
ASIC Design and Verification in an FPGA Environment

Dejan Markovic*, Chen Chang, Brian Richards, Hayden So, Borivoje Nikolic, Robert W. Brodersen
Berkeley Wireless Research Center, University of California, Berkeley, USA

* Now with the Department of Electrical Engineering, University of California, Los Angeles, USA

Abstract -- A unified algorithm-architecture-circuit co-design
environment for dedicated signal processing hardware is
presented. The approach is based on a single design description
in the graphical Matlab/Simulink environment that is used for
FPGA emulation, ASIC design, verification and chip testing.
This unified description enables system designer with a visibility
through several layers of design hierarchy down to circuit level to
select the optimal architecture. The tool flow propagates up
circuit-level performance and power estimates to rapidly
evaluate architecture-level tradeoffs. The common Simulink
design description minimizes errors in translation of the design
between different descriptions, and eases the verification burden.
The FPGA used for emulation can be used as a low-cost tool for
testing of the fabricated ASIC. The approach is demonstrated on
an ASIC for 4×4 MIMO signal processing.

I. INTRODUCTION
Traditional approaches to implementing signal processing

algorithms in an ASIC involve creating a design and
translating between multiple design descriptions: an abstract
algorithm is analyzed and optimized in Matlab or C; then it is
mapped onto an architecture using behavioral or structural
description; in the process, a fixed-point description replaces a
floating point version of the design; it is partitioned into
various design fabrics and mapped into an ASIC/SoC; the
design is checked for equivalence between different
descriptions; and the test vectors are once again translated for
use in a logic analysis system for final hardware testing. Each
translation step, whether manual or automated, requires
additional verification to confirm that the original design has
been preserved. More importantly, changes in the design
description impede the system and architecture designers’
visibility into the basic implementation tradeoffs at micro-
architecture and circuit level. We proposed in [1] to use
Simulink as the design editor, because it is common to system
designers and its discrete-time computation model can be
made bit-true and cycle-accurate with respect to the hardware.
This approach provides a common description of the
algorithm and ASIC. It merges design, optimization, and
ASIC hardware verification steps within the widely adopted
Matlab/Simulink design environment.

In chip design, logic errors need to be eliminated early in
the design to avoid costly hardware re-spins. Unfortunately,
logic verification using simulation is often too slow. As an
alternative, hardware emulation can accelerate this process by
several orders of magnitude. FPGA chips present a viable
technology for emulating complex algorithms, leveraging
advances in performance, capacity, and software support for
FPGAs. As an example, emulation of the entire physical layer
processing for the 802.11a standard is feasible in an FPGA,
[2]. This presents an opportunity to leverage the FPGA
technology for real-time at-speed ASIC verification, as

described in [3]. In this paper, we demonstrate how the
unified description can be used to perform high-level tradeoffs
between area and power for a fixed-throughput DSP
algorithm. We also demonstrate the use of the same
description and emulation hardware to test a fabricated chip.

II. UNIFIED ASIC/FPGA DESCRIPTION IN SIMULINK
The FPGA hardware description cannot be used as is for

ASIC designs due to incompatibilities between many of the
low-level primitive components. To leverage an existing
Simulink design entry that is used for FPGA programming, an
in-house tool [3, 4] was developed. The tool synthesizes basic
primitives based on the behavioral RTL, and performs initial
top-level synthesis for an ASIC based on the dataflow graph
connectivity in Simulink, Fig. 1. The tool also performs HDL
simulation to confirm functional equivalency between the two
hardware descriptions.

The mapped ASIC netlist is optimized using a set of
custom scripts for register retiming and logic optimization,
before entering the final stage of physical layout synthesis
through a commercial backend flow. This approach allows
relatively straightforward mapping of a parallel architecture
from the dataflow graph onto silicon. Architectural feedback
about speed, power, and area of hardware macros is mapped
back to the Simulink model, enabling exploration of
architectures for improved ASIC power and area.

III. ARCHITECTURE EXPLORATION IN SIMULINK
The architecture exploration starts from the direct-mapped

parallel architecture (one-to-one correspondence between
algorithmic operations such as add, multiply etc. and hardware
blocks). This architecture is well defined, and serves well as
an initial design point. The initial architecture, however rarely
meets timing requirements in the most energy/area-efficient
way.

Loop Retiming
Place & Route

Word-length
Architecture

Backend tool

Simulink

Behavioral HDL

Mapped HDL

physical

logical

behavioral

In-house tool
HDL Generation
Logic Synthesis
HDL Simulation

Speed
Power
Area

Speed
Power
Area

Matlab™

ASIC
board

FPGA
board

Real-time
hardware

verification
Fig. 1. Simulink-based ASIC design and verification environment.

737

IEEE 2007 Custom Intergrated Circuits Conference (CICC)

1-4244-1623-X/07/$25.00 ©2007 IEEE 21-7-1

For a given communications algorithm that works with a
fixed bandwidth, the architecture is strongly influenced by the
scaling of the underlying technology. Figure 2 illustrates the
methodology for choosing the best architecture for a given
technology based on energy-delay characterization of datapath
logic to jointly minimize power and area. The design process
starts from the initial design sized for minimum delay at its
nominal supply and threshold. Optimal design is achieved by
balancing sensitivity of the underlying pipeline logic stages in
the entire design, [5]. This framework can be used to optimize
architecture for a given technology. For example, intrinsic
computational efficiency of silicon due to scaling is roughly
equivalent to adding one level of parallelism in terms of
performance. Architecture and technology options therefore
have to be jointly considered early in the design process.

Basic architectural building blocks, such as adders and
multipliers are characterized in the latency vs. cycle time
space, Fig. 3. The impact of voltage scaling is estimated from
the transistor level simulation of the FO4 gate delay. Block
characterization data allows decoupling of register retiming
and voltage scaling issues by choosing the correct amount of
block-level pipelining for a given clock cycle TClk constraint.
The remaining issue of balancing the tradeoffs with respect to
gate sizing and voltage scaling is also performed sequentially
in synthesis environment. Prior work [5] demonstrated that
gate sizing is the most effective at small incremental delays
relative to the minimum delay, so the design is initially
synthesized with a 20% slack followed by an incremental

compilation to utilize sizing, as shown in Fig. 2. Timing
constraints are shifted to the reference supply to balance
sensitivities at a reduced supply voltage.

The Simulink environment is used to implement several
other design procedures. A wordlength reduction routine
based on perturbation theory is performed in Simulink [6] to
reduce the hardware area. The Simulink block-based design
methodology also allows integration of 3rd party IP blocks
such as SRAM modules provided by an ASIC foundry. The
final design optimized in Simulink is mapped to two hardware
targets: the FPGA hardware, and the gds2 physical layout.

IV. FPGA-ASSISTED ASIC VERIFICATION
The final step in the chip making process is the testing of

the fabricated ASIC. The Simulink design environment is also
used to facilitate FPGA-assisted chip testing, thus closing the
loop of design, optimization, and test. The existing
commercial FPGA-based ASIC verification solutions [7]
require users to construct custom hardware testbench for
FPGA typically using low-level HDL. This process is time
consuming and error prone, and requires FPGA expertise to
leverage all of the debugging features available on an FPGA.

Unlike the traditional approach, the Simulink description
of an ASIC architecture also implicitly provides the testbench.
Xilinx System Generator (XSG) tools can leverage the
existing testbench to put the FPGA in the loop of the software
simulation for cycle-accurate verification. However, such
hardware-in-the-loop verification speed is limited by the
available PC-to-FPGA communication interfaces, such as
JTAG or Ethernet. In both cases, the maximum co-simulation
speed is limited to a few MHz clock rate—far from the desired
ASIC clock rate for interface to the analog radio subsystem.

The FPGA portion of the flow, internally developed BEE
Platform Studio (BPS) [8], leverages the embedded PowerPC
cores available on high-end Xilinx FPGAs for in-circuit
verification of the algorithm and the final ASIC. To ease the
testbench creation burden on the ASIC designer, the BPS flow
completely automates the FPGA backend generation, and

Energy

DelayArea 0

Initial design

wordlength

gate sizing
Initial synthesis

VDD scaling
Optimal design

Initial design

parallel

time-mux

Fig. 2. Energy-delay space for pipeline logic is the tool for comparing

architecture and technology options. Total design area is shown.

Latency

Cycle Time

0

mult

add

Energy

VDD scaling

VDD
ref

TClk @ VDD
opt

Library blocks / macros
synthesized @ VDD

ref
Pipeline logic scaling

FO4 inv simulation

Speed
Power
Area

TClk @
VDD

ref

gate sizing

Fig. 3. Block- and gate-level technology characterization.

Fig. 4. Custom Xilinx Platform Studio and hardware interface blockset.

73821-7-2

augments the existing XSG Simulink library with FPGA
system level component library, as shown in Fig. 4, to abstract
away FPGA specific interface and debugging details.

The FPGA system library has the following blocks:
1) software/hardware interfaces (registers, FIFOs,

shared block RAM), for communication between the
embedded processor core and the design under test;

2) external digital interfaces (GPIO ports), used for
connection to an external ASIC chip under test;

3) external A/D and D/A interfaces for connection to
analog radio subsystems; and

4) in-circuit debugging (vector signal generator,
hardware scope), which are software controlled on-
chip debugging resources for verification of either the
algorithm or the final chip at the target clock rate.

Users can insert the FPGA system-level blocks to specific
ASIC interfaces as well as internal nodes for debugging, as
shown in Fig. 5. The FPGA logic and software device drivers
are automatically generated by the BPS, and integrated in the
Xilinx Embedded Development Kit backend flow.

By default, the BPS design flow provides a simple user
command shell, TinySH, that is used as an interactive
interface to the embedded processor core via an on-board
RS232 serial connection, shown in Fig. 6. This connection
can be accessed directly through a terminal emulator running
on the client PC, or through Matlab. Two Matlab routines are
available, read_xps and write_xps [8], allowing programs to
read or write memory and register contents on the FPGA
board, via the serial port and TinySH.

The debugging FPGA embedded processor core and the
ASIC under test can run on independent clocks or the ASIC
clock can be provided by the FPGA. All software/hardware
interface blocks use asynchronous clock boundary crossing,
and the processor can setup the debugging blocks for precise
capture of the internal node data in real-time. Software input
vectors can be generated either by the embedded processor
and custom software code, or more conveniently directly
loaded via the serial connection from the Matlab/Simulink
environment. Similarly, the captured output data can be sent
to Matlab environment for further analysis. In case of ASIC
testing, the same input vectors can be sent both to the ASIC
chip and the FPGA logic emulation of the ASIC, as shown in
Fig. 1, then compared on the FPGA for output equivalency on
a per clock cycle basis, hence closing the loop of algorithm to
final ASIC chip verification.

The performance of the hardware co-simulation interface
shown in Fig. 6 is limited by the data rate of both the serial
link between the client PC and the FPGA board, and the
connections between the FPGA and ASIC boards. The real-
time performance of the ASIC/FPGA co-simulation is limited
by the serial GPIO bandwidth to about 130MHz. This speed
is sufficient for dedicated signal processing hardware for
communications, but can become a bottleneck. In addition,
the process of controlling and transferring test vectors to and
from the FPGA test board from the Matlab/Simulink
environment in real-time is limited by the RS232 serial port
bandwidth (~kb/s range). Block RAM memories are currently
used as data buffers to provide real-time emulation capability.
This approach works well for periodic inputs or internally
generated testbench on the FPGA. The output data is
currently being transferred into Matlab from the block RAM
memories on the FPGA. Internal control circuits that flag
discrepancies between the two hardware modules can be
easily deployed for real-time comparison.

V. FULLY FPGA-BASED TEST SETUP
To overcome the I/O bandwidth limitation, we are

currently implementing a fully FPGA-based test infrastructure
as shown in Fig. 7. The client PC functionality from Fig. 6 is
implemented on an Ethernet-enabled FPGA board managed by
the BORPH operating system [9]. As a result, the original
client PC reduces to a role of a simple terminal. All ASIC
testing are controlled by the FPGA. This setup will then allow
real-time ASIC debugging speed to be increased to about
500Mb/s of practical bandwidth over a Z-Dok differential
connector. This bandwidth is compatible with the speed of the
most advanced FPGA parts (e.g. Xilinx Virtex5).

Having the testbench portion executing on a BORPH
managed FPGA has two key advantages. First, the FPGA
testbench can run at a higher clock rate. This setup eliminates
the data I/O bottleneck and allows much higher ASIC test
performance. Second, FPGA managed by BORPH has access
to system resources such as the general UNIX file system that
the host computer has access to. It allows the FPGA testbench
to access the same test vector files as the top-level Simulink
simulation for verification purpose.

Figure 8 summarizes various phases of ASIC verification
that include simulation, emulation, and test. The simulation
can be simply carried in Simulink as pure software simulation.

XSG core config

sim_rst
reset
reg0

BRAM_IN

D_IN D_OUT
ADDR

WE

BRAM_ASIC

D_IN D_OUT
ADDR

WE

logic

Simulink
hardware

model

ASIC
board soft reg

-c-

in
rst
clk

-c-
-c- in

logic
soft reg
soft reg
soft reg

out

-c-

BRAM_FPGA

D_IN D_OUT
ADDR

WE

out

Fig. 5. Simulink hardware interface model. The model is programmed onto

FPGA for real-time hardware co-simulation.

FPGA
board

Client
PC ASIC

board
RS232

~Kb/s ~130Mb/s

serial
GPIO

Fig. 6. Existing hardware co-simulation model. Simulink hardware

interface model (Fig. 5) controls the ASIC.

BORPH
FPGA
board

User
Terminal ASIC

board~500Mb/s

Z DokEthernet

Fig. 7. Future hardware co-simulation model with BORPH operating

system running on the FPGA.

73921-7-3

Alternatively, we can simulate the behavioral HDL description
of the ASIC design by Simulink-Modelsim co-simulation. A
third form is the co-simulation of the final synthesized ASIC
structural design with the Simulink testbench, which allows
arbitrary non-Simulink subsystems to be verified. It also
allows the hardware testbench to exercise a timing-accurate
HDL simulation for a detailed ASIC verification.

In the Emulation phase, Simulink can perform hardware-
in-the-loop simulations where parts of the design are
implemented in hardware and the rest in software; or do a
complete FPGA emulation in real-time. Final ASIC test can
be done by controlling test vectors from the outside client PC
(Fig. 6) or embedding test vectors in FPGA hardware (Fig. 7).
The proposed Matlab/Simulink environment supports design,
optimization, and verification of dedicated DSP hardware.

VI. ASIC EXAMPLE
Using the approach presented, a multi-carrier MIMO chip

that operates over many parallel frequency channels was
designed, optimized, and verified [10]. Figure 9 is the result
of functional at-speed (100MHz) verification of the ASIC
driven by the FPGA, as in Fig. 5. The energy- and area-
efficiency of the ASIC built using our methodology compares
favorably to recently published baseband communications and
media processors with high energy-efficiencies [11] and the
high area-efficiencies [12]. Subsequently, few other ASICs,
including multi-standard FIR and UWB processor were
recently designed. With fully functional flow, the design
cycle has been drastically reduced, to an order of several
weeks from algorithm to final layout.

VII. CONCLUSION
Matlab/Simulink is a unified environment that closes the

loop from algorithm development to final ASIC verification,
thus improving the top-level decision making and increasing
the design productivity. The methodology allows hardware
emulation of the algorithm, optimized architecture description,
and final ASIC verification, using the unified description. The
same environment can be used for accelerated algorithm
exploration. Other design optimization routines including
wordlength reduction, architecture transformations, and
hardware scheduling could be also facilitated from the unified

Simulink description. The ASIC design made using the
proposed approach is fully functional and achieves
2GOPS/mW of energy-efficiency and 20GOPS/mm2 of area-
efficiency in a 90nm CMOS technology.

ACKNOWLEDGMENTS
The authors acknowledge funding support from C2S2

under MARCO contract 2003-CT-888 and BWRC member
companies, STMicroelectronics and Xilinx for hardware
support, P. Droz and H. Chen for FPGA infrastructure support.
NSF CNS RI grant #0403427 provided the computing
infrastructure.

REFERENCES
[1] W.R. Davis et al., “A Design Environment for High-Throughput Low-

Power Dedicated Signal Processing Systems,” IEEE JSSC, pp. 420-431,
March 2002.

[2] C. Dick and F. Harris, “FPGA Implementation of an OFDM PHY,” in
Proc. Asilomar Conf. 2003, pp. 905-909.

[3] K. Kuusilinna et al., “Real Time System-on-a-Chip Emulation,” in
Winning the SoC Revolution by H. Chang, G. Martin, Norwell, MA:
Kluwer Academic Publishers, 2003.

[4] [online] http://bwrc.eecs.berkeley.edu/Research/Insecta/default.htm
[5] D. Marković, V. Stojanović, B. Nikolić, M. Horowitz, R.W. Brodersen,

“Methods for True Energy-Performance Optimization,” IEEE JSSC, pp.
1282-1293, Aug. 2004.

[6] C. Shi and R.W. Brodersen, "Automated Fixed-point Data-type
Optimization Tool for Signal Processing and Communication Systems,"
in Proc. IEEE Design Automation Conf., June 2004, pp. 478-483.

[7] [online] http://eve-team.com
[8] Berkeley Emulation Engine 2, [online] http://bee2.eecs.berkeley.edu
[9] H. So, A. Tkachenko, R.W. Brodersen, “A unified hardware/software

runtime environment for FPGA-based reconfigurable computers using
BORPH,” in Proc. Int. Conf. Hardware Software Codesign, Oct. 2006,
pp. 259-264.

[10] D. Markovic, R.W. Brodersen, and B. Nikolic, “A 70GOPS, 34mW
Multi-Carrier MIMO Chip in 3.5mm2,” VLSI’06, pp. 196-197.

[11] P. Mosch et al., “A 720µW 50MOPs 1V DSP for a Hearing Aid Chip
Set,” in ISSCC Dig. Tech. Papers, Feb. 2000, pp. 238-239.

[12] F. Arakawa et al., “An Embedded Processor Core for Consumer
Appliances with 2.8GFLOPS and 36M Polygons/s FPU,” in ISSCC Dig.
Tech. Papers, Feb. 2004, pp. 334-335.

Simulink Simulink Simulink
HDL Simulink Simulink

FPGA HIL tools Simulink
FPGA FPGA FPGA
FPGA FPGA Custom SW
FPGA FPGA FPGA

Pure SW Simulation
Simulink-Modelsim Co-sim.

Hardware-in-the loop Sim.
Pure FPGA Emulation
Testbench outside FPGA
Testbench inside FPGA

1
2
3
4
5
6

Simulation

Emulation

Test

TB
I/O

ASIC

TB
I/O

ASIC ASIC
I/OI/O

TBTB Note:

Fig. 8. Summary of FPGA-based ASIC verification.

Fig. 9. Eigen-mode tracking of a 4×4 MIMO channel. Hardware co-

simulation result (solid: measured, dashed: theoretical).

74021-7-4

