
Investigation of Error Floors of Structured Low-
Density Parity-Check Codes by Hardware Emulation

Zhengya Zhang, Lara Dolecek, Borivoje Nikolić, Venkat Anantharam, and Martin Wainwright

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720, USA

 Abstract−Several high performance LDPC codes have parity-
check matrices composed of permutation submatrices. We de-
sign a parallel-serial architecture to map the decoder of any
structured LDPC code in this large family to a hardware emula-
tion platform. A peak throughput of 240Mb/s is achieved in de-
coding the (2048,1723) Reed-Solomon based LDPC (RS-LDPC)
code. Experiments in the low bit error rate (BER) region provide
statistics of the error traces, which are used to investigate the
causes of the error floor. In a low precision implementation, the
error floors are dominated by the fixed-point decoding effects,
whereas in a higher precision implementation the errors are at-
tributed to special configurations within the code, whose effect is
exacerbated in a fixed-point decoder. This new characterization
leads to an improved decoding strategy and higher performance.

I. INTRODUCTION

 Low-density parity-check (LDPC) codes have been demon-
strated to perform very close to the Shannon limit when de-
coded iteratively [1]. However, they have yet to be widely
employed in systems that require very low bit error rate (BER)
for two reasons: 1) implementation of the decoder is complex,
as it requires either long interconnects or large memory band-
widths, which make it difficult to map the decoder onto a very
large scale integration (VLSI) system, and 2) the current lack
of adequate theory to analytically predict the performance of
the code past some moderate values of BER.
 The empirical way to study LDPC codes is via simulations.
An optimized decoder implemented in C and executed on a
high-end microprocessor provides a peak throughput of the
order of hundreds of kb/s. Consequently, months of simula-
tion time are required to obtain a confident estimate of the
BER at 10-10, thus rendering the approach infeasible. Using a
field-programmable gate array (FPGA) platform, emulation of
LDPC codes can be accelerated [2][3].
 This paper explores practical LDPC decoder design issues
using an emulation-based approach. The main contribution is
to shed light on the nature of the error floor, which is caused
both by intrinsic properties of the code as well as aspects of
the quantization scheme. This insight suggests an improved
decoding strategy that leads to higher performance.
 The message passing algorithm is reviewed in Section II. In
Section III a family of high-performance regular LDPC codes
with structured parity check matrices is surveyed, and a flexi-
ble, high-throughput decoder architecture for this family of
LDPC codes is proposed. The performance results of a
(2048,1723) RS-LDPC decoder are presented in Section IV.

Error traces are analyzed against the structure of the code to
reveal the nature of error floors. Interesting observations are
made: after sufficiently many iterations and when the decoder
has not converged to a codeword, in a low numerical precision
decoder, the error floor is exhibited as the oscillations of hard
decisions in going from one iteration to the next. As a con-
trast, under the same assumptions, in a higher precision de-
coder the soft decisions do not change over subsequent itera-
tions, and thus converge to a non-codeword.

II. MESSAGE PASSING DECODING OF LDPC CODES

 A low-density parity-check code is defined by a sparse
M × N parity check matrix H where N represents the number
of bits in the code block and M represents the number of parity
checks. The rate of such code is lower bounded by r = (N –
 M)/N. The H matrix of an LDPC code can be illustrated
graphically using a Tanner graph, where each bit is repre-
sented by a bit node and each check is represented by a check
node. An edge exists between the bit node n and the check
node m if Hmn = 1. The set µ(n) = {i: Hin = 1, i = 1, 2, …, M}
consists of the check nodes connected to the bit node n.
Likewise, the set ν(m) = {j: Hmj = 1, j = 1, 2, …, N} consists of
the bit nodes connected to the check node m.
 An LDPC code can be efficiently decoded with a message
passing algorithm. The algorithm relies on the exchange of
soft messages between bit nodes and check nodes to achieve
correct bit decisions. In the first step, bit nodes xi, i = 1, 2, …,
N, are initialized with the prior log-likelihood ratios defined in
(1) using the channel outputs yi, i = 1, 2, …, N,

.
)|1Pr(
)|0Pr(log)(

ii

ii
i

prior

yx
yxxLLR

=
== (1)

 Bit nodes propagate the prior LLRs to the check nodes via the
edges of the Tanner graph. Check nodes sum up the messages
received from the bit nodes adjacent to them and send the ex-
trinsic information back to them. Bit nodes follow up by up-
dating bit decisions based on extrinsic information in the next
round of iteration.
 Bit-to-check and check-to-bit messages are calculated using
equations (2), (3), and (4). The messages Qnm and Rmn refer to
the bit-to-check and check-to-bit messages that are passed
between the bit node n and the check node m,

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

),(
)(

n
prior

mn
ni

innm xLLRRRQ +−= ∑
∈µ

 (2)

() ()













Φ−ΦΦ= ∑

∈
nm

mj
njmn QQR

)(ν

,)(sgn)sgn(
)(














× ∏

∈
nj

mj
nm QQ

ν
 (3)








−=Φ)
2
1tanh(log)(xx , .0≥x (4)

 The message passing algorithm is allowed to run for a fixed
number of iterations. After this a hard decision is performed
based on the posterior LLR as in (5) and (6),

),()(
)(

n
prior

ni
inn

posterior xLLRRxLLR += ∑
∈µ

 (5)







<
≥=

.0)(,1
0)(,0ˆ

n
posterior

n
posterior

n xLLRif
xLLRifx (6)

III. DECODER ARCHITECTURE OF STRUCTURED LDPC CODES

 A practical high-throughput LDPC decoder can be imple-
mented in a fully parallel manner by directly mapping the
Tanner graph onto an array of processing elements intercon-
nected by wires. In this parallel implementation, all messages
in one direction are processed concurrently, yielding a com-
plex, interconnect-dominated design. On the other hand, the
memory bandwidth limits the throughput of a serial decoder
[4]. A balance between throughput and memory bandwidth
can be achieved if the underlying parity check matrix is regu-
lar and structured. The structure of the H matrix enables a
parallel-serial architecture and a compact memory design.

A. LDPC Codes with Parity Check Matrices Composed of
Permutation Matrices
 Several known high performance LDPC code constructions,
including the Reed-Solomon based [5], array-based [6], lat-
tice-based [7], as well as the ones proposed by Tanner et. al
[8], share the same property that their parity check matrices
can be written as a two-dimensional array of component ma-
trices of equal size, each of which is a permutation matrix.
The constructions using the ideas of Margulis and Ramanujan
[9] have a similar property that the component matrices in the
parity check matrix are either permutation or all-zeros matri-
ces. A rendition of two examples of this type of parity check
matrices is provided in Fig. 1.
 In this family of LDPC codes, the M × N H matrix can be
partitioned along the boundaries of δ × δ permutation subma-
trices. For N = δρ and M = δγ, column partition results in ρ
column groups and row partition results in γ row groups. This
structure of the parity check matrix proves amenable for effi-
cient decoder architecture.

0 500 1000 1500 2000
0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

500

1000

1500

2000

 (a) (b)

Figure 1. Illustration of parity check matrices of (a) Reed-Solomon based

LDPC code, and (b) Ramanujan-Margulis based LDPC code.

B. Parallel-Serial Architecture of LDPC Decoder
 The LDPC code under investigation is the (6,32)-regular
(2048,1723) Reed-Solomon LDPC code (RS-LDPC). The H
matrix contains M = 384 rows and N = 2048 columns. This
matrix can be partitioned into γ = 6 row groups and ρ = 32
column groups of δ × δ = 64 × 64 permutation submatrices.
Column partition divides the decoder into 32 parallel units,
where each unit processes a group of 64 bits.
 Fig. 2 illustrates the architecture of the RS-LDPC decoder.
Two sets of memories, M0 and M1, are designed to be ac-
cessed alternatively. M0 stores bit-to-check messages and M1
stores check-to-bit messages. Each set of memories is divided
into 32 banks. Each bank is assigned to a processing unit that
can access it independently. During a check-to-bit operation,
messages are read from M0 and written to M1. During a bit-
to-check operation, messages are read from M1 and written to
M0. Messages are stored in the order they are accessed in the
bit-to-check operation, so that M1 is accessed sequentially,
whereas a lookup table controls the access sequence of M0 in
the check-to-bit operation.
 The check node accepts 32 bit-to-check messages in every
cycle. It takes 384 cycles to complete processing of the entire
384 checks. Each of the 32 bit nodes is assigned to a process-
ing unit. A bit node works inside the processing unit, so it
accepts check-to-bit messages serially. It takes 6 cycles to
accumulate all the check-to-bit messages for one bit, which
leads to 384 cycles to complete processing of all 64 bits in a
processing unit. It follows that the 32 bit nodes are able to
process the entire block of 2048 bits in 384 cycles.
 The message passing algorithm is executed in the following
order. M0 is first loaded with the prior LLRs. Loading is per-
formed in parallel among the 32 parallel banks. Each bank
loads 64 bits serially. A decoding iteration is divided into two
steps. In the first step, bit-to-check messages are read from
the 32 banks of M0, and then undergo the Φ transformation in
parallel before being sent to a check node. A check node cal-
culates the sum, which is then dispatched to each processing
unit. The sum is marginalized locally in the processing unit
and stored in M1. In the second step, check-to-bit messages
are read from the 32 banks of M1 and undergo the Φ-1 trans-
formation. The bit node in each processing unit accumulates

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

the check-to-bit messages and produces a sum every 6 cycles.
The sum is marginalized locally and stored in M0. This archi-
tecture minimizes the number of global interconnects by per-
forming marginalization within the local processing unit.
 The complete decoder is pipelined. A pipeline stall is in-
serted between check-to-bit and bit-to-check operations to
ensure the read-before-write consistency between check-to-bit
and bit-to-check operations. The decoder takes 64 cycles to
load, 384 cycles to produce check-to-bit messages, and 384
cycles to produce bit-to-check messages. In a high SNR re-
gime, the majority of the received frames can be decoded in
one iteration. Thus, the peak throughput of this decoder is
2048 bits/(64+384+384) cycles = 2.46 bits/cycle. The peak
throughput is approximately 2.41 bits/cycle after accounting
for the pipeline overhead.
 The parallel-serial architecture is designed specifically for
LDPC code emulation. The architecture allows efficient map-
ping of a practical decoder onto configurable hardware plat-
forms. For example, an RS-LDPC code of up to 4kb in block
length can be easily supported on a Xilinx Virtex-II Pro
XC2VP50 FPGA. This area-efficient decoder architecture
permits a variety of experiments to be accommodated on the
same emulation platform. The main parameters of this archi-
tecture are:

Bank1

Bits
1-64

Bank2

Bits
65-128

Bank3

Bits
129-
192

…...

Bank31

Bits
1921-
1984

Bank32

Bits
1985-
2048

Φ …

…

Bank1

Bits
1-64

Bank2

Bits
65-128

Bank3

Bits
129-
192

…...

Bank31

Bits
1921-
1984

Bank32

Bits
1985-
2048

…

Check
Node

Φ Φ Φ Φ

+ + + + +
- - - - -

- +

LUT LUT LUT LUT LUT

+- +- +- +-

Φ …Φ Φ Φ Φ

Bit
Node

... …...

Hard Decision

Channel
output

Memory
M0

Memory
M1

Processing
Unit 1

Figure 2. Architecture of (2048,1723) RS-LDPC decoder.

1) Memory size: 2wρM bits,
 Address lookup tables: ρMlog2M bits,

Function Φ lookup tables: 2wρ2w bits, where w denotes
the wordlength.

2) Area: proportional to the number of parallel units, ρ,
and the wordlength, w.

3) Peak throughput: N/(δ + 2M) ≈ 0.5/(1 – r) bits/cycle.
 In practical high-rate codes, N > M > δ, and therefore a high
throughput can be achieved with a low number of processing
units.
 Finally, this architecture is reconfigurable. Any member of
the LDPC code family described in Section II.A. can be ac-
commodated. Lookup tables can be reconfigured based on the
H matrix. Some of the processing units can be enabled or
disabled depending on the block length, and the memory size
can be increased to allow variable code rates.

C. Decoder Implementation and Emulation Setup
 The (2048,1723) RS-LDPC decoder is designed and imple-
mented using Xilinx Virtex-II Pro XC2VP50 FPGA. The de-
coder is implemented using wordlength w = 5, 6, 9 bits, fol-
lowing 3.2 (3 bits for integer and 2 bits for fraction), 3.3, and
4.5 uniform quantization schemes. The Φ lookup table is
based on the uniform sampling of the Φ function using the
specified wordlength and quantization. The device utilization
is listed in Table I. AWGN noise generator is implemented on
chip. Final iterations of soft decisions are stored in an on-
board static memory module when decoding fails. An on-chip
PowerPC microprocessor controls the decoder, noise genera-
tor, and the interface with the memory module. The hardware
emulation platform is illustrated in Fig. 3. It allows the char-
acterization of the code and evaluation of practical implemen-
tation parameters. Error traces enable the exploration of pat-
terns that cause the decoder to fail.

TABLE I
DEVICE UTILIZATION OF (2048,1723) RS-LDPC DECODER IMPLEMENTATIONS

 5-bit
decoder

6-bit
decoder

9-bit
decoder

Noise
generator

Periph-
erals

Slice Flip Flops 11204 13658 21020 6543 1269
4-Input LUTs 2856 3780 7503 5765 1370

Occupied Slices 6763 7320 16247 5404 1281
Block RAMs 129 129 129 24 32

PowerPC
405

LDPC
Decoder

AWGN
Generator

SRAM

SNR update

start/stop/reset
set iteration limit

control output

noise
input

error
traces

serial
interface

Hyper
Terminal

collect error events

Xilinx Virtex-II Pro
XCV2P50 FPGA

Figure 3. LDPC decoder emulation platform.

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

 The decoder reaches a peak throughput of 240 Mb/s using a
100 MHz clock rate. This throughput can potentially be dou-
bled using a 200 MHz clock rate with buffered global inter-
connects and control lines. Hardware emulation of this LDPC
decoder extends the BER curve beyond 10-10 within an hour.
For comparison, an optimized implementation of the same
decoder in C provides a peak throughput of 260 kb/s (without
accounting for noise generation latency) on an Intel Xeon 2.4
GHz microprocessor. The comparison demonstrates the ad-
vantage of hardware emulation.

IV. RESULTS

 The wordlength and the number of decoding iterations are
important design parameters that determine the area, power,
and performance of an LDPC decoder. A short wordlength
and a small number of iterations are always desirable in prac-
tical implementations.

1 2 3 4 5 6 7 8
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

SNR

F
E

R

10 iterations
20 iterations
50 iterations
100 iterations
200 iterations

(a)

1 2 3 4 5 6 7 8
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

SNR

B
E

R

uncoded BPSK
10 iterations
20 iterations
50 iterations
100 iterations
200 iterations

(b)

Figure 4. (a) FER and (b) BER performance of a 6-bit fixed-point implemen-

tation of the (2048,1723) RS-LDPC code for various number of decoding
iterations.

 The frame error rate (FER) and the bit error rate versus the
signal-to-noise ratio (SNR) are plotted in Fig. 4 showing the
effect of iteration number on the performance of a 6-bit fixed-
point implementation of the (2048,1723) RS-LDPC decoder.
More iterations result in better performance, though the gain
becomes marginal after 50 iterations. So as to minimize the
effect of iteration number and to isolate the error events
caused by fixed-point implementations, we perform up to 200
iterations. The FER and BER versus SNR curves are shown
in Fig. 5 for fixed-point decoder implementations using w = 5,
6, and 9 bits.

A. Characterization of Error Events
 We begin by introducing a notion of an absorbing set which
is used to describe an error event that can occur when the mes-
sage passing decoding fails to converge to a codeword after a
large number of iterations.

 Definition of an absorbing set: Let TH be the bipartite Tanner
graph corresponding to the parity check matrix H of the given
code. We say that the subset of a bit nodes and their
neighboring b check nodes in TH constitute an (a, b) set if in
the subgraph induced by these a bit nodes, exactly b > 0 check
nodes have odd degrees, each of these a bit nodes is connected
to more even-degree checks than odd-degree checks, and all
remaining check nodes outside of the induced subgraph have
even degree with respect to TH. We say that an (a, b) set is an
(a, b) absorbing set if for all a’, a’ < a, it does not contain an
(a’, b) set as its subgraph.

 Related notions have been previously introduced in the litera-
ture in the attempt to characterize the behavior of the algo-
rithm when it does not converge to a codeword, such as stop-
ping sets [10], near-codewords [11], and trapping sets [12].
We are specifically motivated by the trapping set definition
[12] but choose to instead use the absorbing set as defined
above in order to explicitly distinguish the convergence of the
decoder to a non-codeword from its oscillatory behavior.

B. Error Analysis
 In all experiments, an all-zeros codeword is transmitted. The
final 16 iterations are recorded when the decoder fails to con-
verge to a codeword after 200 iterations. If all bit values re-
main the same for the final 16 iterations, and the decoder has
not converged to a codeword, we say that the observed error
event is an (a,b)-absorbing-set error if b checks are unsatisfied
and same a bits have wrong values in each of the final itera-
tions.
 In the 5-bit fixed-point implementation, an error floor ap-
pears at the BER of approximately 4.5×10-8 as shown in Fig.
5. A total of 74 error frames is collected at an SNR of 5.2 dB,
of which 71 give rise to an oscillatory behavior and 3 are
(8,8)-absorbing-set errors. Examples of the bit error counts
illustrating the oscillatory behavior are given in Table II. Ob-
serve that the entries have a periodic structure in which every
third entry is relatively small, followed by a medium-sized
entry, which is in turn followed by a large entry. This behav-

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

ior can be attributed to the dynamics of the message exchange
in which a small number of bits, in our experiments on the
order of 20-30, propagate negative messages through their
neighboring checks. These in turn make some of their other
neighboring bits admit incorrect values (50-80 is observed),
which are propagated further to more bits (120-200 is ob-
served). As the number of incorrect bits increases, so do their
neighboring sets, which means that after two steps there is a
sufficient number of available checks to enforce the correct
values. As a result, the total number of incorrect bits goes
down again. Since the number of incorrectly decoded bits
varies significantly from one phase of the oscillation to the
next (or from one iteration to the next), we perform averaging
when reporting the bit error rates.
 Since the oscillation errors are a consequence of the limited
precision of the 5-bit decoder, all error frames are post-
processed with the 6-bit fixed-point decoder. The errors mani-
fested in oscillating sets are corrected within 9 iterations,
thereby eliminating the short wordlength-induced error floor.
The absorbing set errors are not corrected with the 6-bit post-
processing because the post-processing cannot overcome the
strong incorrect likelihoods associated with the nodes in the
absorbing set due to the special configuration of these nodes.
Post-processing with the floating point decoder is also not
successful, further suggesting the “absorbing” property of
these configurations, on which we elaborate later.
 The 6-bit fixed-point implementation demonstrates a better
performance. The BER curve still incurs a significant change
of slope at 10-10. A total of 31 error frames is captured be-
tween 5.2 dB and 5.6 dB of SNR, 27 of which are due to (8,8)
absorbing sets and 4 are due to oscillations. All error frames
are post-processed with an 8-bit fixed-point decoder. As be-
fore, all oscillation errors are corrected within 4 iterations but
none of the absorbing set errors are corrected, even when a
floating-point decoder is used for post-processing.
 The 9-bit implementation shows the best performance in high
SNR, although all 6 error frames collected at 5.6 dB SNR ex-
hibit the (8,8) absorbing set structure.

C. Absorbing Set Characterization
 As previously discussed, all encountered absorbing-set errors
are of (8,8) type. They all share the same structure in which
these 8 bit nodes participate in a total of 28 checks. Of these
28 checks, 20 are connected with degree-2 to the 8 bit nodes.
Since the girth of the code is at least 6 [5], these bit node pairs
are all different. The remaining 8 checks are each connected
to a different bit node in the absorbing set. The illustration of
such configuration is provided in Fig. 6. For an intuitive ex-
planation of why the failures occur in such set, suppose that, to
begin with, all 8 bits in the absorbing set have extremely in-

correct values and all other bits have extremely correct values.
Then all but 8 checks are satisfied. These incorrect bits then
reinforce each other’s incorrect values through the checks they
share. In particular, each such bit, along with its extreme in-
correct prior, receives 5 such messages. The (correct) mes-
sage from its remaining neighboring check cannot overcome
this joint effect. As a result, the values remain incorrect.
 This behavior is also verified experimentally by simulating a
floating point decoder for channel realizations with extremely
noisy inputs in precisely 8 coordinates that constitute an ab-
sorbing set, and observing that even the floating point decoder
cannot successfully decode such realizations.

1 2 3 4 5 6 7 8
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

SNR

F
E

R

5 bit decoder
6-bit decoder
9-bit decoder

(a)

1 2 3 4 5 6 7 8
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

SNR

B
E

R

uncoded BPSK
5 bit decoder
6-bit decoder
9-bit decoder

(b)

Figure 5. (a) FER and (b) BER performance of the (2048,1723) RS-LDPC

code with 5-bit, 6-bit, and 9-bit fixed-point implementations.

TABLE II

EXAMPLES OF BIT ERROR COUNTS IN THE FINAL 16 ITERATIONS OF DECODING
Iteration # 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

Error 1 143 24 75 147 23 68 137 23 72 143 24 69 136 24 75 121

Error 2 125 28 60 149 28 61 125 28 60 149 28 61 125 28 60 149

Error 3 123 29 53 133 28 52 148 28 49 138 28 49 128 27 51 139

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

Figure 6. Illustration of the subgraph induced by the incorrect bits in an (8,8) absorbing set.

 Even though this special (8,8) configuration is intrinsic to the
code, when the dynamic range is finite, the power of the
neighboring check of an incorrect bit that is itself not a part of
the absorbing set, is limited. As a consequence, the occur-
rence of absorbing sets is increased in a shorter wordlength
implementation. This is demonstrated in the difference be-
tween the performance of the 6-bit and 9-bit decoders at the
same SNR level, whereby in the former case the number of
failures due to absorbing sets is significantly higher.
 Using the characterization of an (8,8) absorbing set given
earlier one can create a list of all such sets. For each group of
8 checks participating in an absorbing set, one has a bit sublist
consisting of all collections of 8 bit nodes with each collection
completing an absorbing set with the given group of 8 checks.
Upon observing that the decoder remains in an absorbing set
with 8 unsatisfied checks, one bit at a time is selected from the
bit sublist determined by the group of 8 unsatisfied checks.
The decoder is then run for a small number of additional itera-
tions, e.g., 10, but with the selected bit flipped. For all col-
lected errors due to (8,8) absorbing sets, this post-processing
results in successful decoding to the transmitted codeword.

V. CONCLUSIONS AND FUTURE WORK

 The proposed parallel-serial, flexible, high-throughput archi-
tecture allows mapping of a family of high-performance
LDPC decoders on an emulation platform. Low BER error
traces reaching 10-13 are captured using this emulation plat-
form for a (2048,1723) RS-LDPC code. Analysis of the error
traces reveals interesting properties of the error floor. In a
low-precision implementation, the dominant cause of the error
floor is the oscillatory behavior, which can be corrected with a
slight increase in the wordlength. Absorbing sets dominate
error floors in a higher precision implementation and are due
to the code construction, exacerbated by the finite wordlength
implementation. Absorbing sets can be enumerated and used
to predict the location of error floors. Enumeration of the most
frequent absorbing set configuration is used in post processing
to improve the overall performance and lower the error floor.
How to exploit the knowledge of the absorbing set configura-

tion for a better code design and error floor prediction is the
subject of our future work.

ACKNOWLEDGEMENT

 The authors would like to thank Pierre-Yves Droz, Chen
Chang, and Imran Haque for help with the emulation platform
and assistance with the design. This research work is sup-
ported by Marvell Semiconductor and the University of Cali-
fornia MICRO program.

REFERENCES

[1] R.G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT
Press, 1963.
[2] L. Sun, H. Song, Z. Keirn, and B.V.K.V. Kumar, “Field programmable
gate array (FPGA) for iterative code evaluation,” IEEE Trans. on Magnetics,
vol. 42. no. 2, pp. 226-231, Feb. 2006.
[3] L. Yang, H. Liu, and R. Shi, “Code construction and FGPA implementa-
tion of capacity approaching low error-floor LDPC decoder,” to appear in
IEEE Trans. on Circuits and Systems, 2006.
[4] E. Yeo, B. Nikolic, and V. Anantharam, “Iterative decoder architectures,”
IEEE Communications Magazine, pp.132-140, Aug. 2003.
[5] I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, and S. Lin, “A class of low-density
parity-check codes constructed based on Reed-Solomon codes with two in-
formation symbols,” IEEE Communications Letters, vol. 7, no. 7, pp. 317-
319, July 2003.
[6] J. Fan, “Array codes as low-density parity check codes,” in Proc. 2nd Int.
Symp. Turbo Codes and Related Topics, Brest, France, pp. 543-546, Sept.
2000.
[7] B. Vasic, K. Pedagani, and M. Ivkovic, “High-rate girth-eight low-density
parity-check codes on rectangular integer lattices,” IEEE Trans. on Communi-
cations, vol. 52, no. 8, Aug. 2004.
[8] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello,
“LDPC block and convolutional codes based on circulant matrices,” IEEE
Trans. on Information Theory, vol. 50, no. 12, pp. 2966-2984, Dec. 2004.
[9] J. Rosenthal and P.O. Vontobel, “Constructions of LDPC codes using
Ramanujan graphs and ideas from Margulis,” in Proc. of the 38th Annual
Allerton Conference on Communications, Control, and Computing, pp. 248-
257, Oct. 2000.
[10] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, R. L. Urbanke, "Finite-
length analysis of low-density parity-check codes on the binary erasure chan-
nel," IEEE Trans. on Information Theory, vol. 48, no. 6, pp. 1570-1579, Jun
2002.
[11] D. MacKay and M. Postol, “Weaknesses of Margulis and Ramanujan-
Margulis low-density parity check codes,” Electronic Notes in Theoretical
Computer Science, vol. 74, 2003.
[12] T. Richardson, “Error floors of LDPC codes,” in Proc. of the 41st Annual
Allerton Conference on Communications, Control, and Computing, Oct. 2003.

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

