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Abstract−A class of combinatorial structures, called absorbing 
sets, strongly influences the performance of low-density parity-
check (LDPC) decoders. In particular, the quantization scheme 
strongly affects which absorbing sets dominate in the error-floor 
region.  Absorbing sets may be characterized as weak or strong. 
They are a characteristic of the parity check matrix of a code.  
Conventional quantization schemes applied to a (2209,1978) ar-
ray-based LDPC code can induce low-weight weak absorbing sets 
and, as a result, elevate the error floor. Adaptive quantization 
schemes alleviate the effects of weak absorbing sets, and, as a 
result, only the strong ones dominate the error floor of an opti-
mized decoder implementation. Another benefit of an adaptive 
quantization scheme is that it performs well even in very few 
iterations. 
 

I.     INTRODUCTION 
 

Low-density parity-check (LDPC) codes have been demon-
strated to perform very close to the Shannon limit when de-
coded iteratively [1]. Sometimes, excellent performance is 
only observed up until a moderate bit error rate (BER), be-
cause at lower BER, the waterfall curve changes slope leading 
to a so-called error floor [2]. Such error floors are a major 
factor in limiting the employment of LDPC codes in high-
throughput applications. 

In previous work [3], we have developed an FPGA-based 
emulation system to investigate the causes of error floors. We 
showed that error floor behavior is strongly connected to the 
quantization. A high-precision decoder implementation lowers 
the error floor to a level that is dominated by non-codeword 
absorbing sets. Absorbing sets are intrinsic to the parity check 
matrix of the code. More absorbing sets emerge in a low-
precision implementation. 

This paper presents an analysis of quantization effects on 
the performance of LDPC codes. Compared to some related 
work [4]–[6], our study is performed under the constraints of 
limited wordlength and limited number of decoding iterations, 
and focuses on the composition of dominant absorbing sets in 
the error floor region. In this process, we classify the absorb-
ing sets in terms of their absorbing strength. Most importantly, 
we propose improved quantization techniques that alleviate 
the effects due to weak absorbing sets. 

In Section II, we provide background on the array-based 
LDPC code, a precise definition of absorbing sets, and the 
sum-product message-passing decoding algorithm. We then 
investigate the quantization effects through a series of experi-
ments using the (2209,1978) array code. The results are pre-

sented in Section III. We develop methods to improve upon 
standard quantization approaches, thereby reducing the effects 
of weak absorbing sets and lowering the error floor. In Section 
IV, we study the effect of finite number of decoding iterations 
on the error floor performance. Section V concludes the paper 
and considers directions for future work. 
 

II.     BACKGROUND 
 
A.  Array-based LDPC Code 

Array-based LDPC codes [7] are regular LDPC codes pa-
rameterized by a pair of integers (p, γ), where γ ≤ p, p is an 
odd prime. The H matrix (Hp,γ) is given by 
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where σ denotes a p µ p permutation matrix of the form 
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Array codes have been demonstrated to have very good per-

formance [7]. The structure of an array code makes it suitable 
for efficient encoder and decoder implementations [8], [9]. 
The investigations covered in this paper are based on a 
(2209,1978) array code with p = 47 and γ = 5. 
 
B.  Definition of an Absorbing Set and Connectivity of a Vari-
able Node in Absorbing Sets 

Let G = (V, F, E) be a bipartite graph with the vertex set V » 
F, where V and F are disjoint, and with the edge set E, such 
that there exists an edge e(i, j) œ E iff i œ V and j œ F. One can 
associate a bipartite graph GH = GH(V, F, E) with a parity 
check matrix H, such that the set V corresponds to the col-
umns of H, the set F corresponds to the rows of H, and E = 
{e(i, j) | H(j, i) = 1}. Such a graph GH is commonly referred to 
as the Tanner graph of the parity check matrix H [10], [11]. 
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Figure 1. Illustration of the (4,8) absorbing set. 
For a subset D of V, let (D) (resp. (D)) be the set of 

neighboring vertices of D in F with even (resp. odd) degree 
with respect to D. Given an integer pair (a, b), an (a, b) ab-
sorbing set is a subset A of V of size a, with (A) of size b, 
and with the property that each element of A has strictly fewer 
neighbors in (A) than in F \ (A) [12]. 

An example of an (a, b) absorbing set with a = 4, b = 8 is 
given in Fig. 1, where full circles constitute the set A, full 
squares constitute the set (A), empty squares constitute the 
set (D), E(A, (A)) is given by solid lines, and E(A, (A)) is 
given by dashed lines. Observe that each element in A has 
more even-degree than odd-degree neighbors. 

We introduce the notation p:q to describe the connectivity of 
a variable (bit) node in an absorbing set with p connections to 
satisfied check nodes and q connections to unsatisfied check 
nodes. In the (4,8) absorbing set shown in Fig. 1, each variable 
node has a 3:2 connection. A bit remains incorrect in the ab-
sorbing state because it receives more incorrect messages from 
the satisfied checks than correct messages from the unsatisfied 
checks [3]. In a regular LDPC code with column weight γ, γ is 
p + q. A variable node in an absorbing set can have a connec-
tivity of some type (γ – q):q, with q ¥ 0 and q < γ/2. 
 
C.  The Sum-Product Message-Passing Decoding Algorithm 

Low-density parity-check codes are usually iteratively de-
coded using the sum-product algorithm. The algorithm can be 
visualized using a Tanner graph, where soft messages are ex-
changed between variable nodes and check nodes and conver-
gence can usually be achieved within a small number of itera-
tions. In the first step of the algorithm, variable nodes xi are 
initialized with the prior log-likelihood ratios defined in (3) 
using the channel outputs yi: 
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Figure 2. A message-passing decoder. 

The formulation of (3) assumes a BPSK modulation and an 
additive white Gaussian noise (AWGN) channel. 

The variable nodes send messages to the check nodes fol-
lowing the edges defined by the Tanner graph. The variable-
to-check messages are summed at each check node and the 
marginalized sum is returned to the corresponding variable 
node. Each variable node then updates its decision based on 
the prior and the information received from all the neighboring 
check nodes. The marginalized sum is used as the variable-to-
check message in the next iteration. An illustration of the it-
erative decoding procedure is shown in Fig. 2. The figure is 
simplified in the representation of the posterior LLR, as only 
the marginalized Lps can be used as the variable-to-check mes-
sage for the next decoding iteration. 

Variable-to-check and check-to-variable messages are cal-
culated using equations (4), (5), and (6). The messages qij and 
rij refer to the variable-to-check and check-to-variable mes-
sages that are passed between the ith variable node and the jth 
check node. In representing the connectivity of the Tanner 
graph, Col[i] refers to the set of all the check nodes adjacent to 
the ith variable node and Row[j] refers to the set of all the vari-
able nodes adjacent the jth check node. 
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The iterative decoding algorithm is allowed to run until all 

the parity-check equations are satisfied or when an upper limit 
on the iteration number is reached, whichever occurs earlier. 
After this a hard decision is performed based on the posterior 
LLR (7) – (9). 
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D.  Quantization Procedures 

Practical high data throughput implementations of the itera-
tive decoding algorithm only approximate the ideal operation 
of the decoder. Such approximations are inevitable for two 
reasons: (a) wordlength is necessarily limited, which causes 
saturation and quantization effects, thereby making it difficult 
to accurately represent messages and carry out arithmetic op-
erations; and (b) the number of iterations is limited, so that the 
effectiveness of iterative decoding cannot be fully realized. 
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Figure 3. Performance of the (2209, 1978) array code implemented using a 

4.2 uniform quantization. 
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Figure 4. The effect of adjusting the strength of extrinsic messages in a 4.2 

uniform quantized implementation. 

 
The imperfections are illustrated by considering a pass 

through the decoding loop shown in Fig. 2. The channel out-
put is saturated and quantized before it is saved as the prior 
log-likelihood ratio, Lpr. During the first phase of message 
passing, variable-to-check messages pass through the Φ trans-
formation defined in (6), then the summation (which includes 
marginalization), and finally the Φ-1 transformation. The Φ 
function is its own inverse, so the two transformations are 
identical. We refer to them as Φ1 and Φ2. The Φ function is 
approximated by discretization. The input and output of the 
function are saturated and quantized, thus the characteristics of 
this function cannot be fully captured especially in the regions 
approaching infinity and zero. 

In the second phase of message passing, check-to-variable 
messages are combined with the prior to produce the posterior 
probability, Lps. The hard decision is based on Lps, but Lps is 
not always accurately represented because its constituents, Lpr 
and Lext, are inaccurate. The prior, Lpr, is the saturated and 
quantized channel output; the extrinsic message, Lext, is the 
sum of check-to-variable messages, which originate from the 
saturated and quantized outputs of the Φ2 function. There is 
additional error propagation that is lumped to Lext. The inaccu-
rate Lps causes a decoder to perform worse than theoretically 
possible. This deficiency is usually manifested as a loss in 
performance in the cliff region and/or a rise of the error floor. 

The saturation and quantization effects are related to the 
fixed-point number format that is used in the processing and 
storage of data. We use the notation m.f to represent a signed 
fixed-point number with m bits to the left of the radix point to 
represent integer values and f bits to the right of the radix 
point to represent fractional values. Such a fixed-point repre-
sentation translates to a quantization step size (or precision) of 
2-f (in a uniform quantization) with a maximum value of 2m-1 – 
2-f and a minimum value of -2m-1. Note that there is an asym-
metry between the maximum value and the minimum value 
because 0 is represented with a positive sign in this number 
format. Values above the maximum or minimum are saturated 
(i.e., clipped). The wordlength of this fixed-point number is m 

+ f. As an example, a 4.2 signed fixed-point uniform quantiza-
tion translates to a quantization step size of 0.25, with a 
maximum of 7.75 and a minimum of -8. 
 

III.     FINITE WORDLENGTH EFFECTS 
 

The wordlength of the decoder design is limited to 6 bits in 
all the experiments. A maximum of 200 decoding iterations is 
performed to isolate the quantization effect from the iteration 
number effect. We begin by using a 4.2 fixed-point uniform 
quantization scheme on the prior, the variable-to-check and 
check-to-variable messages [13], as well as the input and out-
put of the Φ function. The performance of this implementation 
is shown in Fig. 3. 

Based on our emulation results, the failures in the error floor 
region are entirely due to absorbing sets. We take 58 error 
samples at 6.1 dB and 6.3 dB of SNR in the error floor region. 
A partial list of absorbing sets is shown in Table I. The struc-
ture of the dominant (4,8) absorbing set is illustrated in Fig. 1. 
The other structures are not drawn for the lack of space. 
Among the other absorbing sets listed in Table I, the (6,8), 
(8,6), and (8,8) structures have the least number of variable 
nodes with 3:2 connections. 
 
A.  Strength of Extrinsic Messages 

Extrinsic messages are the outputs of the Φ2 function. Mov-
ing the saturation level of the Φ2 function (i.e., Φ2(0)) adjusts 
the strength of the (most confident) extrinsic messages, thus 
affecting the decoder performance. Fig. 4 shows that stronger 
extrinsic messages lower the error floor (note that the error 
floor performance ceases to improve as the strength of extrin-
sic messages reaches a certain level) but worsen the perform-
ance in the cliff region.  
 

TABLE I 
A PARTIAL LIST OF ABSORBING SETS IN A 4.2 DECODER IMPLEMENTATION 

(SNR = 6.1 DB AND 6.3 DB, Φ2(0) = 3.5, TOTAL 58 CASES) 
Absorbing sets (4,8) (5,9) (6,8) (8,6) (8,8) 

Cases (out of 58) 45 6 5 0 2 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 

6233



  
This observation can be intuitively explained as strong ex-

trinsic messages permitting the correct bits to exert strong 
influences on the incorrect bits (favorable influences) and the 
incorrect bits to exert strong influences on the correct bits (ad-
verse influences). The SNR level determines whether the fa-
vorable influences overpower the adverse influences or the 
opposite. In a low-SNR cliff region, more bits are received 
incorrectly. A large number of strong adverse influences tend 
to encourage excessive error propagation, which stalls the 
convergence. At a high SNR level, very few bits are received 
incorrectly. Strong extrinsic messages allow the favorable 
influences to significantly outnumber and overpower the ad-
verse influences (and the incorrect priors), which makes it 
more difficult to get trapped by an absorbing set. 

The above describes the average behavior of a message-
passing decoder. An absorbing set is a special configuration at 
the high SNR level where seemingly satisfied checks gather 
enough adverse influences that outnumber the favorable influ-
ences, therefore we conjecture that strengthening extrinsic 
messages uniformly is not likely to change an absorbing con-
figuration. We verify this conjecture by strengthening the ex-
trinsic messages and observe the failure cases in the error floor 
region. Partial lists of the absorbing sets are shown in Table II. 
We observe that the (4,8) absorbing set remains the dominant 
cause of error floors when the extrinsic messages are strength-
ened. 
 
B.  Differentiation among Extrinsic Messages 

At a high SNR level or when the decoder starts to converge, 
the variable-to-check messages usually grow larger. We ob-
serve that the decoder is essentially operating on the lower 
right corner of the Φ1 curve and subsequently on the upper left 
corner of the Φ2 curve. We refer to these corners as the operat-
ing regions of the Φ1 and Φ2 functions. Differentiating extrin-
sic messages requires more output levels of the Φ2 function in 
its operating region, which also necessitates more precise in-
puts to the Φ2 function. The requirements can be both satisfied 
if the quantization scheme is designed more intelligently by 
dividing the decoder into two quantization domains illustrated 
in Fig. 5. For instance, Domain A uses a 4.2 fixed-point uni-
form quantization while Domain B could use a more precise 
1.5 fixed-point uniform quantization. The 6-bit wordlength is 
preserved to maintain the decoder complexity. The functions 
Φ1 and Φ2 separate the two domains. The input to Φ1 is in a 
4.2 quantization and the output of Φ1 is in a 1.5 quantization. 
The Φ2 function assumes the opposite quantization assign-
ment. 
 

TABLE II 
A PARTIAL LIST OF ABSORBING SETS IN A 4.2 DECODER IMPLEMENTATION 

(a) SNR = 6.1 DB AND 6.3 DB, Φ2(0) = 4.25, TOTAL 58 CASES 
Absorbing sets (4,8) (5,9) (6,8) (8,6) (8,8) 

Cases (out of 58) 48 2 6 2 0 
 

(b) SNR = 6.1 DB AND 6.3 DB, Φ2(0) = 4.75, TOTAL 58 CASES 
Absorbing sets (4,8) (5,9) (6,8) (8,6) (8,8) 

Cases (out of 58) 38 3 10 2 2 
 

 
…
...…
...

 
Figure 5. Division of the quantization domains. 
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Figure 6. Performance comparison between the 4.2 quantization and the 

4.2/1.5 adaptive quantization. 

 
 

Fig. 6 shows that the 4.2/1.5 adaptive quantization outper-
forms the 4.2 quantization in both the cliff and the error floor 
regions. The performance advantage of the 4.2/1.5 adaptive 
quantization is attributed to more levels in the operating region 
of the Φ2 function, which enable a more accurate representa-
tion of the extrinsic messages. Intuitively, more accurate ex-
trinsic messages reduce the excessive error propagation from 
numerous incorrect bits at a low SNR, thus the performance in 
the cliff region is improved. It is also possible to precisely 
differentiate extrinsic messages with more quantization levels, 
so that the favorable influences could potentially obtain a 
stronger representation than the adverse influences, and the 
absorbing-set errors become less likely. 

The above explanation is verified by the failures in the error 
floor region. The partial list of absorbing sets is shown in Ta-
ble III.(a). The (4,8) absorbing sets observed in the 4.2 quanti-
zation are almost completely removed using the adaptive 
quantization approach. The error floor is now dominated by 
(6,8) and (8,6) absorbing sets. These absorbing sets are illus-
trated in Fig. 7 using the same notations as in Fig. 1. 
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a) 
 

 
b) 

 
Figure 7. Illustration of a) the (6,8) and b) the (8,6) absorbing set. 

 
The (8,6) absorbing set consists of 4:1 and 5:0 variable node 

configurations. The 5:0 configuration is the strongest absorb-
ing scenario in which all the extrinsic messages agree to the 
wrong decision. The 4:1 configuration is also a strong absorb-
ing scenario where 4 incorrect messages considerably over-
power the single correct message. Therefore, the (8,6) absorb-
ing set can be considered a strong absorbing set. 

The (6,8) absorbing set consists of 4:1 and 3:2 variable node 
configurations. Because of the weaker 3:2 configurations, the 
(6,8) absorbing set is considered weaker than the (8,6) absorb-
ing set. In fact, we can apply stronger extrinsic messages as in 
Section III.A by raising the saturation level of the Φ2 function 
such that it becomes more difficult to enter the (6,8) absorbing 
state. Table III.(b) shows that the importance of (6,8) absorb-
ing set is lowered, thereby leaving the (8,6) absorbing set as 
the only dominant cause of error floors. 

Note that strong absorbing sets are defined relative to weak 
absorbing sets. In poor decoder implementations, the perform-
ance can be dominated by weak and often low-weight absorb-
ing sets, which lead to a higher error floor. The quantization 
can be improved such that the effects of weak absorbing sets 

are alleviated. The error floor performance is eventually domi-
nated by strong absorbing sets. 
 
C.  Representation of Channel Likelihoods 

In an AWGN channel, the prior log-likelihood ratio, i.e., the 
input to the decoder, is given by Lpr(xi) = 2yi/s

2, where yi is the 
channel output and s2 is the noise variance. At a SNR level in 
the range of interest, 5 dB for instance, the input Lpr(xi) ~ 
N(≤11.33, 22.65). A 4.2 quantization scheme is not sufficient 
to capture the distribution of the input. Moreover, it clips cor-
rect priors and incorrect priors disproportionately. Simple cal-
culations show that the 4.2 quantization scheme clips ap-
proximately 76% of the correct priors; in contrast, it only clips 
0.071% of the incorrect priors. 

An adaptive quantization approach provides more flexibility 
in choosing the most suitable quantization in each domain. A 
6.0 uniform quantization can be selected to replace the 4.2 
quantization in Domain A. The 6.0 quantization accepts a 
higher dynamic range, which permits the correct priors to as-
sume a stronger representation without being clipped exces-
sively. Variable nodes backed by stronger correct priors can-
not be easily pulled into an absorbing configuration, thus the 
likelihood of absorbing-set errors is reduced. The performance 
of the 6.0/1.5 adaptive quantization design is shown in Fig. 8. 
The error floor performance improves over the 4.2/1.5 adap-
tive quantization.  
 

TABLE III 
A PARTIAL LIST OF ABSORBING SETS IN A 4.2/1.5 DECODER IMPLEMENTATION 

(a) SNR = 5.5 DB AND 5.7 DB, Φ2(0) = 5.5, TOTAL 58 CASES 
Absorbing sets (6,8) (7,9) (8,6) (8,8) (9,5) (10,4) 

Cases (out of 58) 20 2 18 4 0 0 
 

(b) SNR = 5.5 DB AND 5.7 DB, Φ2(0) = 6.25, TOTAL 58 CASES 
Absorbing sets (6,8) (7,9) (8,6) (8,8) (9,5) (10,4) 

Cases (out of 58) 6 1 23 3 6 4 
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Figure 8. Performance comparison among different quantization schemes. 
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Figure 9. Performance of the 6.0/1.5 quantization when the saturation level 

of the extrinsic messages is adjusted. 
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The adaptive quantization approach can be fine-tuned by ad-
justing the saturation level for extrinsic messages as in Section 
III.A. Fig. 9 shows that there exists an optimal saturation level 
for extrinsic messages at each SNR region. At a low SNR, a 
lower saturation level results in a better performance in the 
cliff region. As the SNR increases towards the error floor 
range, a higher saturation level improves the error floor per-
formance. An adaptive saturation level for extrinsic messages 
brings the optimal performance at each SNR level. 
 
D.  Applicability of the Results 

The concept of strong and weak absorbing sets applies to 
other LDPC code constructions. We observe that moving the 
saturation level for extrinsic messages shifts the performance 
curve of a (2048,1723) RS-LDPC code [14] in the cliff region. 
An adaptive quantization approach further reduces the imple-
mentation loss in the cliff region. We also observe that in a 
(2048,1765) RS-LDPC code, some conventional quantization 
schemes could result in weak absorbing sets dominating the 
error floor performance. The quantization approach can be 
improved to alleviate the effects of weak absorbing sets and 
lower the error floor. 
 

IV.     LIMITED NUMBER OF DECODING ITERATIONS 
 

The number of decoding iterations is usually very limited in 
practice, as it determines the latency and throughput of the 
system. As an example, in the IEEE 802.3an 10GBASE-T 
standard which supports 10 Gb/s Ethernet over twisted-pair 
cabling, the maximum number of iterations for the LDPC de-
coder is limited to around 6 to 8 [15]. In the following investi-
gation, we choose the maximum number of decoding itera-
tions to be 10, because the results would be relevant in some 
practical applications. 

Fig. 10 shows the change in performance as the upper limit 
on the iteration number is reduced from 200 to 10 using a 4.2 
uniform quantized decoder. Observe that a good performance 
in the cliff region can be achieved with as few as 10 iterations. 
The loss in performance in the cliff region is due to an insuffi-
cient number of iterations for the decoding to converge. The 
10-iteration waterfall eventually “lands” on the 200-iteration 
error floor, so that the two error floors almost overlap. Analy-
sis of the failures in this region confirms that the (4,8) absorb-
ing set, the dominant cause of error floors in the 200-iteration 
decoder, causes the 10-iteration decoder to fail. This result 
suggests that the absorbing behavior usually happens very 
quickly and the absorbing structure emerges in full strength 
within 10 decoding iterations. Non-convergent errors, how-
ever, become less significant in a high SNR region. 

The quantization effects observed previously are still appli-
cable in a 10-iteration decoder. Strengthening extrinsic mes-
sages slows down the convergence. Fig. 11 confirms that the 
performance loss in the cliff region is widened with a higher 
saturation level for the extrinsic messages. As the strength of 
extrinsic messages is increased further, an oscillation behavior 
can occur [3] and it usually cannot be resolved within a small 
number of iterations, leading to a higher error floor. 

The adaptive quantization approach improves the error floor 
performance even within 10 iterations. In particular, observe 
in Fig. 12 that the 6.0/1.5 adaptive quantization performs bet-
ter in the error floor region than the 4.2 or the 4.2/1.5 quanti-
zation. This behavior can be understood as the excessive input 
clipping (using the 4.2 input quantization) of correct priors 
weakening the stabilities of the bits that are received correctly. 
These bits become less immune to adverse influences, thus the 
convergence is slowed down and absorbing-set errors become 
more likely. 
 
 

V.     CONCLUSIONS AND FUTURE WORK 
 

Limited wordlength and limited number of iterations are the 
fundamental constraints in any practical implementation of the 
iterative decoding algorithm. Quantization schemes under the 
limited wordlength constraint can be suboptimal, thus allow-
ing weak absorbing sets of relatively small size to dominate, 
thereby leading to a higher error floor. In this work, we 
showed that an adaptive quantization approach improves the 
fidelity of extrinsic messages and channel likelihoods. It miti-
gates the effects of weak absorbing sets and lowers the error 
floor. Moreover, we established that adaptive saturation level 
for the extrinsic messages can be combined with the adaptive 
quantization approach to achieve the optimal performance in 
both the cliff and the error floor regions. 

We also showed that a good performance can be achieved 
even with very few decoding iterations. Results based on 10 
decoding iterations demonstrate that the loss due to non-
convergent errors is small and the error floor performance 
does not significantly improve after the first 10 iterations. The 
performance is still strongly influenced by the quantization. 
Reducing the saturation level of extrinsic messages narrows 
the loss due to non-convergent errors and the adaptive quanti-
zation approach improves the error floor performance substan-
tially. 

In this work, we isolated weak absorbing sets from strong 
absorbing sets and we showed that quantization has a signifi-
cant effect on the composition of absorbing sets in the error 
floor region. In future work, we intend to enumerate the possi-
ble absorbing sets and evaluate their influences, as it would 
allow us to predict of the location and the slope of the error 
floors. We also intend to explore the complexity dimension by 
investigating the error floor performance using the min-sum or 
a modified min-sum decoding algorithm. 
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Figure 10. Limited number of decoding iterations using the 4.2 quantiza-

tion with a relatively low Φ saturation level: Φ(0)=3.5. 
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Figure 11. Limited number of decoding iterations using the 4.2 quantiza-

tion with a higher Φ saturation level: Φ(0) = 4.25.
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Figure 12. Quantization effect on the decoder performance using only 10 decoding iterations. 
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