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Abstract -- A unified algorithm-architecture-circuit co-design 
environment for dedicated signal processing hardware is 
presented.  The approach is based on a single design description 
in the graphical Matlab/Simulink environment that is used for 
FPGA emulation, ASIC design, verification and chip testing.  
This unified description enables system designer with a visibility 
through several layers of design hierarchy down to circuit level to 
select the optimal architecture.  The tool flow propagates up 
circuit-level performance and power estimates to rapidly 
evaluate architecture-level tradeoffs.  The common Simulink 
design description minimizes errors in translation of the design 
between different descriptions, and eases the verification burden.  
The FPGA used for emulation can be used as a low-cost tool for 
testing of the fabricated ASIC.  The approach is demonstrated on 
an ASIC for 4×4 MIMO signal processing. 

I.  INTRODUCTION 
Traditional approaches to implementing signal processing 

algorithms in an ASIC involve creating a design and 
translating between multiple design descriptions: an abstract 
algorithm is analyzed and optimized in Matlab or C; then it is 
mapped onto an architecture using behavioral or structural 
description; in the process, a fixed-point description replaces a 
floating point version of the design; it is partitioned into 
various design fabrics and mapped into an ASIC/SoC; the 
design is checked for equivalence between different 
descriptions; and the test vectors are once again translated for 
use in a logic analysis system for final hardware testing.  Each 
translation step, whether manual or automated, requires 
additional verification to confirm that the original design has 
been preserved.  More importantly, changes in the design 
description impede the system and architecture designers’ 
visibility into the basic implementation tradeoffs at micro-
architecture and circuit level.  We proposed in [1] to use 
Simulink as the design editor, because it is common to system 
designers and its discrete-time computation model can be 
made bit-true and cycle-accurate with respect to the hardware.  
This approach provides a common description of the 
algorithm and ASIC.  It merges design, optimization, and 
ASIC hardware verification steps within the widely adopted 
Matlab/Simulink design environment. 

In chip design, logic errors need to be eliminated early in 
the design to avoid costly hardware re-spins.  Unfortunately, 
logic verification using simulation is often too slow.  As an 
alternative, hardware emulation can accelerate this process by 
several orders of magnitude.  FPGA chips present a viable 
technology for emulating complex algorithms, leveraging 
advances in performance, capacity, and software support for 
FPGAs.  As an example, emulation of the entire physical layer 
processing for the 802.11a standard is feasible in an FPGA, 
[2].  This presents an opportunity to leverage the FPGA 
technology for real-time at-speed ASIC verification, as 

described in [3].  In this paper, we demonstrate how the 
unified description can be used to perform high-level tradeoffs 
between area and power for a fixed-throughput DSP 
algorithm.  We also demonstrate the use of the same 
description and emulation hardware to test a fabricated chip. 

II.  UNIFIED ASIC/FPGA DESCRIPTION IN SIMULINK 
The FPGA hardware description cannot be used as is for 

ASIC designs due to incompatibilities between many of the 
low-level primitive components.  To leverage an existing 
Simulink design entry that is used for FPGA programming, an 
in-house tool [3, 4] was developed.  The tool synthesizes basic 
primitives based on the behavioral RTL, and performs initial 
top-level synthesis for an ASIC based on the dataflow graph 
connectivity in Simulink, Fig. 1.  The tool also performs HDL 
simulation to confirm functional equivalency between the two 
hardware descriptions. 

The mapped ASIC netlist is optimized using a set of 
custom scripts for register retiming and logic optimization, 
before entering the final stage of physical layout synthesis 
through a commercial backend flow.  This approach allows 
relatively straightforward mapping of a parallel architecture 
from the dataflow graph onto silicon.  Architectural feedback 
about speed, power, and area of hardware macros is mapped 
back to the Simulink model, enabling exploration of 
architectures for improved ASIC power and area. 

III.  ARCHITECTURE EXPLORATION IN SIMULINK 
The architecture exploration starts from the direct-mapped 

parallel architecture (one-to-one correspondence between 
algorithmic operations such as add, multiply etc. and hardware 
blocks).  This architecture is well defined, and serves well as 
an initial design point.  The initial architecture, however rarely 
meets timing requirements in the most energy/area-efficient 
way. 
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Fig. 1. Simulink-based ASIC design and verification environment. 
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For a given communications algorithm that works with a 
fixed bandwidth, the architecture is strongly influenced by the 
scaling of the underlying technology.  Figure 2 illustrates the 
methodology for choosing the best architecture for a given 
technology based on energy-delay characterization of datapath 
logic to jointly minimize power and area.  The design process 
starts from the initial design sized for minimum delay at its 
nominal supply and threshold.  Optimal design is achieved by 
balancing sensitivity of the underlying pipeline logic stages in 
the entire design, [5].  This framework can be used to optimize 
architecture for a given technology.  For example, intrinsic 
computational efficiency of silicon due to scaling is roughly 
equivalent to adding one level of parallelism in terms of 
performance.  Architecture and technology options therefore 
have to be jointly considered early in the design process. 

Basic architectural building blocks, such as adders and 
multipliers are characterized in the latency vs. cycle time 
space, Fig. 3.  The impact of voltage scaling is estimated from 
the transistor level simulation of the FO4 gate delay.  Block 
characterization data allows decoupling of register retiming 
and voltage scaling issues by choosing the correct amount of 
block-level pipelining for a given clock cycle TClk constraint.  
The remaining issue of balancing the tradeoffs with respect to 
gate sizing and voltage scaling is also performed sequentially 
in synthesis environment.  Prior work [5] demonstrated that 
gate sizing is the most effective at small incremental delays 
relative to the minimum delay, so the design is initially 
synthesized with a 20% slack followed by an incremental 

compilation to utilize sizing, as shown in Fig. 2.  Timing 
constraints are shifted to the reference supply to balance 
sensitivities at a reduced supply voltage. 

The Simulink environment is used to implement several 
other design procedures.  A wordlength reduction routine 
based on perturbation theory is performed in Simulink [6] to 
reduce the hardware area.  The Simulink block-based design 
methodology also allows integration of 3rd party IP blocks 
such as SRAM modules provided by an ASIC foundry.  The 
final design optimized in Simulink is mapped to two hardware 
targets: the FPGA hardware, and the gds2 physical layout. 

IV.  FPGA-ASSISTED ASIC VERIFICATION 
The final step in the chip making process is the testing of 

the fabricated ASIC.  The Simulink design environment is also 
used to facilitate FPGA-assisted chip testing, thus closing the 
loop of design, optimization, and test.  The existing 
commercial FPGA-based ASIC verification solutions [7] 
require users to construct custom hardware testbench for 
FPGA typically using low-level HDL.  This process is time 
consuming and error prone, and requires FPGA expertise to 
leverage all of the debugging features available on an FPGA. 

Unlike the traditional approach, the Simulink description 
of an ASIC architecture also implicitly provides the testbench.  
Xilinx System Generator (XSG) tools can leverage the 
existing testbench to put the FPGA in the loop of the software 
simulation for cycle-accurate verification.  However, such 
hardware-in-the-loop verification speed is limited by the 
available PC-to-FPGA communication interfaces, such as 
JTAG or Ethernet.  In both cases, the maximum co-simulation 
speed is limited to a few MHz clock rate—far from the desired 
ASIC clock rate for interface to the analog radio subsystem. 

The FPGA portion of the flow, internally developed BEE 
Platform Studio (BPS) [8], leverages the embedded PowerPC 
cores available on high-end Xilinx FPGAs for in-circuit 
verification of the algorithm and the final ASIC.  To ease the 
testbench creation burden on the ASIC designer, the BPS flow 
completely automates the FPGA backend generation, and 
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Fig. 2. Energy-delay space for pipeline logic is the tool for comparing 

architecture and technology options.  Total design area is shown. 
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Fig. 3. Block- and gate-level technology characterization. 

 
Fig. 4. Custom Xilinx Platform Studio and hardware interface blockset. 
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augments the existing XSG Simulink library with FPGA 
system level component library, as shown in Fig. 4, to abstract 
away FPGA specific interface and debugging details. 

The FPGA system library has the following blocks: 
1) software/hardware interfaces (registers, FIFOs, 

shared block RAM), for communication between the 
embedded processor core and the design under test;  

2) external digital interfaces (GPIO ports), used for 
connection to an external ASIC chip under test;  

3) external A/D and D/A interfaces for connection to 
analog radio subsystems; and 

4) in-circuit debugging (vector signal generator, 
hardware scope), which are software controlled on-
chip debugging resources for verification of either the 
algorithm or the final chip at the target clock rate. 

Users can insert the FPGA system-level blocks to specific 
ASIC interfaces as well as internal nodes for debugging, as 
shown in Fig. 5.  The FPGA logic and software device drivers 
are automatically generated by the BPS, and integrated in the 
Xilinx Embedded Development Kit backend flow. 

By default, the BPS design flow provides a simple user 
command shell, TinySH, that is used as an interactive 
interface to the embedded processor core via an on-board 
RS232 serial connection, shown in Fig. 6.  This connection 
can be accessed directly through a terminal emulator running 
on the client PC, or through Matlab.  Two Matlab routines are 
available, read_xps and write_xps [8], allowing programs to 
read or write memory and register contents on the FPGA 
board, via the serial port and TinySH. 

The debugging FPGA embedded processor core and the 
ASIC under test can run on independent clocks or the ASIC 
clock can be provided by the FPGA.  All software/hardware 
interface blocks use asynchronous clock boundary crossing, 
and the processor can setup the debugging blocks for precise 
capture of the internal node data in real-time.  Software input 
vectors can be generated either by the embedded processor 
and custom software code, or more conveniently directly 
loaded via the serial connection from the Matlab/Simulink 
environment.  Similarly, the captured output data can be sent 
to Matlab environment for further analysis.  In case of ASIC 
testing, the same input vectors can be sent both to the ASIC 
chip and the FPGA logic emulation of the ASIC, as shown in 
Fig. 1, then compared on the FPGA for output equivalency on 
a per clock cycle basis, hence closing the loop of algorithm to 
final ASIC chip verification. 

The performance of the hardware co-simulation interface 
shown in Fig. 6 is limited by the data rate of both the serial 
link between the client PC and the FPGA board, and the 
connections between the FPGA and ASIC boards.  The real-
time performance of the ASIC/FPGA co-simulation is limited 
by the serial GPIO bandwidth to about 130MHz.  This speed 
is sufficient for dedicated signal processing hardware for 
communications, but can become a bottleneck.  In addition, 
the process of controlling and transferring test vectors to and 
from the FPGA test board from the Matlab/Simulink 
environment in real-time is limited by the RS232 serial port 
bandwidth (~kb/s range).  Block RAM memories are currently 
used as data buffers to provide real-time emulation capability.  
This approach works well for periodic inputs or internally 
generated testbench on the FPGA.  The output data is 
currently being transferred into Matlab from the block RAM 
memories on the FPGA.  Internal control circuits that flag 
discrepancies between the two hardware modules can be 
easily deployed for real-time comparison. 

V.  FULLY FPGA-BASED TEST SETUP 
To overcome the I/O bandwidth limitation, we are 

currently implementing a fully FPGA-based test infrastructure 
as shown in Fig. 7.  The client PC functionality from Fig. 6 is 
implemented on an Ethernet-enabled FPGA board managed by 
the BORPH operating system [9].  As a result, the original 
client PC reduces to a role of a simple terminal.  All ASIC 
testing are controlled by the FPGA.  This setup will then allow 
real-time ASIC debugging speed to be increased to about 
500Mb/s of practical bandwidth over a Z-Dok differential 
connector.  This bandwidth is compatible with the speed of the 
most advanced FPGA parts (e.g. Xilinx Virtex5). 

Having the testbench portion executing on a BORPH 
managed FPGA has two key advantages.  First, the FPGA 
testbench can run at a higher clock rate.  This setup eliminates 
the data I/O bottleneck and allows much higher ASIC test 
performance.  Second, FPGA managed by BORPH has access 
to system resources such as the general UNIX file system that 
the host computer has access to.  It allows the FPGA testbench 
to access the same test vector files as the top-level Simulink 
simulation for verification purpose. 

Figure 8 summarizes various phases of ASIC verification 
that include simulation, emulation, and test.  The simulation 
can be simply carried in Simulink as pure software simulation.  
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Fig. 5. Simulink hardware interface model.  The model is programmed onto 

FPGA for real-time hardware co-simulation. 
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Fig. 6. Existing hardware co-simulation model.  Simulink hardware 
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Alternatively, we can simulate the behavioral HDL description 
of the ASIC design by Simulink-Modelsim co-simulation. A 
third form is the co-simulation of the final synthesized ASIC 
structural design with the Simulink testbench, which allows 
arbitrary non-Simulink subsystems to be verified.  It also 
allows the hardware testbench to exercise a timing-accurate 
HDL simulation for a detailed ASIC verification. 

In the Emulation phase, Simulink can perform hardware-
in-the-loop simulations where parts of the design are 
implemented in hardware and the rest in software; or do a 
complete FPGA emulation in real-time.  Final ASIC test can 
be done by controlling test vectors from the outside client PC 
(Fig. 6) or embedding test vectors in FPGA hardware (Fig. 7). 
The proposed Matlab/Simulink environment supports design, 
optimization, and verification of dedicated DSP hardware. 

VI.  ASIC EXAMPLE 
Using the approach presented, a multi-carrier MIMO chip 

that operates over many parallel frequency channels was 
designed, optimized, and verified [10].  Figure 9 is the result 
of functional at-speed (100MHz) verification of the ASIC 
driven by the FPGA, as in Fig. 5.  The energy- and area-
efficiency of the ASIC built using our methodology compares 
favorably to recently published baseband communications and 
media processors with high energy-efficiencies [11] and the 
high area-efficiencies [12].  Subsequently, few other ASICs, 
including multi-standard FIR and UWB processor were 
recently designed.  With fully functional flow, the design 
cycle has been drastically reduced, to an order of several 
weeks from algorithm to final layout. 

VII.  CONCLUSION 
Matlab/Simulink is a unified environment that closes the 

loop from algorithm development to final ASIC verification, 
thus improving the top-level decision making and increasing 
the design productivity.  The methodology allows hardware 
emulation of the algorithm, optimized architecture description, 
and final ASIC verification, using the unified description.  The 
same environment can be used for accelerated algorithm 
exploration.  Other design optimization routines including 
wordlength reduction, architecture transformations, and 
hardware scheduling could be also facilitated from the unified 
 
 
 

Simulink description.  The ASIC design made using the 
proposed approach is fully functional and achieves 
2GOPS/mW of energy-efficiency and 20GOPS/mm2 of area-
efficiency in a 90nm CMOS technology. 
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Fig. 8. Summary of FPGA-based ASIC verification. 

 
Fig. 9. Eigen-mode tracking of a 4×4 MIMO channel.  Hardware co-

simulation result (solid: measured, dashed: theoretical). 
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