
Low-Density Parity-Check Code Constructions for
Hardware Implementation

Edward Liao1, Engling Yeo2, Borivoje Nikolić
Department of Electrical Engineering & Computer Sciences

University of California, Berkeley
Berkeley, CA, 94720, USA

Abstract—We present several hardware architectures to
implement low-density parity-check (LDPC) decoders for codes
constructed with hierarchical structure. The proposed
hierarchical formulation of the LDPC code allows a structured
hardware realization of the decoder. For a fully-parallel
implementation, there is reduced routing congestion, allowing
implementations for blocks sizes up to 1024 bits in 0.13µm
technology. Partially and fully serial implementations benefit
greatly from the structure of the code as well, leading to several
flexible, efficient architectures. In a general purpose 0.13µm
technology, the approximate area required by a 1024-bit fully-
parallel LDPC decoder is found to be 12.5mm2 while a serial
decoder can be implemented in an area of 0.15mm2.

I. INTRODUCTION
Low-density parity-check (LDPC) codes [1] have been

recently shown to allow communications systems to perform
close to the channel capacity limit. High data rate systems
using these codes must use dedicated hardware for LDPC
decoders. However, this hardware can be quite complex,
requiring large silicon area, and are normally power-hungry
and throughput limited. In addition, an extra challenge is to
build an efficient hardware implementation that is also flexible
for variable code rates and block sizes.

To meet these challenges, there has recently been much
work done on the study of constructions of LDPC codes with
advantages in hardware implementation. Kou, Fossorier and
Lin [2] recognized that LDPC encoding can be simplified for
codes constructed on finite geometries. Yeo et. al. [3] used the
same construction with a modified decoding schedule to
significantly reduce the decoder complexity. Zhang and Parhi
[4] and Mansour and Shanbhag [5], [6] demonstrated that the
decoder can be simplified for regular codes based on
algebraically constructed Ramanujan graphs. Hocevar [7]
showed a flexible hardware implementation of a code based on
permutation matrices.

This paper studies LDPC codes and proposes a code
construction that produces codes with properties favoring
hardware implementation along with good BER performance
with low error floors. The structure of this proposed
construction can be exploited in several ways for different
architectures supporting various degrees of flexibility and
throughput. For fully-parallel, very high throughput decoders,
these codes can reduce the amount of routing, making this a
more feasible option for blocks sizes up to 1024 bits. In
addition, these codes allow partially-serial, flexible

architectures with increased efficiency and relatilvey high
throughputs.

II. LDPC DECODING
The design of LDPC codes can typically be defined by an

N×M parity-check matrix H. The symbol N, represents the
length of the block (i.e. the number of bit in the code), while
the symbol M, represents the number of parity checks in the
code. The rate of such a code is thus (N−M)/N. The LDPC code
can be represented by a bipartite graph of bit nodes and check
nodes as shown in Figure 1. An edge between a bit node n, and
check node m, exists if the entry in the nth column and mth row
of H is non-zero. In addition, the LDPC code is defined as
regular if each bit node is adjacent to an equal number of check
nodes, dv, and likewise that each check node is adjacent to an
equal number of bit nodes, dc. This code is then described as a
regular (dv, dc) LDPC code.

The sum-product algorithm that is used for LDPC decoding
has two phases. In the first phase, the bit nodes compute
updated information which is sent to adjacent check nodes. In
the second phase, the check nodes compute updated
information based on the new messages from the bit nodes.
This update information is then sent back to adjacent bit nodes
and the process is repeated.

Figure 1. Bipartite graph for a regular (2, 3) LDPC code.

An LDPC decoder can be realized in hardware to reflect the
bipartite graph representation. Such a decoder would consist of
N bit-node processing elements and M check-node processing
elements interconnected through a network of wires. The
number of interconnect wires required in such a decoder is
2N⋅dv⋅w where w represents the bit width of each message. The
problem with this implementation is that in a randomly
generated LDPC code, there is little structure in the
interconnect network. The average wire length becomes very
large causing such parallel decoders to be very area inefficient
and thus very costly [8]. While parallel decoders can achieve
very high throughputs with low power consumption, their cost
is frequently prohibitive for practical communications
applications. One solution to this problem is to construct codes

1 Presently with Qualcomm Inc., San Diego, CA
2 Presently with ST Microelectronics, Berkeley, CA

bit nodes

check nodes

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE2573

that have an ordered structure to reduce the interconnect
complexity of the decoder.

III. ALGEBRAIC CONSTRUCTIONS
There have recently been several proposed LDPC codes

with ordered structure based on algebraic constructions [9],
[10]. These algebraic constructions make use of known graphs
with properties that achieve good bit error rate (BER)
performance. Several properties are desirable for the code to
achieve good performance via the sum-product algorithm.
First, the bipartite graph representing the code must have a
large girth or minimum cycle length. Second, the graph must
be a good expander. Finally, there should be a large minimum
Hamming distance between codewords.

One method to control the structure of the LDPC code is to
describe the parity check matrix algebraically. Various
mathematical techniques can be used to produce a bipartite
graph with the desired features. One of these techniques is to
use Ramanujan graphs, which are k-regular graphs (i.e., graphs
with all nodes having edge degree k) that have certain
optimality in their expansion behavior. The formal definition of
a Ramanujan graph is that the second largest eigenvalue of the
adjacency matrix is not larger than 12 −k . An infinite family
of Ramanujan graphs is well-known and can be algebraically
constructed [11]. Each graph in this family is defined by two
parameters, p and q, which must be equivalent to 1 modulo 4
and each Ramanujan graph is denoted by Xp,q. The size of Xp,q
is known to be (p3−p)/2. Another interesting property exhibited
by these graphs is that they have an equal number of nodes in
both bipartite sets. By performing various transformations on
these bipartite graphs, a parity check matrix can be constructed
with feasible rates. For example, one could simply take each
node in one of the bipartite sets and splits it into two nodes,
with each node taking half the edges [6]. This method of
construction would result in a rate-½ code with girth as large as
the original Ramanujan graph.

Although these graphs display large girth and good
expander properties, the resultant codes are constructed without
consideration of the minimum Hamming distance. In fact, these
codes turn out to have poor error floors caused by low-weight
codewords and near codewords [12]. These near codewords are
sets where the decoder gets trapped in a state where incorrect
decisions remain within the decoder and the parity check
matrix is not satisfied, but it cannot correct the existing errors.

An LDPC construction based on the Ramanujan graph X13,5
leads to a rate-½ 2184-bit code and has a very poor error floor
around a block error rate of 0.001 due to low-weight code
words. Similarly, codes constructed based on the Ramanujan
graph X17,5 leading to a rate-½ 4896-bit code has an error floor
around a block error rate of 10-7 due to a family of near
codewords.

IV. PROPOSED CONSTRUCTION
We demonstrate a hierarchical design approach that

combines the desirable features of several of the introduced
code construction techniques, while overcoming the low-
weight codeword problem. The most advantageous features of

the previously described codes are the large minimum cycle
length, expansion properties, and structured interconnect. The
structure of interconnect for the decoder can be seen by looking
at the parity check matrix of these codes. The resultant LDPC
code constructed from Ramanujan graphs is a regular (3, 6)
LDPC code with structured placement of the parity checks.
Specifically, the matrix can be partitioned into 28×14 sub-
matrices, where each entry in the sub-matrix is either a 78×78
zero-matrix of all 0s or a 78×78 permutation matrix (a square
matrix with a single 1 in every column and a single 1 in every
row with dimensions 78×78). In the top-level matrix, denoted
here by H*, each row has 6 permutation sub-matrices and 22
zero sub-matrices. Conversely, each column of H* has 3
permutation sub-matrices and 11 all-zero sub-matrices. These
features allow the decoder to be designed in a hierarchical
manner.

In addition to the structure, the codes based on the family of
algebraically constructed Ramanujan graphs have good
expansion properties. Furthermore, it is known that for small
values of k, the probability of a randomly constructed k-graph
being Ramanujan is rather high, with the probability of a graph
with N nodes being Ramanujan approaching 1 as N grows.
With k = 8 and N > 1024, the probability of the graph being
Ramanujan is over 0.8. Using this fact, a random, bipartite
regular k-graph of any size can be constructed with good
probability of satisfying the Ramanujan criteria and simply
splitting one set of the nodes into two will lead to a rate-½
LDPC code.

This leads to a proposed set of rate-½ LDPC codes with
structured interconnect and good expansion and girth
properties. These LDPC codes can be described as follows.
Each code has N bits and N/2 check nodes. The parity check
matrix is partitioned into P×P/2 sub-matrices. Each sub-matrix
is either a square permutation matrix or zero matrix with
dimensions N/M×N/M. The top-level matrix can be constructed
randomly, with the constraint that there are dv permutation
matrix entries in each column and 2dv permutation matrix
entries in each row where dv is the edge degree of the bit node
desired in the resulting LDPC. Similarly, each permutation
matrix entry can be randomly constructed. If necessary, the
permutation matrix can be partitioned much like the top-level
parity check matrix to add another level of hierarchy which
might further ease the routing complexity. The resulting parity
check matrix is equivalent to a random bipartite 2dv-regular
graph with N total nodes and taking one bipartite set and
splitting each of the nodes into two nodes. Since the original
bipartite 2dv-regular graph has high probability of being
Ramanujan for small dv, the graph will most likely have a large
minimum cycle length. An example of a code constructed in
the described manner is shown in Figure 3. Here, a 24x12
parity-check matrix is constructed from a 6x3 top-level matrix,
H*. The top-level parity-check matrix is randomly constructed
as are each permutation sub-matrix.

The performance of a code generated in the proposed
fashion was simulated along with a completely randomly
generated code and the results shown in Figure 2. The codes
are both regular (4, 8) rate-½ LDPCs using 1024 bit blocks.
The proposed code uses a parity check matrix partitioned with

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE2574

a top-level 32x16 parity check matrix with 32x32 matrix
entries. Down to a block error rate of 10-6, this code shows no
change in BER slope down to a block error rate of 10-6. The
error floor still exists below this level [12], but is not raised
compared to previous constructions.

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.6 1.8 2 2.2 2.4
SNR (dB)

Fr
am

e
Er

ro
r R

at
e

Proposed
Construction
Random
Construction

10-6

10-5

10-4

10-3

10-2

10-1

Figure 2. BER curves for proposed LDPC codes, maximum 64 iterations.

V. DECODER ARCHITECTURES
In addition to having good performance, the hierarchical

structure of the codes also allows easier hardware
implementation of the decoder. In this section, several decoder
architectures are analyzed, illustrating how each one takes
advantage of the hierarchical structure of the code. A fully-
parallel architecture is shown to be feasible due to the structure
of the interconnect introduced by the code construction, two
different architectures partially serializing the decoder can be
created naturally from the structure of the code, and finally, a
fully-serial architecture can be shown to take advantage of the
code properties as well.

A. Parallel Decoder
As previously mentioned, the primary issue with the

physical design of a fully parallel decoder is minimizing the
level of routing congestion. This is typically achieved through
careful partitioning of the large groups of processing elements
such that the number of long global interconnects is minimized.
In general, this is a difficult problem because LDPC codes have
the tendency to be random and unstructured [13]. However, in
our proposed construction, the processing elements can be
partitioned naturally along the lines of the hierarchy according
to the partitioned parity check matrix H*. Each sub-matrix
represents a group of check nodes and bit nodes. The messages
are likewise clustered and routed together between groups of
processing elements. This scheme provides increased structure
for the decoder implementation.

The routing complexity within each group of N/P check
nodes can be interpreted by partitioning the top-level parity
check matrix into horizontal bands with N/P rows. Each
partition comprises of a concatenation of 2dv different
permutation matrices, separated by zero-matrices, as shown in

Figure 3. These zero-matrices do not affect the routing of the
decoder and are therefore removed, forming a reduced matrix
with dimensions (N/P)×(2⋅dv⋅N/P). Thus, the routing problem is
reduced to the equivalent of routing an LDPC decoder with
2⋅dv⋅N/P bit nodes and N/P check nodes.

The proposed code design provides an N-bit regular (dv,
2dv) code, which can be broken up hierarchically. At the top
level is a rate-½ LDPC with M “bit” nodes. The next level of
hierarchy is very similar to a regular (1, 2⋅dv) 2⋅dv⋅N/P bit
LDPC decoder. This check node group can be designed
hierarchically as well if needed by simply designing a code
with partitioned permutation matrices. The floorplan for a
1024-bit rate-½ LDPC decoder is described in [13] and a
similar placement strategy can be followed for this decoder and
for each check node group in the decoder. In this floorplan, bit
nodes are placed along the outer edges of the chip and the
check nodes and routing are placed in the middle of the ring
formed by the bit nodes.

Figure 3. Formation of parity check matrix, H, from top level matrix H* and

matrix for one check node group.

In order to obtain area estimates, the processing elements
were synthesized in 0.13µm general-purpose standard-cell
CMOS technology. Each check node group consisting of 32
check nodes is approximately 500µm x 500µm and each bit
node group is approximately 275µm x 275µm. With no routing
congestion, the total area for the parallel decoder would be
approximately 8mm2. To analyze the utilization, we must
estimate wiring lengths for the proposed placement. First, we
count the total number of wires at the top level. For a (4, 8)
regular LDPC code with 1024 bits per block, there are 4⋅1024⋅2
= 8192 messages passed between bit and check nodes and vice
versa. Using 4 bit messages, this requires 32,768 wires. A
pessimistic wire length can be approximated assuming a
uniform distribution over the check node groups (i.e.: no
optimizations on placement) and assuming no spacing between
check node groups for routing. The average wire length is
found to be approximately 1mm, which would require a total
wire length of 32,768mm or an area of 6.55mm2. Although
multiple metal layers will reduce the actual area on a chip, this
area is still significant, affecting the decoder size estimate. By
iterating through these computations, a good approximation for
the area of the decoder can be found. For this chip, the total
routing area is approximately 4.5mm2 and the total chip area is
12.5mm2 for a utilization of 64%. Likewise, the same
calculations can be done for a (3, 6) regular LDPC code, which

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE2575

has smaller bit and check nodes (total area of 7mm2). The
routing area is found to be approximately 3.2mm2, for a logic
density utilization of 69%.

Figure 4. Shift-register structure for LDPC decoders.

Figure 5. Second implementation of partially parallel decoder.

B. Parallel/Serial Implementations
The logic density can be increased through partially serial

implementations. There are two natural ways of serializing the
decoder. The first implementation would keep the multiple
copies of the check node groups, but serialize the group so that
it processes only one check node per cycle. The second
implementation would be to multiplex several parallel check
node groups among all the bit node groups.

The first possible implementation is shown in I.AThis
figure shows a structure that uses a single check node
processing element to serially evaluate all check-to-variable
messages from a group of check nodes. Similarly, all message
computations corresponding to a group of bit nodes are
multiplexed onto a single bit node processing element. Thus,
the decoder for the 1024-bit code example uses 16 check node
processing elements and 32 bit node processing elements.
Besides taking advantage of the hierarchical code design, this
structure also exploits the property that each row of the second-
level sub-matrices has a maximum edge degree of one. The
messages corresponding to each permutation sub-matrix are
stored in a shift-register chain. Unlike previous uses of shift
registers in LDPC decoders [3], [14], [15], this does not
require consecutive rows in the parity check matrix to be

cyclic. The processing elements are arranged in a tight grid
surrounding the shift registers. The zero-matrices do not
require any storage of messages, and correspond to the empty
spaces between the grid in I.AThe area of the decoder is
approximated by performing synthesis in 0.13µm general-
purpose CMOS technology. The 16 check-node and 32 bit-
node processing elements occupy 1.1mm2 and 0.6mm2
respectively. The shift registers will occupy another 0.5mm2.
The structure of the decoder interconnect enhances the logic
density, which is estimated to be 0.8. This results in a 1024-bit
decoder that is 2.8mm2 and capable of decoding at 1Gb/s.

The shift register architecture decoder can be made
programmable with some overhead. To support this, a large
grid of the check and bit nodes can be laid out with extra shift
registers throughout the grid. This grid can be programmed to
the parity check matrix by turning the shift registers on or
setting them to shift out a no information message to the bit and
check nodes.

The second partially parallel implementation is shown in
Figure 5. Instead of using all check node groups operating in
parallel, only a few check node groups are used along with
multiplexers and demultiplexers to appropriately route the
messages from the bit nodes to the check node groups and from
the check node groups back to the bit nodes. A similar
architecture has been recently reported for structured code
constructions [15]. This implementation still takes advantage of
the fact that the check nodes and bit nodes can easily be
grouped together to simplify multiplexing involved at the top
level. The check node groups would be the same as a check
node groups in the parallel decoder, but the bit node could be
simplified to be a simple accumulator register with a shift
register. The check node message would be added to the
message in the bit node and subtracted out when the message
was passed back to that check node. Even further simplification
could be used if the approximation in [3] is used where the
check node message is not subtracted out. This would save the
cost of the storing all the check-to-bit messages within the
decoder, a large saving in storage. This results in a 32-bit node
group of approximately 0.1mm2 and a check node group of
0.25mm2. With additional multiplexing and routing, the area of
this decoder is approximately 3.5mm2 running at
approximately 300MHz. This implementation has the
advantage it can easily be used to support various LDPC codes
constructed in the proposed manner with various block sizes
and code rates. The only overhead would be to add enough bit
node groups to support as large a block as needed and
configure the code through the control signals to the
multiplexers.

C. Serial Implementation
In area-constrained applications, the size of the decoder can

be further reduced by using a fully serial decoder with SRAM
to store the messages, and a single processing element for all
message computations. In general, serial architectures have the
throughput limited by the implementation of multi-ported
SRAM [8]. However, the hierarchical LDPC code allows the
decoder implementation to make use of eight independent
smaller SRAMs, which are inherently faster. Each bit node
group would have a memory consisting of all the check to bit

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE2576

node messages. Each cycle, the messages are read out, summed
together (subtracting out the one check-to-bit message) and
processed by a check node. The new check-to-bit message
would then be stored in the memory. The requirement for this
decoder is dominated by the 32 1kbit (32x8x4) SRAMs. In
0.13µm CMOS, a single 32x32 SRAM will occupy an
approximate area of 15,000µm2 and operate at up to 500MHz.
Thus the 0.51mm2 serial decoder will be capable of a decoding
throughput above 100Mb/s, depending on desired number of
decoding iterations. It is also possible to use the approximation
of [3], [15] where the check to bit message is not subtracted. In
this case, only a single message needs to be stored for each bit
node and each of the 32 SRAMs need only be 128 bits (32x4),
consuming an area of 3400µm2 for a total of 0.15mm2.

D. Comparison of Architectures
Table I summarizes the different architectures described

here for a 1024-bit rate-½ LDPC decoder. It is clear from this
table that with the proposed code construction, a wide range of
applications can be supported with variable throughput and
hardware cost requirements. In addition, many of these
architectures can support multiple block sizes and code rates
with appropriate code construction.

TABLE I. COMPARISON OF ARCHITECTURES

Architecture
type

Approximate
Area

(mm2)

Estimated
Clock speed

(MHz)

Estimated
Throughput,
10 iterations

(Gb/s)
Fully Parallel 12.5 300 30.0
Shift-register

based 2.8 1000 3.2

Muxed check
node group 3.5 300 1.1

Fully Serial 0.15 500 0.1

For applications requiring very high throughput decoding, a
fully parallel decoder is a feasible solution, requiring 12.5mm2
with an estimated throughput of 30 Gb/s. However, a drawback
for this decoder is that it is not as easily configurable for
different block sizes or code rates. The shift register
architecture has a smaller area while still supporting up to 3.2
Gb/s. While the area is smaller than the multiplexed check
node group architecture with a larger throughput, it is clear that
the multiplexed check node is much more easily configured to
support multiple LDPC codes. The shift register architecture
can support multiple LDPC codes as described, but there is
quite a bit of overhead to do so whereas the multiplexed check
node group architecture just needs to change some control
logic. Finally, for applications where throughput is not as
important, a fully-serial architecture can be used.

VI. CONCLUSIONS
A family of randomly constructed hierarchical LDPC codes

has been proposed. These codes have intrinsic properties which
ensure good BER performance via the sum-product algorithm.
For an example 1024-bit block, the code has error floor below
the block error rate of 10-6. It also exhibits good performance
compared to randomly generated LDPC codes.

Due to the hierarchical nature of the code, the feasibility of
hardware implementation of the decoder has been significantly
improved. Four different architectures have been demonstrated.
These architectures contrast in terms of area of implementation
and achievable throughputs. A 1024-bit fully-parallel decoder
architecture requires 12mm2 and achieves 30 Gb/s decoding
throughput. Partially serializing the decoding leads to two
additional architectures which were shown to have smaller area
than the fully-parallel decoder, while maintaining a relatively
high throughput of 1Gb/s. The area can be further reduced if
memory is eliminated from the design by using an
approximation to the sum-product algorithm. Finally, a serial
architecture was shown to have high memory efficiency and an
area as small as 0.15mm2, though throughput is reduced
accordingly to 100Mb/s. The architectures demonstrate that
these codes are suitable for a range of applications with
different throughput and area constraints.

REFERENCES
[1] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA:

MIT Press, 1963.
[2] Y. Kou, S. Lin and M. Fossorier, "Low density parity check codes based

on finite geometries: A rediscovery and more," IEEE Trans. on
Information Theory, pp. 2711-2736, Oct. 1999.

[3] E. Yeo, P. Pakzad, B. Nikolić, and V. Anantharam, “High throughput
low-density parity-check decoder architectures,” Proc. IEEE
GLOBECOM 2001, Nov. 2001, pp. 3019-3024.

[4] T. Zhang and Parhi, “A 54 Mbps (3, 6)-regular FPGA LDPC decoder”,
IEEE Workshop on Signal Proc. Systems, 2002. (SIPS '02), Oct. 2002,
pp. 127 -132.

[5] M. Mansour, N. Shambhag “Memory-efficent turbo decoder
architectures for LDPC codes” IEEE Workshop on Signal Proc. Systems,
2002. (SiPS 2002), Oct. 2002, pp. 159-64.

[6] M. Mansour and N. Shanbhag, “Architecture-aware low-density parity-
check codes,” Proc. 2003 Int. Symp. on Circuits and Systems, ISCAS
'03, vol. 2, May 25-28, 2003. pp. 57-60.

[7] D.E. Hocevar, “LDPC code construction with flexible hardware
implementation,” Proc. IEEE Int. Conf. on Comm., ICC’03, vol 4 ,
2003, pp. 2708 -2712.

[8] E. Yeo, B. Nikolić, and V. Anantharam, "Iterative decoder
architectures," IEEE Communications Magazine, vol. 41, no.8, pp. 132-
140. Aug 2003.

[9] J. Rosenthal and P.O Vontobel, “Constructions of LDPC codes using
Ramanujan graphs and ideas from Margulis,” Proc. 38th Annual Allerton
Conference on Communication, Control, and Computing, 2003. pp. 248-
257.

[10] J. Lafferty, D. Rockmore, “Code and Iterative Decoding on Algebraic
Expander Graphs”. International Symposium on Information Theory and
its Applications. Nov. 2000.

[11] A. Lubotzky, R. Phillips, and P. Sarnak, “Ramanujan graphs,”
Combinatoria, vol. 8, no. 3, pp. 261-277, 1988.

[12] D. MacKay and M. Postol, “Weaknesses of margulis and ramanujan-
margulis low-density parity-check codes," Electronic Notes in
Theoretical Computer Science, vol. 74, 2003.

[13] A. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate 1/2
low-density parity-check code decoder,” IEEE J. Sold-State Circuits,
vol. 37, no. 3, pp. 404-412, March 2002.

[14] R. Lynch, R. Lynch, E. Kurtas, A. Kuznetsov, E. Yeo, and B. Nikolic,
“The search for a practical iterative detector for magnetic recording,”
Digests of The Magnetic Recording Conference, TMRC 2003, p. E6,
Santa Clara, CA, Aug 18-20, 2003.

[15] S. Olcer, “Decoding architecutre for array-code-based LDPC codes,”
Proc. IEEE GLOBECOM 2003, Dec. 2003, pp. 2046-2050.

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE2577

	footer1:

