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  Abstract−Several high performance LDPC codes have parity-
check matrices composed of permutation submatrices.  We de-
sign a parallel-serial architecture to map the decoder of any 
structured LDPC code in this large family to a hardware emula-
tion platform.  A peak throughput of 240Mb/s is achieved in de-
coding the (2048,1723) Reed-Solomon based LDPC (RS-LDPC) 
code.  Experiments in the low bit error rate (BER) region provide 
statistics of the error traces, which are used to investigate the 
causes of the error floor.  In a low precision implementation, the 
error floors are dominated by the fixed-point decoding effects, 
whereas in a higher precision implementation the errors are at-
tributed to special configurations within the code, whose effect is 
exacerbated in a fixed-point decoder.  This new characterization 
leads to an improved decoding strategy and higher performance. 
 

I.     INTRODUCTION 
 
  Low-density parity-check (LDPC) codes have been demon-
strated to perform very close to the Shannon limit when de-
coded iteratively [1].  However, they have yet to be widely 
employed in systems that require very low bit error rate (BER) 
for two reasons: 1) implementation of the decoder is complex, 
as it requires either long interconnects or large memory band-
widths, which make it difficult to map the decoder onto a very 
large scale integration (VLSI) system, and 2) the current lack 
of adequate theory to analytically predict the performance of 
the code past some moderate values of BER. 
  The empirical way to study LDPC codes is via simulations.  
An optimized decoder implemented in C and executed on a 
high-end microprocessor provides a peak throughput of the 
order of hundreds of kb/s.  Consequently, months of simula-
tion time are required to obtain a confident estimate of the 
BER at 10-10, thus rendering the approach infeasible.  Using a 
field-programmable gate array (FPGA) platform, emulation of 
LDPC codes can be accelerated [2][3]. 
  This paper explores practical LDPC decoder design issues 
using an emulation-based approach.  The main contribution is 
to shed light on the nature of the error floor, which is caused 
both by intrinsic properties of the code as well as aspects of 
the quantization scheme.  This insight suggests an improved 
decoding strategy that leads to higher performance. 
 The message passing algorithm is reviewed in Section II.  In 
Section III a family of high-performance regular LDPC codes 
with structured parity check matrices is surveyed, and a flexi-
ble, high-throughput decoder architecture for this family of 
LDPC codes is proposed.  The performance results of a 
(2048,1723) RS-LDPC decoder are presented in Section IV.  

Error traces are analyzed against the structure of the code to 
reveal the nature of error floors.  Interesting observations are 
made: after sufficiently many iterations and when the decoder 
has not converged to a codeword, in a low numerical precision 
decoder, the error floor is exhibited as the oscillations of hard 
decisions in going from one iteration to the next.  As a con-
trast, under the same assumptions, in a higher precision de-
coder the soft decisions do not change over subsequent itera-
tions, and thus converge to a non-codeword.   
 

II.     MESSAGE PASSING DECODING OF LDPC CODES 
 
  A low-density parity-check code is defined by a sparse 
M × N parity check matrix H where N represents the number 
of bits in the code block and M represents the number of parity 
checks.  The rate of such code is lower bounded by r = (N –
 M)/N.  The H matrix of an LDPC code can be illustrated 
graphically using a Tanner graph, where each bit is repre-
sented by a bit node and each check is represented by a check 
node.  An edge exists between the bit node n and the check 
node m if Hmn = 1.  The set µ(n) = {i: Hin = 1, i = 1, 2, …, M} 
consists of the check nodes connected to the bit node n.  
Likewise, the set ν(m) = {j: Hmj = 1, j = 1, 2, …, N} consists of 
the bit nodes connected to the check node m. 
  An LDPC code can be efficiently decoded with a message 
passing algorithm.  The algorithm relies on the exchange of 
soft messages between bit nodes and check nodes to achieve 
correct bit decisions.  In the first step, bit nodes xi, i = 1, 2, …, 
N, are initialized with the prior log-likelihood ratios defined in 
(1) using the channel outputs yi, i = 1, 2, …, N, 
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  Bit nodes propagate the prior LLRs to the check nodes via the 
edges of the Tanner graph.  Check nodes sum up the messages 
received from the bit nodes adjacent to them and send the ex-
trinsic information back to them.  Bit nodes follow up by up-
dating bit decisions based on extrinsic information in the next 
round of iteration. 
  Bit-to-check and check-to-bit messages are calculated using 
equations (2), (3), and (4).  The messages Qnm and Rmn refer to 
the bit-to-check and check-to-bit messages that are passed 
between the bit node n and the check node m, 
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  The message passing algorithm is allowed to run for a fixed 
number of iterations.  After this a hard decision is performed 
based on the posterior LLR as in (5) and (6), 
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III.     DECODER ARCHITECTURE OF STRUCTURED LDPC CODES 
 
  A practical high-throughput LDPC decoder can be imple-
mented in a fully parallel manner by directly mapping the 
Tanner graph onto an array of processing elements intercon-
nected by wires.  In this parallel implementation, all messages 
in one direction are processed concurrently, yielding a com-
plex, interconnect-dominated design.  On the other hand, the 
memory bandwidth limits the throughput of a serial decoder 
[4].  A balance between throughput and memory bandwidth 
can be achieved if the underlying parity check matrix is regu-
lar and structured.  The structure of the H matrix enables a 
parallel-serial architecture and a compact memory design. 
 
A.  LDPC Codes with Parity Check Matrices Composed of 
Permutation Matrices 
  Several known high performance LDPC code constructions, 
including the Reed-Solomon based [5], array-based [6], lat-
tice-based [7], as well as the ones proposed by Tanner et. al 
[8], share the same property that their parity check matrices 
can be written as a two-dimensional array of component ma-
trices of equal size, each of which is a permutation matrix.  
The constructions using the ideas of Margulis and Ramanujan 
[9] have a similar property that the component matrices in the 
parity check matrix are either permutation or all-zeros matri-
ces.  A rendition of two examples of this type of parity check 
matrices is provided in Fig. 1. 
  In this family of LDPC codes, the M × N H matrix can be 
partitioned along the boundaries of δ × δ permutation subma-
trices.  For N = δρ and M = δγ, column partition results in ρ 
column groups and row partition results in γ row groups.  This 
structure of the parity check matrix proves amenable for effi-
cient decoder architecture. 
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Figure 1. Illustration of parity check matrices of (a) Reed-Solomon based 

LDPC code, and (b) Ramanujan-Margulis based LDPC code. 
 
B.  Parallel-Serial Architecture of LDPC Decoder 
  The LDPC code under investigation is the (6,32)-regular 
(2048,1723) Reed-Solomon LDPC code (RS-LDPC).  The H 
matrix contains M = 384 rows and N = 2048 columns.  This 
matrix can be partitioned into γ = 6 row groups and ρ = 32 
column groups of δ × δ = 64 × 64 permutation submatrices.  
Column partition divides the decoder into 32 parallel units, 
where each unit processes a group of 64 bits. 
  Fig. 2 illustrates the architecture of the RS-LDPC decoder.  
Two sets of memories, M0 and M1, are designed to be ac-
cessed alternatively.  M0 stores bit-to-check messages and M1 
stores check-to-bit messages.  Each set of memories is divided 
into 32 banks.  Each bank is assigned to a processing unit that 
can access it independently.  During a check-to-bit operation, 
messages are read from M0 and written to M1.  During a bit-
to-check operation, messages are read from M1 and written to 
M0.  Messages are stored in the order they are accessed in the 
bit-to-check operation, so that M1 is accessed sequentially, 
whereas a lookup table controls the access sequence of M0 in 
the check-to-bit operation. 
  The check node accepts 32 bit-to-check messages in every 
cycle.  It takes 384 cycles to complete processing of the entire 
384 checks.  Each of the 32 bit nodes is assigned to a process-
ing unit.  A bit node works inside the processing unit, so it 
accepts check-to-bit messages serially.  It takes 6 cycles to 
accumulate all the check-to-bit messages for one bit, which 
leads to 384 cycles to complete processing of all 64 bits in a 
processing unit.  It follows that the 32 bit nodes are able to 
process the entire block of 2048 bits in 384 cycles. 
  The message passing algorithm is executed in the following 
order.  M0 is first loaded with the prior LLRs.  Loading is per-
formed in parallel among the 32 parallel banks.  Each bank 
loads 64 bits serially.  A decoding iteration is divided into two 
steps.  In the first step, bit-to-check messages are read from 
the 32 banks of M0, and then undergo the Φ transformation in 
parallel before being sent to a check node.  A check node cal-
culates the sum, which is then dispatched to each processing 
unit.  The sum is marginalized locally in the processing unit 
and stored in M1.  In the second step, check-to-bit messages 
are read from the 32 banks of M1 and undergo the Φ-1 trans-
formation.  The bit node in each processing unit accumulates 
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the check-to-bit messages and produces a sum every 6 cycles.  
The sum is marginalized locally and stored in M0.  This archi-
tecture minimizes the number of global interconnects by per-
forming marginalization within the local processing unit. 
  The complete decoder is pipelined.  A pipeline stall is in-
serted between check-to-bit and bit-to-check operations to 
ensure the read-before-write consistency between check-to-bit 
and bit-to-check operations.  The decoder takes 64 cycles to 
load, 384 cycles to produce check-to-bit messages, and 384 
cycles to produce bit-to-check messages.  In a high SNR re-
gime, the majority of the received frames can be decoded in 
one iteration.  Thus, the peak throughput of this decoder is 
2048 bits/(64+384+384) cycles = 2.46 bits/cycle.  The peak 
throughput is approximately 2.41 bits/cycle after accounting 
for the pipeline overhead. 
  The parallel-serial architecture is designed specifically for 
LDPC code emulation.  The architecture allows efficient map-
ping of a practical decoder onto configurable hardware plat-
forms.  For example, an RS-LDPC code of up to 4kb in block 
length can be easily supported on a Xilinx Virtex-II Pro 
XC2VP50 FPGA.  This area-efficient decoder architecture 
permits a variety of experiments to be accommodated on the 
same emulation platform.  The main parameters of this archi-
tecture are: 
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Figure 2. Architecture of (2048,1723) RS-LDPC decoder. 

1) Memory size: 2wρM bits, 
         Address lookup tables: ρMlog2M bits, 

Function Φ lookup tables: 2wρ2w bits, where w denotes 
the wordlength. 

2) Area: proportional to the number of parallel units, ρ,   
and the wordlength, w.  

3) Peak throughput: N/(δ + 2M) ≈ 0.5/(1 – r) bits/cycle. 
  In practical high-rate codes, N > M > δ, and therefore a high 
throughput can be achieved with a low number of processing 
units. 
  Finally, this architecture is reconfigurable.  Any member of 
the LDPC code family described in Section II.A. can be ac-
commodated.  Lookup tables can be reconfigured based on the 
H matrix.  Some of the processing units can be enabled or 
disabled depending on the block length, and the memory size 
can be increased to allow variable code rates. 
 
C.  Decoder Implementation and Emulation Setup 
  The (2048,1723) RS-LDPC decoder is designed and imple-
mented using Xilinx Virtex-II Pro XC2VP50 FPGA.  The de-
coder is implemented using wordlength w = 5, 6, 9 bits, fol-
lowing 3.2 (3 bits for integer and 2 bits for fraction), 3.3, and 
4.5 uniform quantization schemes. The Φ lookup table is 
based on the uniform sampling of the Φ function using the 
specified wordlength and quantization.  The device utilization 
is listed in Table I.  AWGN noise generator is implemented on 
chip.  Final iterations of soft decisions are stored in an on-
board static memory module when decoding fails.  An on-chip 
PowerPC microprocessor controls the decoder, noise genera-
tor, and the interface with the memory module.  The hardware 
emulation platform is illustrated in Fig. 3.  It allows the char-
acterization of the code and evaluation of practical implemen-
tation parameters.  Error traces enable the exploration of pat-
terns that cause the decoder to fail. 
 

TABLE I 
DEVICE UTILIZATION OF (2048,1723) RS-LDPC DECODER IMPLEMENTATIONS 

 5-bit 
decoder 

6-bit 
decoder 

9-bit 
decoder 

Noise 
generator 

Periph-
erals 

Slice Flip Flops 11204 13658 21020 6543 1269 
4-Input LUTs 2856 3780 7503 5765 1370 

Occupied Slices 6763 7320 16247 5404 1281 
Block RAMs 129 129 129 24 32 
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Figure 3. LDPC decoder emulation platform. 
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  The decoder reaches a peak throughput of 240 Mb/s using a 
100 MHz clock rate.  This throughput can potentially be dou-
bled using a 200 MHz clock rate with buffered global inter-
connects and control lines.  Hardware emulation of this LDPC 
decoder extends the BER curve beyond 10-10 within an hour.  
For comparison, an optimized implementation of the same 
decoder in C provides a peak throughput of 260 kb/s (without 
accounting for noise generation latency) on an Intel Xeon 2.4 
GHz microprocessor.  The comparison demonstrates the ad-
vantage of hardware emulation. 
 

IV.     RESULTS 
 
  The wordlength and the number of decoding iterations are 
important design parameters that determine the area, power, 
and performance of an LDPC decoder.  A short wordlength 
and a small number of iterations are always desirable in prac-
tical implementations. 
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Figure 4. (a) FER and (b) BER performance of a 6-bit fixed-point implemen-

tation of the (2048,1723) RS-LDPC code for various number of decoding 
iterations. 

 

  The frame error rate (FER) and the bit error rate versus the 
signal-to-noise ratio (SNR) are plotted in Fig. 4 showing the 
effect of iteration number on the performance of a 6-bit fixed-
point implementation of the (2048,1723) RS-LDPC decoder.  
More iterations result in better performance, though the gain 
becomes marginal after 50 iterations.  So as to minimize the 
effect of iteration number and to isolate the error events 
caused by fixed-point implementations, we perform up to 200 
iterations.  The FER and BER versus SNR curves are shown 
in Fig. 5 for fixed-point decoder implementations using w = 5, 
6, and 9 bits. 
 
A.  Characterization of Error Events 
  We begin by introducing a notion of an absorbing set which 
is used to describe an error event that can occur when the mes-
sage passing decoding fails to converge to a codeword after a 
large number of iterations. 
 
  Definition of an absorbing set: Let TH be the bipartite Tanner 
graph corresponding to the parity check matrix H of the given 
code.  We say that the subset of a bit nodes and their 
neighboring b check nodes in TH constitute an (a, b) set if in 
the subgraph induced by these a bit nodes, exactly b > 0 check 
nodes have odd degrees, each of these a bit nodes is connected 
to more even-degree checks than odd-degree checks, and all 
remaining check nodes outside of the induced subgraph have 
even degree with respect to TH.  We say that an (a, b) set is an 
(a, b) absorbing set if for all a’, a’ < a, it does not contain an 
(a’, b) set as its subgraph.  
 
  Related notions have been previously introduced in the litera-
ture in the attempt to characterize the behavior of the algo-
rithm when it does not converge to a codeword, such as stop-
ping sets [10], near-codewords [11], and trapping sets [12].  
We are specifically motivated by the trapping set definition 
[12] but choose to instead use the absorbing set as defined 
above in order to explicitly distinguish the convergence of the 
decoder to a non-codeword from its oscillatory behavior. 
 
B.  Error Analysis 
  In all experiments, an all-zeros codeword is transmitted.  The 
final 16 iterations are recorded when the decoder fails to con-
verge to a codeword after 200 iterations.  If all bit values re-
main the same for the final 16 iterations, and the decoder has 
not converged to a codeword, we say that the observed error 
event is an (a,b)-absorbing-set error if b checks are unsatisfied 
and same a bits have wrong values in each of the final itera-
tions. 
  In the 5-bit fixed-point implementation, an error floor ap-
pears at the BER of approximately 4.5×10-8 as shown in Fig. 
5.  A total of 74 error frames is collected at an SNR of 5.2 dB, 
of which 71 give rise to an oscillatory behavior and 3 are 
(8,8)-absorbing-set errors.  Examples of the bit error counts 
illustrating the oscillatory behavior are given in Table II.  Ob-
serve that the entries have a periodic structure in which every 
third entry is relatively small, followed by a medium-sized 
entry, which is in turn followed by a large entry.  This behav-
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ior can be attributed to the dynamics of the message exchange 
in which a small number of bits, in our experiments on the 
order of 20-30, propagate negative messages through their 
neighboring checks.  These in turn make some of their other 
neighboring bits admit incorrect values (50-80 is observed), 
which are propagated further to more bits (120-200 is ob-
served).  As the number of incorrect bits increases, so do their 
neighboring sets, which means that after two steps there is a 
sufficient number of available checks to enforce the correct 
values.  As a result, the total number of incorrect bits goes 
down again.  Since the number of incorrectly decoded bits 
varies significantly from one phase of the oscillation to the 
next (or from one iteration to the next), we perform averaging 
when reporting the bit error rates. 
  Since the oscillation errors are a consequence of the limited 
precision of the 5-bit decoder, all error frames are post-
processed with the 6-bit fixed-point decoder.  The errors mani-
fested in oscillating sets are corrected within 9 iterations, 
thereby eliminating the short wordlength-induced error floor.  
The absorbing set errors are not corrected with the 6-bit post-
processing because the post-processing cannot overcome the 
strong incorrect likelihoods associated with the nodes in the 
absorbing set due to the special configuration of these nodes.  
Post-processing with the floating point decoder is also not 
successful, further suggesting the “absorbing” property of 
these configurations, on which we elaborate later. 
  The 6-bit fixed-point implementation demonstrates a better 
performance.  The BER curve still incurs a significant change 
of slope at 10-10.  A total of 31 error frames is captured be-
tween 5.2 dB and 5.6 dB of SNR, 27 of which are due to (8,8) 
absorbing sets and 4 are due to oscillations.  All error frames 
are post-processed with an 8-bit fixed-point decoder.  As be-
fore, all oscillation errors are corrected within 4 iterations but 
none of the absorbing set errors are corrected, even when a 
floating-point decoder is used for post-processing. 
  The 9-bit implementation shows the best performance in high 
SNR, although all 6 error frames collected at 5.6 dB SNR ex-
hibit the (8,8) absorbing set structure. 
 
C.   Absorbing Set Characterization 
  As previously discussed, all encountered absorbing-set errors 
are of (8,8) type.  They all share the same structure in which 
these 8 bit nodes participate in a total of 28 checks.  Of these 
28 checks, 20 are connected with degree-2 to the 8 bit nodes.  
Since the girth of the code is at least 6 [5], these bit node pairs 
are all different.  The remaining 8 checks are each connected 
to a different bit node in the absorbing set.  The illustration of 
such configuration is provided in Fig. 6.  For an intuitive ex-
planation of why the failures occur in such set, suppose that, to 
begin with, all 8 bits in the absorbing set have extremely in-

correct values and all other bits have extremely correct values.  
Then all but 8 checks are satisfied.  These incorrect bits then 
reinforce each other’s incorrect values through the checks they 
share.  In particular, each such bit, along with its extreme in-
correct prior, receives 5 such messages.  The (correct) mes-
sage from its remaining neighboring check cannot overcome 
this joint effect.  As a result, the values remain incorrect. 
  This behavior is also verified experimentally by simulating a 
floating point decoder for channel realizations with extremely 
noisy inputs in precisely 8 coordinates that constitute an ab-
sorbing set, and observing that even the floating point decoder 
cannot successfully decode such realizations. 
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Figure 5. (a) FER and (b) BER performance of the (2048,1723) RS-LDPC 

code with 5-bit, 6-bit, and 9-bit fixed-point implementations. 

 
TABLE II 

EXAMPLES OF BIT ERROR COUNTS IN THE FINAL 16 ITERATIONS OF DECODING 
Iteration # 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 

Error 1 143 24 75 147 23 68 137 23 72 143 24 69 136 24 75 121 

Error 2 125 28 60 149 28 61 125 28 60 149 28 61 125 28 60 149 

Error 3 123 29 53 133 28 52 148 28 49 138 28 49 128 27 51 139 
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Figure 6. Illustration of the subgraph induced by the incorrect bits in an (8,8) absorbing set. 
 

  Even though this special (8,8) configuration is intrinsic to the 
code, when the dynamic range is finite, the power of the 
neighboring check of an incorrect bit that is itself not a part of 
the absorbing set, is limited.  As a consequence, the occur-
rence of absorbing sets is increased in a shorter wordlength 
implementation.  This is demonstrated in the difference be-
tween the performance of the 6-bit and 9-bit decoders at the 
same SNR level, whereby in the former case the number of 
failures due to absorbing sets is significantly higher. 
  Using the characterization of an (8,8) absorbing set given 
earlier one can create a list of all such sets.  For each group of 
8 checks participating in an absorbing set, one has a bit sublist 
consisting of all collections of 8 bit nodes with each collection 
completing an absorbing set with the given group of 8 checks.  
Upon observing that the decoder remains in an absorbing set 
with 8 unsatisfied checks, one bit at a time is selected from the 
bit sublist determined by the group of 8 unsatisfied checks.  
The decoder is then run for a small number of additional itera-
tions, e.g., 10, but with the selected bit flipped.  For all col-
lected errors due to (8,8) absorbing sets, this post-processing 
results in successful decoding to the transmitted codeword. 
  

V.     CONCLUSIONS AND FUTURE WORK 
 
  The proposed parallel-serial, flexible, high-throughput archi-
tecture allows mapping of a family of high-performance 
LDPC decoders on an emulation platform.  Low BER error 
traces reaching 10-13 are captured using this emulation plat-
form for a (2048,1723) RS-LDPC code.  Analysis of the error 
traces reveals interesting properties of the error floor.  In a 
low-precision implementation, the dominant cause of the error 
floor is the oscillatory behavior, which can be corrected with a 
slight increase in the wordlength.  Absorbing sets dominate 
error floors in a higher precision implementation and are due 
to the code construction, exacerbated by the finite wordlength 
implementation.  Absorbing sets can be enumerated and used 
to predict the location of error floors. Enumeration of the most 
frequent absorbing set configuration is used in post processing 
to improve the overall performance and lower the error floor. 
How to exploit the knowledge of the absorbing set configura-

tion for a better code design and error floor prediction is the 
subject of our future work. 
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