for duty
cycles of the input clock from 25% to 75% making this
DLL immune to duty-cycle variations.

The binary search machine gets triggered by either an
external reset signal or by a sudden change in either the
UNDER or OVER signals. This feature makes this DLL to
track frequency changes in its entire range of operation
which makes it suitable for broadband applications. When
the binary search completes, the 6-bit LSB linear loop,
whose counter is initialized at mid-range, makes the final
fine adjustments to bring the total delay D within one LSB
of the desired input clock period 7. Only the top 6 bits of
the 9-bit counter are used to drive the unit element DAC; the
3 LSBs provide low-pass filtering by slowing down the
loop. Discarding the 3 LSBs also lowers jitter in steady state
because it averages random up and down signals due to
noise. The linear search stays on during the operation to
provide compensation for voltage, temperature variations
and aging.

The delay line is a chain of 24 current-starved inverters (Fig.
2). Each inverter receives the 4 MSBs from the binary
search state machine and adds them to the mirrored current
from the unit element DAC driven by the 6 LSB’s.

Since a delay cell is the cascade of two of these inverters,
the rising and falling times at the delay cell’s output will be
equal, preserving the duty cycle even if there are
mismatches between the p-type and n-type devices of the
current starvation sources.

The false locking detector is fully digital [7]. It determines
the UNDER and OVER signals based on the delay line
phases Pl to P12. Table 1 shows the logic levels of the
delay line phases at the rising edge of the input clock.

TABLE 1: FALSE LOCKING DETECTION USING
P1-P12 DELAY LINE PHASES

[0.76 29 B 133

Delay 0.6T & T 0.8T T 1.22T T

Pl [} | 0 0 0 0 08

P3 [} | 0 0 0 0

PS5 0§ 0 0 0 0 [

P 0f 0 0| 0 [aree

P9 0 0 o t] 0] i

P10 0 0 [ ) [} i [} 1

P11 () §EREE : 0 [} 1
[ P12 i 0 | 0 0

IN LOCKING RANGE

UNDER
e

The UNDER signal is high if all the phases from P1 to P10
are low. The OVER signal is high ifa *...10..." pattern is
found in any two consecutive phases from P1 to P&. As it
can be inferred from Table 1, the UNDER and OVER
signals are safely detected for duty cycles of the input clock
from 25% to 75%. In the event that either the UNDER or
OVER signals remain active after the binary search finishes,
the UP/DN logic disables the phase detector (PD) output, to
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avoid false locking. Instead, it uses the UNDER or OVER
signals to bring the linear loop into a locking range.
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Fig. 2: Current-starved inverter.

The jitter of this DLL topology is inversely proportional to
the squared value of the frequency of operation. This result
can be derived as follows: for a frequency of operation F,
that requires a nominal current /; , where F',- kl,, k being a
constant that depends on the capacitance of the current
starved delay cell and the number of cells that formed the
delay line. Assuming linear low-to-high and high-to-low
propagation delays, the proportionality constant is given by

(1):

M *Vdd
= [V/F], (1)

k ~

where Vdd is the power supply, M is the number of current-
starved inverters and C in the total capacitance that loads
each inverter. The delay of the delay line is given by

1
I =—, (2)
ki,
and the peak-to-peak jitter will be,
1 1

At, = — - , (3)
k(I,=AI) k(I,+Al)
where Al is the current LSB value. Similarly for a
frequency that is larger by a factor N, i.e., F, = NF, = kI, =
kNI, the associated jitter is,
L] I
k(I —Al) k(I +Al)

off when the frequency rises from F, to F is given by,

. Thus, the jitter drop-

&_m—w(f,wf».(f_] =L
At (I, =AU, +A) |1, N



In the prototype chip. the MSB and LSB currents are
programmable, which gives flexibility for testing purposes.
This also allows adjusting the LSB current to minimize the
jitter at lower frequencies.

Replicating the MSB DAC across all the current starved
inverters minimized DC current consumption, as only the
dynamic current is drawn from these DACs. On the other
hand, the LSB DAC current was mirrored to all current
cells, since it is much smaller. The DC current in the LSB’s
corresponds to only the lower 6 LSBs of the total 10 bits in
the dual digital control loop; furthermore, current scaling by
a factor of 20 lowers the mirrored DC current. This current
is scaled up to its nominal value locally at each delay cell
where only the dynamic power is consumed.

1. IMPLEMENTATION AND TESTING

The DLL has been implemented in a general-purpose,
0.13um 6MIP CMOS technology. The DLL occupies
470um x 800um area. Measured jitter performance is
summarized in Table 2 and jitter measurement plot at 600
MHz and 380 MHz are shown in Fig. 3 and Fig. 4,
respectively. Five chips were tested with almost the same
measurement results. The DLL clock is driven off-chip
using LVDS pads, which worsens the jitter by up to 7 ps
rms. The actual on-chip DLL jitter variance is expected to
be up to (7 ps) better that the squared of the rms values in
Table 2. This expected on-chip jitter is also reported in
Table 2. The linear control loop can be left running to
absorb PVT variations in the locked state. The steady-state
jitter produced by the LSB toggling is reduced with
increased clock frequency as indicated in Eqn. (4). For
frequencies larger than 300 MHz, the jitter produced by the
LSB toggling is lower than the intrinsic jitter induced by the
electronic noise. At low frequencies, however, the effect of
the LSB toggling is higher, as the output will toggle
between two phases as shown in Fig. 5. In the worst case, if
the edge of the delayed clock gets very close to the input
clock, the intrinsic jitter will make the linear loop to toggle
between 3 LSBs producing a 3 edge clock eye diagram. As
a result, the peak-to-peak jitter can be as big as 2 LSBs. This
case is illustrated in the measured eye diagram of Fig. 6.

TABLE 2: RMS JITTER ACROSS THE OPERATING
V( :' i o
Do e |

( ()() }, \0“ UJ(] w 300 | 200 l‘m ‘ S0 l 15 |
SR— - S A,F.. e B |
Measured 1 ‘ ‘ | 1|
| rms off-chip i 8.9 1 89 | 9 } 95 | 102 | 205 ‘ 100 | 116 |
itter [ps] | ; | !
diter fps] L L L
Expected | : ‘ | |
| on-chip jirter 14 4.5 S 057 74 1192 | 100 | 116 |
| | , 4 | |
Lps) \ — L i 1

"An LSB « irrent that 1s lower than in the other measurements was used

here to improve the jitter.
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Fig. 3: Jitter measurement at 600 MHz.
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Fig. 5: Toggling of the LSB current for low freq
operation. The locking frequency is 15 MHz
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TABLE 3: COMPARISON BETWEEN THIS WORK AND RECENTLY

T~__ | Tokun[l] | Song(2] Kim[3] Kim([5] Wang [6] Bhor.[8] Wang [9] Yang[10] Chang[11] This work
CFreq | 20-300 30-200 10-800 120MHz-1.8 | 400- 200-12G | 150-550 40-500 2-700 15-600
(MHz) | (13X) | (6X) | (20X) GHz (15X) 600(1.5X) | (6X) | 3.7X) (13.75X) (350X) (40X)
LVDD [ 2-4V_ 25V 12V 33V 2433V 12V 1V I8V 1425V 12V
| Power o mw | 30 mW 43 mW | 86.6 mW 9.9 mW 6. ImW 0.37 mW 12.6 MW 23 mW 20 mW
:r\,pc Analog T[)imml Digital | Digital Digital Digital Digital Digital Digital Digital
Area 0.03mm® | 0.66 mny 0.22 mm* | 0.07 mm* 0.7 mm’ 0.24 mm* | 0.0119 mm’ | 0.2 mn?¥ 0.88 mn 0.38 mm’
| Jitter | 6.9ps@ | 7.0 ps l.ops @ 1.8 ps @ 700 | 24.4ps 4.6 ps 5.5 peak-to- 1.5 ps 17.6 ps 8.9ps @
| (rms) _’,Ef’” MHz | 200 MHz 700 MHz | MHz peak-to-peak peak peak-to-peak | 600 MHz
? Locking | 18 us - I I cycles 10 cycles 4eyeles {3;}'14 32 cveles 4 cyflcs
|_time | i | cycles - coarse lock
| CMOS 7030 um 0.25 um 0.13 um : 0.35 um 0.35 um 0.13 pm 65 nm 0.18 um 0.18 um 0.13 um

Fig. 6: Measured data showing the case of 3 L.SBs flipping in
the LSB DAC for low frequency operation. The locking
frequency is 15 MHz.

S
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Fig. 7: Chip micrograph. DLL size is 470 m X 800 m.
IV. CONCLUSIONS

This paper presents an all digital implementation of a DLLL
with a 40X frequency locking range. A dual loop design,
consisting in a coarse fast binary search combined with a
linear search is proposed. This design achieves a large
locking range with fast coarse locking while keeping the
jitter and power consumption low. The chip occupies a
470pum X 800wm area and draws 20 mW @ 600 MHz in
0.13um general-purpose CMOS. The 12 uniform phases of
this DLL makes it suitable for providing the phases in
applications such as time-interleaved and pipelined ADCs
and broadband communications.
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