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Abstract—We present several hardware architectures to 
implement low-density parity-check (LDPC) decoders for codes 
constructed with hierarchical structure. The proposed 
hierarchical formulation of the LDPC code allows a structured 
hardware realization of the decoder. For a fully-parallel 
implementation, there is reduced routing congestion, allowing 
implementations for blocks sizes up to 1024 bits in 0.13µm 
technology. Partially and fully serial implementations benefit 
greatly from the structure of the code as well, leading to several 
flexible, efficient architectures. In a general purpose 0.13µm 
technology, the approximate area required by a 1024-bit fully-
parallel LDPC decoder is found to be 12.5mm2 while a serial 
decoder can be implemented in an area of 0.15mm2. 

I. INTRODUCTION 
Low-density parity-check (LDPC) codes [1] have been 

recently shown to allow communications systems to perform 
close to the channel capacity limit. High data rate systems 
using these codes must use dedicated hardware for LDPC 
decoders. However, this hardware can be quite complex, 
requiring large silicon area, and are normally power-hungry 
and throughput limited. In addition, an extra challenge is to 
build an efficient hardware implementation that is also flexible 
for variable code rates and block sizes.  

To meet these challenges, there has recently been much 
work done on the study of constructions of LDPC codes with 
advantages in hardware implementation. Kou, Fossorier and 
Lin [2] recognized that LDPC encoding can be simplified for 
codes constructed on finite geometries. Yeo et. al. [3] used the 
same construction with a modified decoding schedule to 
significantly reduce the decoder complexity. Zhang and Parhi 
[4] and Mansour and Shanbhag [5], [6] demonstrated that the 
decoder can be simplified for regular codes based on 
algebraically constructed Ramanujan graphs. Hocevar [7] 
showed a flexible hardware implementation of a code based on 
permutation matrices.  

This paper studies LDPC codes and proposes a code 
construction that produces codes with properties favoring 
hardware implementation along with good BER performance 
with low error floors. The structure of this proposed 
construction can be exploited in several ways for different 
architectures supporting various degrees of flexibility and 
throughput. For fully-parallel, very high throughput decoders, 
these codes can reduce the amount of routing, making this a 
more feasible option for blocks sizes up to 1024 bits. In 
addition, these codes allow partially-serial, flexible 

architectures with increased efficiency and relatilvey high 
throughputs.   

II. LDPC DECODING 
The design of LDPC codes can typically be defined by an 

N×M parity-check matrix H. The symbol N, represents the 
length of the block (i.e. the number of bit in the code), while 
the symbol M, represents the number of parity checks in the 
code. The rate of such a code is thus (N−M)/N. The LDPC code 
can be represented by a bipartite graph of bit nodes and check 
nodes as shown in Figure 1. An edge between a bit node n, and 
check node m, exists if the entry in the nth column and mth row 
of H is non-zero. In addition, the LDPC code is defined as 
regular if each bit node is adjacent to an equal number of check 
nodes, dv, and likewise that each check node is adjacent to an 
equal number of bit nodes, dc. This code is then described as a 
regular (dv, dc) LDPC code.   

The sum-product algorithm that is used for LDPC decoding 
has two phases. In the first phase, the bit nodes compute 
updated information which is sent to adjacent check nodes.  In 
the second phase, the check nodes compute updated 
information based on the new messages from the bit nodes. 
This update information is then sent back to adjacent bit nodes 
and the process is repeated.   

 
 
 
 

Figure 1.  Bipartite graph for a regular (2, 3) LDPC code. 

An LDPC decoder can be realized in hardware to reflect the 
bipartite graph representation. Such a decoder would consist of 
N bit-node processing elements and M check-node processing 
elements interconnected through a network of wires. The 
number of interconnect wires required in such a decoder is 
2N⋅dv⋅w where w represents the bit width of each message. The 
problem with this implementation is that in a randomly 
generated LDPC code, there is little structure in the 
interconnect network. The average wire length becomes very 
large causing such parallel decoders to be very area inefficient 
and thus very costly [8]. While parallel decoders can achieve 
very high throughputs with low power consumption, their cost 
is frequently prohibitive for practical communications 
applications. One solution to this problem is to construct codes 
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that have an ordered structure to reduce the interconnect 
complexity of the decoder. 

III. ALGEBRAIC CONSTRUCTIONS 
There have recently been several proposed LDPC codes 

with ordered structure based on algebraic constructions [9], 
[10]. These algebraic constructions make use of known graphs 
with properties that achieve good bit error rate (BER) 
performance. Several properties are desirable for the code to 
achieve good performance via the sum-product algorithm. 
First, the bipartite graph representing the code must have a 
large girth or minimum cycle length. Second, the graph must 
be a good expander. Finally, there should be a large minimum 
Hamming distance between codewords.  

One method to control the structure of the LDPC code is to 
describe the parity check matrix algebraically. Various 
mathematical techniques can be used to produce a bipartite 
graph with the desired features. One of these techniques is to 
use Ramanujan graphs, which are k-regular graphs (i.e., graphs 
with all nodes having edge degree k) that have certain 
optimality in their expansion behavior. The formal definition of 
a Ramanujan graph is that the second largest eigenvalue of the 
adjacency matrix is not larger than 12 −k . An infinite family 
of Ramanujan graphs is well-known and can be algebraically 
constructed [11]. Each graph in this family is defined by two 
parameters, p and q, which must be equivalent to 1 modulo 4 
and each Ramanujan graph is denoted by Xp,q. The size of Xp,q 
is known to be (p3−p)/2. Another interesting property exhibited 
by these graphs is that they have an equal number of nodes in 
both bipartite sets. By performing various transformations on 
these bipartite graphs, a parity check matrix can be constructed 
with feasible rates. For example, one could simply take each 
node in one of the bipartite sets and splits it into two nodes, 
with each node taking half the edges [6]. This method of 
construction would result in a rate-½ code with girth as large as 
the original Ramanujan graph.   

Although these graphs display large girth and good 
expander properties, the resultant codes are constructed without 
consideration of the minimum Hamming distance. In fact, these 
codes turn out to have poor error floors caused by low-weight 
codewords and near codewords [12]. These near codewords are 
sets where the decoder gets trapped in a state where incorrect 
decisions remain within the decoder and the parity check 
matrix is not satisfied, but it cannot correct the existing errors.   

An LDPC construction based on the Ramanujan graph X13,5 
leads to a rate-½ 2184-bit code and has a very poor error floor 
around a block error rate of 0.001 due to low-weight code 
words. Similarly, codes constructed based on the Ramanujan 
graph X17,5 leading to a rate-½ 4896-bit code has an error floor 
around a block error rate of 10-7 due to a family of near 
codewords. 

IV. PROPOSED CONSTRUCTION 
We demonstrate a hierarchical design approach that 

combines the desirable features of several of the introduced 
code construction techniques, while overcoming the low-
weight codeword problem. The most advantageous features of 

the previously described codes are the large minimum cycle 
length, expansion properties, and structured interconnect. The 
structure of interconnect for the decoder can be seen by looking 
at the parity check matrix of these codes. The resultant LDPC 
code constructed from Ramanujan graphs is a regular (3, 6) 
LDPC code with structured placement of the parity checks. 
Specifically, the matrix can be partitioned into 28×14 sub-
matrices, where each entry in the sub-matrix is either a 78×78 
zero-matrix of all 0s or a 78×78 permutation matrix (a square 
matrix with a single 1 in every column and a single 1 in every 
row with dimensions 78×78). In the top-level matrix, denoted 
here by H*, each row has 6 permutation sub-matrices and 22 
zero sub-matrices. Conversely, each column of H* has 3 
permutation sub-matrices and 11 all-zero sub-matrices. These 
features allow the decoder to be designed in a hierarchical 
manner.   

In addition to the structure, the codes based on the family of 
algebraically constructed Ramanujan graphs have good 
expansion properties. Furthermore, it is known that for small 
values of k, the probability of a randomly constructed k-graph 
being Ramanujan is rather high, with the probability of a graph 
with N nodes being Ramanujan approaching 1 as N grows. 
With k = 8 and N > 1024, the probability of the graph being 
Ramanujan is over 0.8. Using this fact, a random, bipartite 
regular k-graph of any size can be constructed with good 
probability of satisfying the Ramanujan criteria and simply 
splitting one set of the nodes into two will lead to a rate-½ 
LDPC code.   

This leads to a proposed set of rate-½ LDPC codes with 
structured interconnect and good expansion and girth 
properties. These LDPC codes can be described as follows.  
Each code has N bits and N/2 check nodes. The parity check 
matrix is partitioned into P×P/2 sub-matrices. Each sub-matrix 
is either a square permutation matrix or zero matrix with 
dimensions N/M×N/M. The top-level matrix can be constructed 
randomly, with the constraint that there are dv permutation 
matrix entries in each column and 2dv permutation matrix 
entries in each row where dv is the edge degree of the bit node 
desired in the resulting LDPC. Similarly, each permutation 
matrix entry can be randomly constructed. If necessary, the 
permutation matrix can be partitioned much like the top-level 
parity check matrix to add another level of hierarchy which 
might further ease the routing complexity. The resulting parity 
check matrix is equivalent to a random bipartite 2dv-regular 
graph with N total nodes and taking one bipartite set and 
splitting each of the nodes into two nodes. Since the original 
bipartite 2dv-regular graph has high probability of being 
Ramanujan for small dv, the graph will most likely have a large 
minimum cycle length. An example of a code constructed in 
the described manner is shown in Figure 3. Here, a 24x12 
parity-check matrix is constructed from a 6x3 top-level matrix, 
H*. The top-level parity-check matrix is randomly constructed 
as are each permutation sub-matrix.   

The performance of a code generated in the proposed 
fashion was simulated along with a completely randomly 
generated code and the results shown in Figure 2. The codes 
are both regular (4, 8) rate-½ LDPCs using 1024 bit blocks. 
The proposed code uses a parity check matrix partitioned with 
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a top-level 32x16 parity check matrix with 32x32 matrix 
entries. Down to a block error rate of 10-6, this code shows no 
change in BER slope down to a block error rate of 10-6. The 
error floor still exists below this level [12], but is not raised 
compared to previous constructions. 
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Figure 2.  BER curves for proposed LDPC codes, maximum 64 iterations. 

V. DECODER ARCHITECTURES 
In addition to having good performance, the hierarchical 

structure of the codes also allows easier hardware 
implementation of the decoder. In this section, several decoder 
architectures are analyzed, illustrating how each one takes 
advantage of the hierarchical structure of the code. A fully-
parallel architecture is shown to be feasible due to the structure 
of the interconnect introduced by the code construction, two 
different architectures partially serializing the decoder can be 
created naturally from the structure of the code, and finally, a 
fully-serial architecture can be shown to take advantage of the 
code properties as well.   

A. Parallel Decoder 
As previously mentioned, the primary issue with the 

physical design of a fully parallel decoder is minimizing the 
level of routing congestion. This is typically achieved through 
careful partitioning of the large groups of processing elements 
such that the number of long global interconnects is minimized. 
In general, this is a difficult problem because LDPC codes have 
the tendency to be random and unstructured [13]. However, in 
our proposed construction, the processing elements can be 
partitioned naturally along the lines of the hierarchy according 
to the partitioned parity check matrix H*. Each sub-matrix 
represents a group of check nodes and bit nodes. The messages 
are likewise clustered and routed together between groups of 
processing elements. This scheme provides increased structure 
for the decoder implementation.   

The routing complexity within each group of N/P check 
nodes can be interpreted by partitioning the top-level parity 
check matrix into horizontal bands with N/P rows. Each 
partition comprises of a concatenation of 2dv different 
permutation matrices, separated by zero-matrices, as shown in 

Figure 3. These zero-matrices do not affect the routing of the 
decoder and are therefore removed, forming a reduced matrix 
with dimensions (N/P)×(2⋅dv⋅N/P). Thus, the routing problem is 
reduced to the equivalent of routing an LDPC decoder with 
2⋅dv⋅N/P bit nodes and N/P check nodes.    

The proposed code design provides an N-bit regular (dv, 
2dv) code, which can be broken up hierarchically. At the top 
level is a rate-½ LDPC with M “bit” nodes. The next level of 
hierarchy is very similar to a regular (1, 2⋅dv) 2⋅dv⋅N/P bit 
LDPC decoder. This check node group can be designed 
hierarchically as well if needed by simply designing a code 
with partitioned permutation matrices. The floorplan for a 
1024-bit rate-½ LDPC decoder is described in [13] and a 
similar placement strategy can be followed for this decoder and 
for each check node group in the decoder. In this floorplan, bit 
nodes are placed along the outer edges of the chip and the 
check nodes and routing are placed in the middle of the ring 
formed by the bit nodes.   

 
Figure 3.  Formation of parity check matrix, H, from top level matrix H* and 

matrix for one check node group. 

In order to obtain area estimates, the processing elements 
were synthesized in 0.13µm general-purpose standard-cell 
CMOS technology. Each check node group consisting of 32 
check nodes is approximately 500µm x 500µm and each bit 
node group is approximately 275µm x 275µm. With no routing 
congestion, the total area for the parallel decoder would be 
approximately 8mm2. To analyze the utilization, we must 
estimate wiring lengths for the proposed placement. First, we 
count the total number of wires at the top level. For a (4, 8) 
regular LDPC code with 1024 bits per block, there are 4⋅1024⋅2 
= 8192 messages passed between bit and check nodes and vice 
versa. Using 4 bit messages, this requires 32,768 wires. A 
pessimistic wire length can be approximated assuming a 
uniform distribution over the check node groups (i.e.: no 
optimizations on placement) and assuming no spacing between 
check node groups for routing. The average wire length is 
found to be approximately 1mm, which would require a total 
wire length of 32,768mm or an area of 6.55mm2. Although 
multiple metal layers will reduce the actual area on a chip, this 
area is still significant, affecting the decoder size estimate. By 
iterating through these computations, a good approximation for 
the area of the decoder can be found. For this chip, the total 
routing area is approximately 4.5mm2 and the total chip area is 
12.5mm2 for a utilization of 64%. Likewise, the same 
calculations can be done for a (3, 6) regular LDPC code, which 
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has smaller bit and check nodes (total area of 7mm2). The 
routing area is found to be approximately 3.2mm2, for a logic 
density utilization of 69%.   

 
Figure 4.  Shift-register structure for LDPC decoders. 

  
Figure 5.  Second implementation of partially parallel decoder. 

B. Parallel/Serial Implementations 
The logic density can be increased through partially serial 

implementations. There are two natural ways of serializing the 
decoder. The first implementation would keep the multiple 
copies of the check node groups, but serialize the group so that 
it processes only one check node per cycle. The second 
implementation would be to multiplex several parallel check 
node groups among all the bit node groups.   

The first possible implementation is shown in I.AThis 
figure shows a structure that uses a single check node 
processing element to serially evaluate all check-to-variable 
messages from a group of check nodes. Similarly, all message 
computations corresponding to a group of bit nodes are 
multiplexed onto a single bit node processing element. Thus, 
the decoder for the 1024-bit code example uses 16 check node 
processing elements and 32 bit node processing elements. 
Besides taking advantage of the hierarchical code design, this 
structure also exploits the property that each row of the second-
level sub-matrices has a maximum edge degree of one. The 
messages corresponding to each permutation sub-matrix are 
stored in a shift-register chain. Unlike previous uses of shift 
registers in LDPC decoders [3], [14], [15],  this does not 
require consecutive rows in the parity check matrix to be 

cyclic. The processing elements are arranged in a tight grid 
surrounding the shift registers. The zero-matrices do not 
require any storage of messages, and correspond to the empty 
spaces between the grid in I.AThe area of the decoder is 
approximated by performing synthesis in 0.13µm general-
purpose CMOS technology. The 16 check-node and 32 bit-
node processing elements occupy 1.1mm2 and 0.6mm2 
respectively.  The shift registers will occupy another 0.5mm2. 
The structure of the decoder interconnect enhances the logic 
density, which is estimated to be 0.8. This results in a 1024-bit 
decoder that is 2.8mm2 and capable of decoding at 1Gb/s. 

The shift register architecture decoder can be made 
programmable with some overhead. To support this, a large 
grid of the check and bit nodes can be laid out with extra shift 
registers throughout the grid. This grid can be programmed to 
the parity check matrix by turning the shift registers on or 
setting them to shift out a no information message to the bit and 
check nodes.   

The second partially parallel implementation is shown in 
Figure 5. Instead of using all check node groups operating in 
parallel, only a few check node groups are used along with 
multiplexers and demultiplexers to appropriately route the 
messages from the bit nodes to the check node groups and from 
the check node groups back to the bit nodes. A similar 
architecture has been recently reported for structured code 
constructions [15]. This implementation still takes advantage of 
the fact that the check nodes and bit nodes can easily be 
grouped together to simplify multiplexing involved at the top 
level. The check node groups would be the same as a check 
node groups in the parallel decoder, but the bit node could be 
simplified to be a simple accumulator register with a shift 
register. The check node message would be added to the 
message in the bit node and subtracted out when the message 
was passed back to that check node. Even further simplification 
could be used if the approximation in [3] is used where the 
check node message is not subtracted out. This would save the 
cost of the storing all the check-to-bit messages within the 
decoder, a large saving in storage. This results in a 32-bit node 
group of approximately 0.1mm2 and a check node group of 
0.25mm2. With additional multiplexing and routing, the area of 
this decoder is approximately 3.5mm2 running at 
approximately 300MHz. This implementation has the 
advantage it can easily be used to support various LDPC codes 
constructed in the proposed manner with various block sizes 
and code rates. The only overhead would be to add enough bit 
node groups to support as large a block as needed and 
configure the code through the control signals to the 
multiplexers.   

C. Serial Implementation 
In area-constrained applications, the size of the decoder can 

be further reduced by using a fully serial decoder with SRAM 
to store the messages, and a single processing element for all 
message computations. In general, serial architectures have the 
throughput limited by the implementation of multi-ported 
SRAM [8]. However, the hierarchical LDPC code allows the 
decoder implementation to make use of eight independent 
smaller SRAMs, which are inherently faster. Each bit node 
group would have a memory consisting of all the check to bit 
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node messages. Each cycle, the messages are read out, summed 
together (subtracting out the one check-to-bit message) and 
processed by a check node. The new check-to-bit message 
would then be stored in the memory. The requirement for this 
decoder is dominated by the 32 1kbit (32x8x4) SRAMs. In 
0.13µm CMOS, a single 32x32 SRAM will occupy an 
approximate area of 15,000µm2 and operate at up to 500MHz. 
Thus the 0.51mm2 serial decoder will be capable of a decoding 
throughput above 100Mb/s, depending on desired number of 
decoding iterations. It is also possible to use the approximation 
of [3], [15] where the check to bit message is not subtracted. In 
this case, only a single message needs to be stored for each bit 
node and each of the 32 SRAMs need only be 128 bits (32x4), 
consuming an area of 3400µm2 for a total of 0.15mm2.   

D. Comparison of Architectures 
Table I summarizes the different architectures described 

here for a 1024-bit rate-½ LDPC decoder. It is clear from this 
table that with the proposed code construction, a wide range of 
applications can be supported with variable throughput and 
hardware cost requirements. In addition, many of these 
architectures can support multiple block sizes and code rates 
with appropriate code construction.   

TABLE I.  COMPARISON OF ARCHITECTURES 

Architecture 
type 

Approximate 
Area 

(mm2) 

Estimated 
Clock speed 

(MHz) 

Estimated 
Throughput, 
10 iterations 

(Gb/s) 
Fully Parallel 12.5 300 30.0 
Shift-register 

based 2.8 1000 3.2 

Muxed check 
node group 3.5 300 1.1 

Fully Serial 0.15 500 0.1 
 

For applications requiring very high throughput decoding, a 
fully parallel decoder is a feasible solution, requiring 12.5mm2 
with an estimated throughput of 30 Gb/s. However, a drawback 
for this decoder is that it is not as easily configurable for 
different block sizes or code rates. The shift register 
architecture has a smaller area while still supporting up to 3.2 
Gb/s. While the area is smaller than the multiplexed check 
node group architecture with a larger throughput, it is clear that 
the multiplexed check node is much more easily configured to 
support multiple LDPC codes. The shift register architecture 
can support multiple LDPC codes as described, but there is 
quite a bit of overhead to do so whereas the multiplexed check 
node group architecture just needs to change some control 
logic. Finally, for applications where throughput is not as 
important, a fully-serial architecture can be used.   

VI. CONCLUSIONS 
A family of randomly constructed hierarchical LDPC codes 

has been proposed. These codes have intrinsic properties which 
ensure good BER performance via the sum-product algorithm. 
For an example 1024-bit block, the code has error floor below 
the block error rate of 10-6. It also exhibits good performance 
compared to randomly generated LDPC codes.   

Due to the hierarchical nature of the code, the feasibility of 
hardware implementation of the decoder has been significantly 
improved. Four different architectures have been demonstrated. 
These architectures contrast in terms of area of implementation 
and achievable throughputs. A 1024-bit fully-parallel decoder 
architecture requires 12mm2 and achieves 30 Gb/s decoding 
throughput. Partially serializing the decoding leads to two 
additional architectures which were shown to have smaller area 
than the fully-parallel decoder, while maintaining a relatively 
high throughput of 1Gb/s. The area can be further reduced if 
memory is eliminated from the design by using an 
approximation to the sum-product algorithm. Finally, a serial 
architecture was shown to have high memory efficiency and an 
area as small as 0.15mm2, though throughput is reduced 
accordingly to 100Mb/s. The architectures demonstrate that 
these codes are suitable for a range of applications with 
different throughput and area constraints. 
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