
Multi-level Correspondence via Graph Kernels
for Editing Vector Graphics Designs

Hijung V. Shin*

Adobe Research
Jeremy Warner†

University of California, Berkeley
Björn Hartmann‡

University of California, Berkeley
Celso Gomes§

Adobe Research

Holger Winnemöller¶

Adobe Research
Wilmot Li||

Adobe Research

Total Cost Years To Complete

1.5 billion
5

1.9billion
5

175 m
illion

3

24 m
illion 1

BURJ

Dubai
2010

Chicago
1973

Taipei
2004

New York City
1931

KHALIFA
WILLIS
TOWER

TAIPEI
101

EMPIRE
STATE

1.5 m
illion
2

Paris
1889

EIFFEL
TOWER

Total Cost Years To Complete

1.5 billion
5

175 m
illion

3

1.9billion
5

24 m
illion 1

1.5 m
illion 2

Dubai Chicago Taipei New York City Paris
2010 1973 2004 1931 1889

BURJ
KHALIFA

WILLIS
TOWER

TAIPEI
101

EMPIRE
STATE

EIFFEL
TOWER

Western
Balkans
102,342

HUNGARY

Afghanistan 29%

Syria 28%

Kosovo 23%

Central
Mediterranean

91,302

ITALY

Eritrea 26%

Nigeria 12%

Unspecified
11%

Eastern
Mediterranean

132,240

GREECE

Syria59%

Afghanistan25%

Pakistan5%sub-Saharan Africa

Detections of illegal
border crossings
January - July 2015

102,342

HUNGARY

91,302

ITALY

132,240

GREECE

Detections of illegal
border crossings
January - July 2015 Afghanistan 29%

Syria 28%

Kosovo 23%

Syria59%

Afghanistan25%

Pakistan5%

Eritrea 26%

Nigeria 12%

Unspecified
11%sub-Saharan Africa

Western
Balkans

Eastern
Mediterranean

Central
Mediterranean

(a) Isolated edits to element a�ributes
darkened �ll color, changed text color and forma�ing,

added drop shadow

(b) Nested layout adjustments
increased overall scale of building group,
changed arrangement and spacing of text

Lectus Proin
Nibh nisl co
id venenatis a condimentum

Diam Donec
Gadipiscing tristique
tortor dignissim
do elusmod
labo

Convallis
Fames ac turpis egestas maecenas
hasellus egestas
rutrum tellus pellentesque eu tincidunt tortor
lamorbi tempus iaculis

Ultricies tristique
Diam donec adipiscing
facilisis gravida neque
volutpat blandit aliquam
aretra

Lacus suspendisse
Lacus suspendisse
convallis aenean et
do elusmod

Consectetur
Gravida arcu ac
dignissim convallis aenean
Amet mattis vulputate enim nulla
venenatis a condimentum

STEP

01
STEP

02

STEP

03

STEP

04
STEP

05

STEP

06

(c) Transfer to di�erent design
scribble �lter, text color, inverted icon color

STEP

01
STEP

02

STEP

03
STEP

04

LOREM IPSUM
Lorem ipsum dolor sit amet
consectetur adipiscing elit, sed do
do elusmodempor incididunt
labore et dolore

LOREM IPSUM
Lorem ipsum dolor sit amet
consectetur adipiscing elit, sed do
do elusmodempor incididunt
labore et dolore

LOREM IPSUM
Lorem ipsum dolor sit amet
consectetur adipiscing elit, sed do
do elusmodempor incididunt
labore et dolore

LOREM IPSUM
Lorem ipsum dolor sit amet
consectetur adipiscing elit, sed do
do elusmodempor incididunt
labore et dolore

STEP

01
STEP

02

STEP

03
STEP

04

LOREM IPSUM
Lorem ipsum dolor sit amet
consectetur adipiscing elit, sed do
do elusmodempor incididunt
labore et dolore

LOREM IPSUM
Lorem ipsum dolor sit amet
consectetur adipiscing elit, sed do
do elusmodempor incididunt
labore et dolore

LOREM IPSUM
Lorem ipsum dolor sit amet
consectetur adipiscing elit, sed do
do elusmodempor incididunt
labore et dolore

LOREM IPSUM
Lorem ipsum dolor sit amet
consectetur adipiscing elit, sed do
do elusmodempor incididunt
labore et dolore

STEP

01

Lectus Proin
Nibh nisl co
id venenatis a condimentum

Diam Donec
Gadipiscing tristique
tortor dignissim
do elusmod
labo

Convallis
Fames ac turpis egestas maecenas
hasellus egestas
rutrum tellus pellentesque eu tincidunt tortor
lamorbi tempus iaculis

Ultricies tristique
Diam donec adipiscing
facilisis gravida neque
volutpat blandit aliquam
aretra

Lacus suspendisse
Lacus suspendisse
convallis aenean et
do elusmod

Consectetur
Gravida arcu ac
dignissim convallis aenean
Amet mattis vulputate enim nulla
venenatis a condimentum

STEP

02

STEP

03

STEP

04
STEP

05

STEP

06

Source

Target

Source
edit

Figure 1: Graphic designs often contain repeating sets of elements with a similar structure. We introduce an algorithm that
automatically computes this shared structure which enables graphical edits to be transferred from a set of source elements to multiple
targets. For example, designers may want to propagate isolated edits to element attributes (a), apply nested layout adjustments (b),
or transfer edits across different designs (c).

ABSTRACT

To create graphic designs such as infographics, UI mockups, or
explanatory diagrams, designers often need to apply consistent edits
across similar groups of elements which is a tedious task to perform
manually. One solution is to explicitly specify the structure of the
design upfront and leverage it to transfer edits across elements that
share the predefined structure. However, defining such a structure
requires a lot of forethought which conflicts with the iterative work-
flow of designers. We propose a different approach where designers
select an arbitrary set of source elements, apply the desired edits,
and automatically transfer the edits to similarly structured target ele-
ments. To this end, we present a graph kernel-based algorithm that
retroactively infers the shared structure and correspondence between
source and target elements. Our method does not require any explicit

*e-mail: vshin@adobe.com
†e-mail: jeremy.warner@berkeley.edu
‡e-mail: bjoern@eecs.berkeley.edu
§e-mail: cegomes@adobe.com
¶e-mail: hwinnemo@adobe.com
||e-mail: wilmotli@adobe.com

annotation and can be applied to any existing design regardless of
how it was created. It is flexible enough to handle differences in
structure and appearance between source and target graphics, such
as cardinality, color, size, and arrangement. It also generalizes to
different types of edits such as style transfer or applying animation
effects. We evaluate our algorithm on a range of real-world designs
and demonstrate how our approach can facilitate various editing
scenarios.

Index Terms: Computing methodologies—Computer graphics—
Graphics systems and interfaces—; Computing methodologies—
Computer graphics—Graphics systems and interfaces—

1 INTRODUCTION

Graphic designs such as infographics, UI mockups, and explanatory
diagrams often contain multiple sets of elements with similar visual
structure. For example, in Figure Fig. 1(a) each chart is represented
by a circle, a country name tag, three data bars, and text annotations
arranged in a consistent manner. There are similar repetitions across
the graphics for each building in Figure 1(b). In some cases, we
also see elements with consistent visual structure across multiple
different designs. For example, Figure 1(c) shows two separate dia-
grams created by the same designer that share a similar underlying
structure.

Designers often need to apply consistent edits such as style

changes, layout adjustments, and animation effects across these
repeating sets of elements. For example, Figure 1(a) shows adjust-
ments to fill color and adding drop shadows for various elements,
and Figure 1(b) shows modifications to the spacing and layout of
the text and graphics for each building. Such edits are tedious to
perform manually, especially as the number of elements increases.
One solution is to explicitly specify the structure of the design up-
front and leverage it to transfer edits across sets of elements that
share the predefined structure. For example, Microsoft PowerPoint’s
master slide feature allows users to edit the appearance of multiple
slides at once. Similarly, popular UX design tools (e.g., Adobe XD,
Figma) encourage users to define master symbols or components
that control the properties of repeated instances within a design,
such as buttons, icons, or banners. Defining such a structure ahead
of time requires substantial forethought which often conflicts with
designers’ workflows. In many cases, designers create and iterate
on the whole graphic to get the overall design right before thinking
about repeated elements, shared structure, or what edits to apply.

We propose a different approach to help designers apply edits
consistently across a design. Instead of asking users to explicitly
structure their content ahead of time, we allow them to select an
arbitrary set of source elements, apply the desired edits, and then
automatically transfer the edits to a collection of target elements. In
this workflow, the system is responsible for retroactively inferring
the shared structure between the source and target elements. Thus,
our approach can be applied to any design, regardless of how it was
created. Our method is not limited to graphics that share identical
structures or elements but is flexible enough to accommodate com-
mon variations between the source and target graphics, such as color,
shape, arrangement, or element cardinality. Moreover, it generalizes
to different types of edits such as style transfer, layout adjustments,
or applying animation effects.

A core challenge in realizing this approach is finding correspon-
dences between the source and target graphics such that the appropri-
ate source edits can be applied to each target element. First, both the
source and target graphics may contain many similar elements, both
related and unrelated. Second, the target graphics usually contain
several differences from the source graphics. For instance, in Fig-
ure 1(a) the size, as well as the position of the data bars relative to
the circle element, are slightly different from one another. The type
and range of these differences vary for each design, making it hard to
define a consistent matching algorithm based on heuristics. Finally,
some types of edits must take into account nesting and ordering
relationships between the elements. For example, in Figure 1(b),
the designer may scale up the entire set of graphics for one of the
buildings and then separately adjust the vertical spacing between
the text elements. Transferring this edit properly to all the buildings
requires that we identify the analogous hierarchical structure for
the other graphical elements in the design by computing multi-level
correspondence. Although designers often organize elements into
various groups during the creation process, these are not reliable in-
dicators of perceptual structure and do not always correspond to the
desired hierarchy for an edit or transfer. Also, user-created groups
typically do not encode the ordering of elements, which is important
for temporal effects like animation.

The main contribution of our work is an automatic algorithm for
determining the shared structure and correspondence between source
and target elements that addresses these challenges. Our method is
based on graph kernels. Given a source and target graphics, we com-
pute relationship graphs that encode the structure of the elements.
We then analyze the source and target relationship graphs using
graph kernels to compute element-wise correspondences. We also
introduce an efficient method to hierarchically cluster and sequence
the target elements into ordered trees whose structure is consistent
with the source graphics. Together, the correspondences and ordered
trees make it possible to transfer edits from the source to target ele-

ments. We evaluate our algorithm on a range of real-world designs
and demonstrate how our approach facilitates graphical editing.

2 RELATED WORK

Inferring Structure in Graphical Designs
A large body of work focuses on automatically estimating the inter-
nal structure of graphic designs to facilitate authoring and editing.
For example, in the context of graphical patterns, Lun et al. compute
perceptual grouping of discrete patterns [12], and Guerrero et al.
encode the structure of a pattern in a directed graph representation
to create design variations [5]. In the context of web designs, Kumar
et al. leverage the tree structure of the DOM as well as its style and
semantic attributes to create mappings between web pages [9]. Liu
et al. generate semantic annotations for mobile app UIs by extracting
patterns from the source code [11]. In the context of layout optimiza-
tion, GACA automatically decomposes a 2D layout into multiple
1D groups to perform group-aware layout arrangement [26]. Other
examples include structural analysis of architectural drawings [15],
procedurally generated designs [18, 24], 3D designs [21] and 3D
scenes [4, 23]. Our work focuses on 2D vector graphics designs,
with the purpose of facilitating edit operations.

While some design software such as Figma [8] allows users
to create graphical designs procedurally (which are then perfectly
matched, edited, and animated), such tools are not commonplace,
and the resulting designs lose their structural information if they are
exported to portable file formats such as SVG or PDF. We propose
a generic solution that only depends on the graphics, regardless of
how they were created.

A different approach to purely automatic inference is mixed-
initiative methods that take advantage of user interactions to
infer structure. For example, previous work has analyzed user
edits to extract implicit groupings of vector graphic objects [19],
propagate fills and strokes in planar maps [1], detect related
elements in slide decks [3], and infer graphical editing macros
by example based on inter-element relationships [10]. Some
existing techniques introduce new interactive tools and widgets that
facilitate manipulation or selection of multiple elements [7, 25], or
sub-parts of elements that are perceptually related [2] through a
combination of explicit user actions and automatic inference. In
contrast, we propose an automatic algorithm to determine the shared
structure within graphic designs. Our method does not require
user annotations or edit history, which means it can be applied to
any existing vector graphics design, regardless of how it was created.

Computing Correspondence between Graphic Designs
Computing the correspondence between two analogous designs is a
long standing problem in graphics with many applications. Many
techniques have been developed for computing correspondences
between a pair of images [20], 3D shapes [22], and 3D scenes [4].
These algorithms exploit local features as well global structures to
compute the correspondence.

One technique that has proven highly effective for comparing
different objects is kernel-based methods. There is ample work on
defining kernels between highly structured data types [17]. In partic-
ular, one approach is to represent objects or collections of objects as
a graph and define a kernel over the graphs. This approach has been
applied to a variety of problems such as molecule classification [13],
computing document similarity [16], and image classification [6].
Our algorithm is directly inspired by Fisher et. al’s 3D scene compar-
ison method [4], which uses graph kernels to compute a similarity
between 3D scenes. To the best of our knowledge, there is no prior
work that computes a pairwise element-to-element correspondence
between two sets of vector-based graphical elements. In addition to
element-wise correspondence, we also infer the nesting and ordering
relationships between the elements, which is crucial for transferring
complex edit operations.

3 OVERVIEW

The input to our method is a set of source elements that the user
has manually edited and a set of target elements to which the user
wants to transfer the edits. Transferring isolated changes to element
attributes (e.g., fill color, text formatting) simply requires matching
each target element to the appropriate source element and apply-
ing the corresponding edit. However, other types of edits define
nesting and ordering relationships that must be taken into account.
For example, many layout changes are applied hierarchically. In
Figure 1(b), the designer may scale up the entire set of graphics
for the Burj Khalifa and then separately adjust the vertical spacing
and arrangement of the text elements in that column. Transferring
this edit properly to all the buildings requires that we identify the
analogous hierarchical structure for the other graphical elements in
the design. In addition, the ordering between elements is important
for temporal effects like animation. In Figure 1(a), the designer may
want to apply animated entrance effects in a specific sequence to the
set of elements for the Central Mediterranean region. Transferring
this edit to the rest of the design requires grouping the elements for
region and determining the appropriate animation order.

These various editing scenarios can be represented by specifying
the desired nesting and ordering relationship amongst the source
elements. Specifically, the input to our algorithm is the source
elements represented as an ordered tree (source tree), and our goal
is to organize the target elements into one or more ordered target
trees that correspond to the source tree structure (Figure 4). Note
that the problem becomes much simpler if each source element is
allowed to match no more than one target element, or if we assume
that the target elements are already organized into ordered trees that
match the source tree. In such cases, finding the appropriate element-
wise correspondence is sufficient. However, these assumptions are
not realistic for most real-world design workflows. They either
require users to manually select subsets of target elements to perform
individual transfer operations, which is inconvenient for designs with
many repeated components, or to arrange graphics into consistently
ordered trees (which may differ per editing operation) ahead of time.

Thus, we propose an algorithm for computing the shared structure
between source and target elements that does not limit the number
of target elements or assume the presence of a consistent pre-defined
structure in the design.

4 ALGORITHM

Our algorithm is composed of two main stages. First, we compute
an element-wise correspondence by finding the best matching source
element for each target element. Then, we compute a hierarchical
clustering of the target elements and organize them into ordered
target trees. Overall, our approach is closely inspired by Fisher et
al. [4] and relies on graph kernels. While their method computes
global similarity between entire 3D scenes, we need a detailed, struc-
tured correspondence between individual elements. This requires
three new aspects in our approach.

• Finding an optimal element-wise match requires a similar-
ity score for each source target-pair of elements (vs a single
similarity score between two scenes from Fisher et al.), and
an algorithm to find the best match using these scores. (Sec-
tion 4.2.5)

• Determining the nesting and ordering that corresponds to the
input edit operations requires clustering the target elements
and inferring their order. (Section 4.3)

• We use different low-level kernels pertinent to comparing
graphic designs. For example, while Fisher et al. use bi-
nary edge kernels by comparing edge types, we assign partial
similarity by also considering the distance between elements.
Such details are important to determine a correct match and

nesting for designs that may contain many elements that share
identical relationships.

In the following, we use similar notation as Fisher et al. to
illustrate how our method relates to and extends the previous work.

4.1 Relationship Graphs
Given the set of source elements s and target elements t, we start
by constructing relationship graphs, Gs and Gt for the source and
target graphics, respectively. The nodes of the graph represent the
graphical elements, and the edges specify relationships between
those elements. We rely on the intuition that elements have cer-
tain relationships that characterize the structure of the design and
make two designs more or less similar to each other. For example,
in Figure 1(a), the text elements ‘Central’, ‘Mediterranean’ and

‘91,302’ are center-aligned with each other and all contained inside
the orange circle element. The blue and green charts also contain
analogous text and circle elements that share these relationships. We
selected a number of prevalent relationships by observing real-world
designs. Table 1 shows the list of the relationships and the process
used to test for them. In general, the graph may contain multiple
edges between a pair of nodes.

2000

2005

2010
Is le of

Is le of
(not closest on le !)

Center h-aligned

Middle v-aligned

Contained in,
Center h-aligned

Figure 2: An example relationship graph for a set of elements. Only a
subset of the edges are shown.

The tests are performed in the order listed. To eliminate redun-
dancy, we encode at most one edge for a given category between
any two elements. For example, if elements A and B are both
center-aligned and left-aligned, we only encode the center-aligned
relationship since that is the first test to be satisfied in the horizontal
alignment category. Figure 2 is an example illustrating different
edges in a relationship graph. Note that we do not encode grouping
information from the designer. Grouping structure created during
the authoring process is usually not a reliable indicator of the visual
structure that informs most edit operations. Thus, we decided to
disregard all such groups when constructing the relationship graphs.

4.2 Computing Element-wise Correspondence
After constructing source and target relationship graphs, we compute
correspondences between their nodes. More specifically, for each
target graph node nt ∈Gt , we find the closest matching source graph
node ns ∈Gs using a graph kernel-based approach inspired by Fisher
et al. [4]. To apply the method, we first define separate kernels to
compare individual nodes and edges across the two graphs.

4.2.1 Node Kernel
The nodes in our relationship graph represent individual graphical
elements, with several properties such as type, shape, size, and style
attributes. The node kernel is a combination of several functions,
each of which takes as input two nodes and computes the similarity
of different features of the nodes. Each function described below is

Category Edge Test
Overlay Element A and element B have the same bounding boxes.

Contained in Element A is contained in Element B if A’s bounding box is inside the B’s bounding box.Intersection
Overlap Element A overlaps element B if their bounding boxes intersect

Z-Order Z-Above / Z-Below Element A is Z-Above (Z-Below) element B if element A and B overlap, and
A’s z-order is higher (lower) than that of B.

Vertical alignment Center / Left / Right
Horizontal Alignment Middle / Top / Bottom

Similar to intersection relationships, alignment is computed on element bounding boxes,
but considers individual edges and centers of bounding boxes instead of areas.

Horizontal Adjacency Left of / Right of
Vertical Adjacency Above / Below

Element A is left-of element B if its bounding box is the closest bounding box to the left of B,
is within a threshold distance to B, and if the vertical range of their bounding boxes overlap.(*)

Style Same Style
While there is a plethora of style attributes for each element, we use fill color and
stroke style for non-text elements, and font style for text elements since these attributes are
visually most apparent.

Table 1: Edges encoded in relationship graphs. (*For threshold, we use 1
2 (width of source graphics bounding box) for horizontal adjacency, and

1
2 (height of source graphics bounding box) for vertical adjacency. If element A is left of multiple other elements, we only encode the relationship
with the closest element. These constraints prevent edges between elements that are far apart relative to the size of the source graphics.)

constructed to be positive semi-definite and bounded between 0 (no
similarity) and 1 (identical).
Type Kernel (ktype): Vector graphics elements are typically cate-
gorized as shapes (e.g., path, circle, rectangle), images, or text. In
particular, most graphic design products and the SVG specification
distinguish objects in this way. The type kernel returns 1 if two
nodes have the same type (e.g., circle–circle), 0.5 if they are in
the same category (e.g., circle and rectangle are both in the shapes
category), and 0 otherwise (e.g,. circle–image).
Size Kernel (ksize): This function compares the bounding box size
of two elements. It returns the area of the smaller bounding box
divided by the area of the larger bounding box.

Figure 3: The element shape kernel, kshape computes the difference
between the normalized bitmap images of the elements’ silhouettes.

Shape Kernel (kshape): We obtain the normalized shape (ignoring
aspect ratio) of each element by taking its filled silhouette and scaling
it into a 64 x 64 bitmap image (Figure 3). The element shape kernel
returns the percentage image difference between two normalized
shapes.
Font Kernel (k f ont): For comparing two text elements, we consider
their font style attributes. Specifically, we compare font-family, font-
size, font-style (e.g., normal, italic) and font-weight (e.g., normal,
bold). We return the percentage of style attributes that have equal
values.

The final node kernel, knode, is a weighted sum of the above
kernels. Since many editing operations (e.g., changing font size,
applying a character-wise animation effect) are non-transferable
between text and shape elements, we separate text elements and non-
text elements and only compare elements within the same category.

For comparing shape or image elements, we take into account type,
size, and shape kernels.

knode(ns,nt) = ωtypektype(ns,nt)

+ωsizeksize(ns,nt)+ωshapekshape(ns,nt)
(1)

For text elements, font style attributes are deemed more discrimina-
tory than shape or size.

knode(ns,nt) = ωtypektype(ns,nt)+ω f ontk f ont(ns,nt) (2)

If ns and nt are not in the same category, we assign a small constant
(knode = 0.1) instead. The weights, ωtype, ωsize, ωshape and ω f ont ,
are defined per each source element. § 4.2.4 details how we compute
these weights.

4.2.2 Edge Kernel

Next, we define an edge kernel to compute the similarity between a
pair of edges that represent the relationship between two graphical
elements. Each edge encodes a type of relationship (e.g., overlap,
left-aligned). Based on our observation of real-world designs, we
distinguish between strong edges and regular edges. Strong edges
are highly discriminative relationships that tend to be preserved
across design alterations. These include intersection and z-order
relationships. All other edge relationships are deemed regular. In
addition to the type (τ), each edge also encodes the distance (d)
between the two connected elements. Then, the kernel between two
edges es and et with types τes , τet and distances des , det respectively
is defined as:

kedge(es,et) = ωτes
c(τes)δ (τes ,τet)

min(des ,det)

max(des ,det)
(3)

where δ is a Kronecker delta function which returns whether the two
edges types τes and τet are identical. c(te) is 2.5 if τe is a strong edge,
and 1 if it is a regular edge. In our work, we use centroid distance
as a gross approximation for distances between elements, but other
distance metrics such as Hausdorff distance can also be used. Again,
ωτes

is a weight factor that is computed per source element and per
edge type. See §4.2.4 for details.

4.2.3 Graph Walk Kernel

Using the node and edge kernels we define a graph walk kernel to
compute the similarity between nodes in two graphs. A walk of
length p on a graph is an ordered set of p nodes on the graph along
with a set of p− 1 edges that connect this node set together. We
exclude walks that contain a cycle. Let W p

G(n) be the set of all walks
of length p starting at node n in a graph G. To compare nodes ns

and nt in relationship graphs Gs and Gt respectively we define the
p-th order rooted walk graph kernel kP

R.

kp
R(Gs,Gt ,ns,nt) =

∑
W p

Gs (ns),W
p

Gt
(nt)

knode(nsp ,ntp)
p−1

∏
i=1

knode(nsi ,nti)kedge(esi ,eti)
(4)

The walk kernel compares nodes ns and nt by comparing all walks
of length p whose first node is ns against all walks of length p whose
first node is nt . The similarity between a pair of walks is computed
by comparing the nodes and edges that compose each walk using
the node and edge kernels respectively.

Finally, the similarity of nodes ns and nt is defined by taking the
sum of the average graph walk kernels for all walks up to length p

Sim(Gs,Gt ,ns,nt) = ∑
p

kp
R(Gs,Gt ,ns,nt)

|W p
Gs
(ns)||W p

Gt
(nt)|

(5)

where |W p
G(n)| is the number of all walks of length p starting at node

n in a graph G.

4.2.4 Kernel Weights

The node and edge kernels in Equations 1 - 3 compare different
features (e.g., shape, style, layout) of the source and target graphics.
The weights applied to these kernels represent the importance of
each feature in determining correspondence. It is not possible to as-
sign globally meaningful weights because the discriminative power
of each feature depends on the specific design and even specific
elements within the design. For example, in Table 2, D4, 7 out of the
8 source elements have the same color, green. So, color is not a very
discriminative feature for these elements. On the other hand, the
circle element which contains the symbol has a unique pastel color
within the source set. For this element, color is a highly discrimina-
tive feature. We assume that features that are highly discriminative
within the source graphics will also be important when comparing
to the target graphics. Based on this assumption, we determine a
unique set of kernel weights for each element in the source graphics,
s, as follows.
Node kernel weights: For each element nsi ∈ s, we compute the
node feature kernel between nsi and every other element ns j ∈ s.
The weight ω f eature is inversely proportional to the average feature
kernel value.

ω f eature(nsi) = 1.0−
∑ns j∈s, j 6=i k f eature(nsi ,ns j)

|s|−1
(6)

where |s| is the number of elements in the source graphics. A high
average feature kernel value means many elements within the source
graphics share the same feature, so the feature is less discriminative
and vice versa.
Edge kernel weights: The weights for the edge kernel is defined
for each source element, nsi , and for each edge type, τe.

ωτe(nsi) = 1−
∑ei∈Ensi

δ (τei ,τe)

|Ensi
|

(7)

where Ensi
is the set of all edges from node nsi . The numerator

counts the number of edges in Ensi
that has type τe. If element nsi

has many edges of a given type, that edge type or relationship is
less discriminatory for nsi and vice versa. In §6.2, we conduct an
ablation experiment, where we replace these weights with uniform
weights.

4.2.5 Element-wise Correspondence
Given the pairwise similarity score between the source and target
elements (Equation 5), a straightforward approach for finding an
element-wise correspondence would be to match each target element
to the source element that has the highest similarity score. The
downside of this approach is that it is sensitive to small differences
in the similarity score. Instead, we take an iterative approach that
looks for confident matches and utilizes these matches to update the
similarity scores of other pairs of elements. Source element nsi and
target element nt j is a confident match if

Sim(Gs,Gt ,nsi ,nt j)� Sim(Gs,Gt ,ns,nt j) ∀ns ∈ s,ns 6= nsi (8)

that is, if the similarity score of (nsi ,nt j) is much greater than the
similarity score of nt j with any other source elements.

Once we identify the confident matches, we use them as anchors
to re-compute all other pair-wise similarity scores. First, we update
the node kernels in Equations 1-2. Since we are confident that
(nsi ,nt j) is a good match, we boost their node kernels:

knode(nsi ,nt j) = 2.5 if (nsi ,nt j) is a confident match (9)

Since our goal is to match each target element to exactly one source
element, if (nsi ,nt j) is a confident match nt j should not match any
other source element ns 6= nsi . Therefore, we discount these node
kernels:

knode(ns,nt j) = 0.1 if (nsi ,nt j) is a confident match and ns 6= nsi

(10)
All other node kernels remain the same. The similarity scores

are re-computed using the original Equation 5 with the updated
node kernels. We iterate the steps of identifying confident matches
and re-computing the similarity scores until all target elements
are matched to a source element or until we reach a set maximum
number of iterations. At this point, any remaining target elements
are matched with the most similar source element according to the
most recently updated similarity scores.

4.3 Computing Ordered Target Trees
The previous stage of the algorithm finds the closest matching source
element for each target element. As noted earlier, this correspon-
dence is enough to transfer isolated attributes that do not depend
on the nesting structure or order of the target elements. However,
for many other edits (e.g., layout, animation), transferring changes
requires computing ordered target trees that are consistent with the
source tree.

4.3.1 Hierarchical Clustering
We start by computing a hierarchical clustering of the target elements
that matches the structure of the source tree. For example, consider
Figure 4(a). The designer may apply edits to the yellow section of
the bulb (source), then select the rest of the sections at once (target)
to transfer the edit. In this case, there are 4 top-level clusters within
the target tree, each corresponding to the red, purple, navy, and blue
sections of the bulb. If the designer grouped and rotated the flashlight
and the light rays in the source graphics by 45 degrees to get a tilted
effect, we need the nesting of the neckties shown in Figure 4(b), T1
to transfer that edit properly (since we would want to rotate each
necktie individually as opposed to all of them in a block or two
parts of the neckties separately). To obtain these clusters, we use
agglomerative nesting (AGNES), a standard bottom-up clustering
method that takes as input a similarity matrix (D) and the number of
desired clusters (k), and iteratively merges the closest pair of clusters
to generate a hierarchy [14].

The key aspect of our approach is how we define the similarity
matrix, which measures how likely a pair of target elements should

IDEA

TEAMWORK

STARTUP

BUSINESS

01

02

03

04

Lorem ipsum dolor sit amet
consectetur adipiscing elit, sed do
do elusmodempor incididunt
labore et dolore

Lorem ipsum dolor sit amet
consectetur adipiscing elit, sed do
do elusmodempor incididunt
labore et dolore

Lorem ipsum dolor sit amet
consectetur adipiscing elit, sed do
do elusmodempor incididunt
labore et dolore

Lorem ipsum dolor sit amet
consectetur adipiscing elit, sed do
do elusmodempor incididunt
labore et dolore

SUCCESS
Lorem ipsum dolor sit amet
consectetur adipiscing elit, sed do
do elusmodempor incididunt
labore et dolore

IDEA

01
Lorem ipsum dolor sit amet
consectetur adipiscing elit, sed do
do elusmodempor incididunt
labore et dolore

IDEA

(a) Original Design (D9) (b) Ordered Source Tree (c) Ordered Target Trees

TEAMWORK

TEAMWORK
02Lorem ipsum dolor sit amet

consectetur adipiscing elit, sed do
do elusmodempor incididunt

T1
STARTUP

03Lorem ipsum dolor sit amet
consectetur adipiscing elit, sed do

T2
BUSINESS

04Lorem ipsum dolor sit amet
consectetur adipiscing elit, sed do

T3

SUCCESS
Lorem ipsum dolor sit amet
consectetur adipiscing elit, sed do
do elusmodempor incididunt
labore et dolore

T4

S

Figure 4: Example of ordered source and target trees. Node colors indicate element-wise correspondence. Multiple instances of matching target
graphics are represented as a nested target tree. Here, the entire source graphics (top slice of the bulb), matches 4 target instances, represented
by sub-trees T1, T2, and T3. Within T1, there are 3 instances/sub-trees of the necktie symbol which corresponds to the flashlight symbol in the
source. Our algorithm takes as input an ordered source tree and outputs an ordered target tree.

be clustered together. We rely on the intuition that the relationship
between two target elements that belong to the same cluster would
be similar to the relationship between their corresponding source
elements. For example, in Figure 4, consider the yellow cross-
section and the flashlight icon in the source graphics, and their
corresponding elements in the target graphics (red, purple, navy, blue
cross-sections and necktie, dollar sign, graph, and graduation hat
icons). The yellow cross-section contains the flashlight. Likewise,
the red cross-section contains neckties and these elements should be
grouped together. On the other hand, although the dollar signs also
correspond to the flashlight, the dollars signs are not contained in
the red cross-section, and these should be grouped separately. We
measure the similarity of relationships between pairs of elements,
again using the graph walk kernel. From the relationship graph
defined in §4.1, the relationship between two elements n and n′ is
represented by W p

G(n,n′), the set of all walks of length p whose first
node is n and whose last node is n′. Then, the similarity of target
elements nt and n′t with corresponding source elements ns and n′s is
defined as:

kp
R(Gs,Gt ,nt ,n′t ,ns,n′s) =

∑
W p

Gs (ns,n′s)
W p

Gt
(nt ,n′t)

knode(ns,nt)
p−1

∏
i=1

knode(nsi ,nti)kedge(esi ,eti)

(11)

This equation is equivalent to Equation 4, except here we compare
walks between a fixed source and destination node. That is, we
compare all walks of length p starting at nt and ending at n′t against
all walks of length p starting at ns and ending at n′s. We take the sum
of the average graph walk kernels for all walks of length up to p.
For the bottom-up clustering method, to compare distances between
two clusters of elements, we use the average distance between all
pairs of elements from each cluster.

We use a simple heuristic to determine the number of clusters, k.
For each source element, we count the number of matched target
elements and take the mode of this value. We apply this heuris-
tic recursively to determine the number of clusters at each level.
We experimented with more complex methods such as using the
spectral gap of the Laplacian matrix or putting a threshold on the
maximum distance between two clusters to be merged. However, we
found that the simpler approach worked better in most cases, even
with variations in element cardinality between the source and target
graphics.

4.3.2 Ordering
Once we obtain the target tree, the final step is to determine the
ordering between the sub-trees, which translates to the ordering

of the elements. The ordering between sub-trees depends heavily
on the global structure of the design (e.g., radial design vs linear
design), the semantics of the content (e.g., graphics that represent
chronological events), and the user’s intent (e.g., presenting things
in chronological order vs in reverse chronological order). Instead of
trying to infer these factors, we rely on a simple heuristic based on
natural reading order. We order the sub-trees from left to right, then
top to bottom using their bounding box centers.

5 RESULTS

To test the effectiveness of our algorithm, we collected a set of 25
vector graphic designs. The designs included infographics, presenta-
tion templates, and UI layouts. We collected designs that contained
several repeating structures that could benefit from bulk editing. We
selected the source and target graphics for each design. Then, we
manually coded the type of variations (e.g., color, layout) applied be-
tween the source and target graphics. More variations imply greater
differences between the source and target graphics, making the cor-
respondence more difficult to compute. Note that we did not use this
test dataset to develop our algorithm.

For each design, we manually specified an ordered source tree
which would correspond to a specific set of edits applied to the
source elements and the corresponding ground truth set of ordered
target trees. By default, we created shallow source trees (height of 1)
for all designs. We also created deeper trees for a few examples (e.g.,
Figure 4. See supplementary material for more examples.) We chose
the source element ordering such that applying entrance animation
effects in that order would produce a plausible presentation. For ex-
ample, text elements organized in paragraphs are ordered top-down,
and container elements (e.g., the circle cross-sections in Figure 4)
are succeeded by the interior graphics (e.g., icons and text). For other
elements, we arbitrarily chose one specific ordering among many
reasonable options. When constructing the ground truth target trees,
we created a separate sub-tree for each set of target elements that
correspond to an instance of the source graphics. For example, in
Figure 4, the elements in of each cross-section constitute one target
sub-tree. The ordering of elements within the lowest level sub-trees
is determined by the ordering of the corresponding source element
in the source tree. Higher-level sub-tree orderings are determined by
the heuristic described in 4.3.2.

We evaluate the two stages of our algorithm separately. First,
we evaluate the element-wise match between the source and target
graphics. For the majority of target elements, the ground-truth match
and clustering are visually apparent in the design. In cases where
the variation between the source and target graphics make the match
less clear, we choose a reasonable ground-truth match. For example,
in Table 2 D5, there are six different person icons each of which
consist of multiple vector graphics paths. Since, each path roughly

represents a body part (e.g., hair, face, neckline), we consider a
match between equivalent parts of the symbol to be correct. On
the other hand, the symbols in D4 do not have a clear semantic or
visual correspondence. In this case, we consider a match between
any target symbol path to any source symbol path as a correct match.

We evaluate the match for two different scenarios. In each design,
the target graphics contains multiple sets of targets that match the
source graphics. First, we evaluate the match on each target set
separately (Separate). This would apply to the scenario when the
user selects each target set separately and applies a transfer to each
set one by one. Then, we evaluate the match between the source
graphics and the entire target graphics, emulating the case when the
user selects all target elements and applies the transfer at once (All).
Table 2 reports the percentage of correctly matched target elements
in each case.

For the hierarchical clustering and ordering encoded in the target
trees, we also evaluate two scenarios. First, we compute the target
trees given the match results from the All scenario, which may
include incorrect matches (Default). Next, we compute the trees
given the ground-truth match (Perfect Match). To quantify the
correctness of the final result, we define an edit distance, De, that
measures the difference between the ground-truth target tree and our
computed target tree. To simplify this distance, we flatten both the
ground-truth and computed trees into a sequence of target elements
based on the ordering information encoded in the target trees. In
these sequences, we label each target element with the corresponding
source node, which allows us to identify errors in the computed
element-wise matches (wrong label for a given target element) and
incorrect ordering (wrong sequence of labels). Given a flattened
ground-truth sequence g and a computed sequence r, we define the
edit distance as follows:

De(r,g) = Dm(r,g)+Do(r,g) (12)

where the match edit distance, Dm, encodes differences in element-
wise matches, and the order edit distance, Do, encodes differences
in the order of elements between r and g. Dm(r,g) is simply the
total number of elements in the target that are matched to the wrong
source element. It roughly represents the work required to fix all the
incorrect matches. For the Default case, it is equal to the number
of incorrect matches in All. For the Perfect Match case, it is
equal to 0. The order edit distance is defined as:

Do(r,g) = N− InOrder(r′,g) (13)

where N is the number of elements in the target graphics, and r′
is the result of correcting all matches in r. Note that r′ must be a
permutation of g since both contain the same set of target-to-source
matches (potentially in different orders). InOrder(r′,g) is a function
that returns the total length of all subsequences in r′ of length ≥ 2
that exactly match a subsequence of g, minus (No−1), where No
is the number of matching subsequences. If g and r′ are identical,
Do(r′,g) = 0. Do is a variant of the transposition distance and
roughly measures the number of operations required to correct the
order of r′ to match g. Note that De does not penalize r for errors
in the hierarchical structure of clusters as long as the result has the
same ordering as g. In most cases, having the correct match and
order will produce the desired visual result. Thus, De attempts to
approximate the number of correction operations needed to reach the
desired ground truth solution. We report De divided by the number
of target elements, N. Note that creating g manually would roughly
correspond to De = N, since the user could just visit all the target
elements in the correct order and assign each target element to the
appropriate source element (or, equivalently, apply the desired edit).

Element-wise Correspondence. Table 2 shows the result for a sub-
set of the designs that we tested. The full set of results is included in

the supplementary material. The source graphic is highlighted with
a red outline. The rest of the graphics minus the greyed-out back-
ground is the target graphics. We obtain close to perfect element-
wise matches even when the target graphics has multiple types
of variations from the source graphics. The match performance
was comparable across the Separate and All scenarios, with only
slightly better accuracy for the Separate case. This means that the
user can transfer edits from the source graphic to multiple sets of
target graphics at once without having to select each target set indi-
vidually, which is especially tedious when there are many elements
in a complex layout.
Ordered Target Trees. The accuracy of the ordered target trees
varied widely across the designs. In order to obtain a perfect result,
we must infer the correct match as well as the correct number of
clusters (k). Error in either of these steps can have a big impact on
the edit distance, De. For example, our algorithm computed a perfect
element-wise match for D1. However, because the target graphics
contained much fewer elements than the source graphics, our simple
heuristic incorrectly inferred that k = 1. This led to a large De since
many elements were out of sequence. On the other hand, for D7,
our heuristic correctly inferred that k = 3, and in fact, the clustering
algorithm accurately identified elements belonging to each target
set, in this case, the individual profiles. However, the relatively poor
element-wise match mixed up the ordering of the elements within
each target subtree, resulting in a larger De. Manually correcting the
match (Perfect Match) and recomputing the target trees produced
a perfect result (De = 0). In general, if the ordering error is due to
the incorrect element-wise match, correcting the match will improve
the accuracy of the resulting target trees. However, if the clustering
of targets itself is wrong, correcting the match can alleviate the error
only partially. In section 6, we also compare the results given a
ground-truth k.
Editing Applications. Our algorithm for computing correspon-
dences and ordered target trees supports a variety of edit transfer
scenarios. To demonstrate this application, we implemented a pro-
totype animation editor for SVG graphics that uses our automatic
computation to transfer animation patterns from source to target
elements. As noted earlier, transferring animation effects is uniquely
challenging because they often involve both temporal and hierarchi-
cal structure.

In our interface, shown in the supplementary video, the user
starts by applying animation effects to the source elements. The
animation sequence itself specifies a nesting and ordering structure
of the source graphics without requiring additional user input. Then,
the user can select the target graphics and apply a transfer. Our
system propagates the animation effects to the target elements by
inferring the nesting and order of the target elements. The run-time
of our algorithm depends on the number of the source and target
elements. For the designs presented in the test set, our algorithm
runs in interactive real-time.

Figure 1 shows other possible edit transfer scenarios. We created
these examples by computing correspondences and ordered target
trees for each set of source elements and then manually applying the
corresponding edits to the target elements. In this process, we did
not correct or modify the automatic output of our algorithm.

6 ABLATION EXPERIMENTS

To further evaluate the impact of different aspects of our algorithm,
we conducted ablation experiments by removing key parts or our
method or replacing them with simpler baselines.

6.1 Removing Edge Kernels

The graph walk kernel defined in Equation 4 compares two nodes ns
and nt by comparing the similarity of their respective relationships
with neighboring nodes. The walk length, p, determines the size

Design # Elements Variations Match Score Tree Score (De/N)

Source Target(N) Count Type Separate All Default
Perfect
Match

Avg 11.0 36.6 4.23 0.95 0.95 0.31 0.15

D1
SIGN UP

janedoe123@email.com
EMAIL

janedoe12345
USERNAME

PASSWORD

Sign Up Log In Forg

LOG IN

janedoe123@email.com
USERNAME / EMAIL

Log In Forgot Passwor

PASSWORD

SEND EMAIL

Forgot Password Sign U
Enter the email address you used to create
your account and we will email you a link to

reset your password

janedoe123@email.com
EMAIL 17 21 2 Text

Cardinality 1.00 1.00 0.81
(k = 1) -

D2

LOREM IPSUM
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh
euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea
commodo consequat.

LOREM IPSUM
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh
euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea
commodo consequat.

LOREM IPSUM
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh
euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea
commodo consequat.

LOREM IPSUM
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh
euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea
commodo consequat.

LOREM IPSUM
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh
euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea
commodo consequat.

LOREM IPSUM
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh
euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea
commodo consequat.

10 50 3
Color
Shape
Size

1.00 1.00 0.06
(k = 6) -

D3

Total Cost Years To Complete

1.5 billion
5

1.9billion
5

175 m
illion

3

24 m
illion 1

BURJ

Dubai
2010

Chicago
1973

Taipei
2004

New York City
1931

KHALIFA
WILLIS
TOWER

TAIPEI
101

EMPIRE
STATE

1.5 m
illion
2

Paris
1889

EIFFEL
TOWER

9 36 4

Cardinality
Shape
Size

Layout
Text

1.00 0.97 0.03
(k = 4)

0
(k = 4)

D4
2000

Lorem Ipsum

2010

2005 2015

2020Lorem Ipsum

Lorem Ipsum Lorem Ipsum

Lorem Ipsum

8 33 5

Cardinality
Color

Layout
Shape
Text

1.00 1.00 0
(k = 4) -

D5

LOREM IPSUM

LOREM IPSUM

Lorem ipsum dolor sit
amet, consectetuer

adipiscing elit.

LOREM IPSUM
Lorem ipsum dolor sit
amet, consectetuer

adipiscing elit.

LOREM IPSUM
Lorem ipsum dolor sit
amet, consectetuer

adipiscing elit.

LOREM IPSUM
Lorem ipsum dolor sit
amet, consectetuer

adipiscing elit.

LOREM IPSUM
Lorem ipsum dolor sit
amet, consectetuer

adipiscing elit.

LOREM IPSUM
Lorem ipsum dolor sit
amet, consectetuer

adipiscing elit.

16 60 5

Cardinality
Color

Layout
Shape
Size

0.90 0.90 0.50
(k = 5)

0.08
(k = 5)

D6

Western
Balkans
102,342

HUNGARY

Afghanistan 29%

Syria 28%

Kosovo 23%

Central
Mediterranean

91,302

ITALY

Eritrea 26%

Nigeria 12%

Unspecified
11%

Eastern
Mediterranean

132,240

GREECE

Syria59%

Afghanistan25%

Pakistan5%sub-Saharan Africa

Detections of illegal
border crossings
January - July 2015

10 33 5

Cardinality
Color
Size
Text

Layout

1.00 1.00 0
(k = 2) -

D7

Travellers

Nora Bravo
Product Designer at

LoudSound.

Lacey-Mae Howe
I love to ride a bike every now
and then. Enjoy coffee, whisky

and red wine.

Amy Ford
I’m a happy person with
mediocre dance moves.

Originally from San Diego.

Susie Wright
Fashion Blogger at WhatIf

3 Travellers

James Harrington
Director of Software and
Engineering at WorkHard Inc.

MESSAGE

Lacey-Mae Howe
I love to ride a bike every now
and then. Enjoy coffee, whisky
and red wine.

MESSAGE

Amy Ford
I’m a happy person with
mediocre dance moves.
Originally from San Diego.

MESSAGE

3

7 23 6 -

Cardinality
Layout
Shape
Size
Text
Type

0.78 0.78 0.65
(k = 3) 0

Table 2: Representative examples from our test dataset. For each design, we evaluate the element-wise correspondence and clustering separately.
Please refer to supplementary material for full results.

of the neighborhood to consider. In our implementation, we experi-
mentally determined that p = 1 obtained satisfactory results. That is,
considering only immediate neighbors was enough to predict good
element-wise correspondences. We compare this approach to p = 0,
where we disregard the relationships between the nodes and only
use the node kernels to compute element matches. Table 3 (column
Node Kernels Only) shows the result.

Design Match
Ours
p = 1

Node Kernel Only
p = 0

Uniform ω

p = 1
Greedy
Match

Average 0.95 0.82 0.93 0.93
D1 1.00 0.95 1.00 0.83
D2 1.00 0.76 1.00 1.00
D3 0.94 0.80 0.94 0.97
D4 1.00 0.76 1.00 1.00
D5 0.90 0.78 0.86 0.87
D6 1.00 0.94 0.97 1.00
D7 0.78 0.78 0.78 0.78
Table 3: Ablation experiments for element-wise matching.

In the majority of cases, removing edge kernels and only consid-
ering node kernels produced worse results. This was especially true
for designs that contained many elements that looked alike, with
similar shapes and sizes. For example, in D3, the shorter target green
bars get matched to the source blue bar because they have similar
sizes. Likewise, in D6, each horizontal bar in the target graphics
get matched to the source bar with the closest size, rather than be-
ing matched according to their relative positions. A particularly
bad failure case is shown in Figure 5, D10 (Ours = 1.0 vs Node
Kernel Only = 0.47), where the shadow consists of multiple circle
elements with the same shape and size. In this case, without the
z-order or relative positioning information, it is challenging to get a
correct pair-wise correspondence between these circles. This exper-
iment demonstrates that inter-element relationships are critical for
discerning element-wise correspondences in graphic designs.

Lorem ipsum dolor sit amet, consectetur
incididunt ut labore et dolore magna aliqua.

Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip

ex ea commodo consequat. Duis aute irure
dolor in reprehenderit

in voluptate velit esse cillum dolore
eu fugiat nulla pariatur.

Lorem ipsum dolor sit amet, consectetur
incididunt ut labore et dolore magna aliqua.

Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip

ex ea commodo consequat. Duis aute irure
dolor in reprehenderit

in voluptate velit esse cillum dolore
eu fugiat nulla pariatur.

Lorem ipsum dolor sit amet, consectetur
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis aute irure
dolor in reprehenderit
in voluptate velit esse cillum dolore
eu fugiat nulla pariatur.

VECTOR ILLUSTRATION

(a) D10 (b) D11

Sample text

Sample text

Sample text

Sample text

Sample text

Sample text

Sample text

Sample text

Sample text

Sample text

10
0%

10%

20%

30%

40%50
%

60%

70%

80%

90%

Figure 5: (a) Design with many elements that have a similar appear-
ance. The shadows consist of multiple circle elements with the same
shape and size. Inter-element relationships (e.g., z-order) are critical
for discerning correspondence between such designs. (b) Depending
on the design, some features are more discriminatory than others. In
D11 element type and font style attributes are more powerful features
than relative positioning between the elements.

6.2 Uniform Kernel Weights

In §4.2.4, we describe a method for determining the importance and
thus the weights (ω) of each feature kernel. We evaluate the effective-
ness of these weights by replacing them with uniform weights and
comparing the results. Interestingly, in most cases, kernel weights
did not have a significant impact on the performance. In a few cases,

adaptive weights (ours) produced better matches compared to uni-
form weights. For instance, in D5, all the symbol paths have the
same type (path) so we put a small weight on the type kernel, and
higher weights on other features such as the positions of the paths
relative to each other. This helps to differentiate the subtle difference
between these paths. Adaptive weights are also useful for matching
elements where some features are much more powerful than others.
For example, in Figure 5, D11 (Ours= 0.97 vs. Uniform Weights
= 0.86), the type and font style attributes are much more powerful
than the shape or layout relationship features. Still, for most designs,
there are many features with discriminatory power, and replacing
ωs with a uniform weight produces as good a match as our previous
result.

6.3 Greedy Matching

In §4.2.5, we describe an iterative method by which we first match
confident pairs of nodes, and then use these matches to iteratively
refine the similarity score of other pairs of nodes. We compare this
approach to a greedy algorithm, whereby we simply match each
target node to the source node with the highest similarity score.
Table 3 column Greedy Match shows the result. For some designs,
the greedy method produced as good a match as our iterative method.
However, for other designs (e.g., D1 and D5), the greedy method
performed worse. These were designs where a target element had
several closely similar source elements. For example, in the UI
design shown in D1, the different text elements for the user input
fields are all very similar.. In D5 the symbol paths, as well as the
solid blocks with 4 sides, are all very similar to each other. In these
scenarios, using the more confident matches to refine the similarity
scores helped improve the pair-wise match.

6.4 Clustering using Element Positions

The second stage of our algorithm (§4.3) uses hierarchical clustering
of the target elements to compute target trees. As noted in §4.3.1,
a key insight of our method is that the relationship between two
target elements that belong to the same cluster should be similar
to the relationship between their corresponding source elements.
As a result, we use the graph walk kernel to analyze every pair
of target elements and populate the similarity matrix used by the
clustering procedure. To evaluate the importance of this insight,
we compare our approach to a simpler heuristic that defines the
similarity between every pair of target elements as their Euclidean
distance (i.e., closer means more similar). We approximate element
positions using the bounding box centroids. For both methods, we
provide the ground-truth element-wise correspondences and the
correct number of clusters, k.

Table 4 reports the results of the comparison. Using centroid
distance produces worse clusters, especially when the desired target
clusters are close to each other and arranged in a nonlinear layout
(e.g., D2, D5). Even for designs with relatively simple layouts like D3,
where the target clusters are visually separated from each other, the
difference between the vertical and horizontal spacing coupled with
the tall aspect ratio of some of the elements makes it challenging
to estimate the correct clustering using only element centroids. In
general, users can select an arbitrary arrangement of elements as the
source graphics (not just ones that are geometrically close to each
other). The graph walk kernel distance is better suited to handle these
cases by producing clusters that reflect the original arrangement of
the source graphics, as shown in the synthetic toy example, D8.

7 LIMITATIONS AND FUTURE WORK

User Interface. Our algorithm for computing correspondence trees
supports a variety of interactive edit scenarios for static and ani-
mated graphics, but we have only implemented this functionality
in a prototype interface for transferring animation effects. Future

Design Grouping (De/N)
Ours

Graph Kernel Distance Centroid Distance

Avg 0.02 0.09

D1 0

D2 0.06 0.36

D3 0 0.14

D4 0

D5 0.08 0.12

D6 0

D7 0

D8 0* 0.35

20

2002

60

2004

30

2010

100

2006

70

2008

Table 4: Comparison of distance metrics used for clustering target ele-
ments (Graph Walk Kernel vs Centroid distance). The graph walk ker-
nel distance produces clusters that reflects the original arrangement
of the source graphics. *D8: red outline indicates source graphics,
blue indicates target clusters.

work could address the design and evaluation of appropriate editing
widgets and interactions to use our algorithm effectively.
Edit History. Future work could use the document’s editing history
to inform and refine the matching and clustering operations, poten-
tially providing more accurate results based on the temporal order
of how elements were added or changed. For example, knowing
which elements were copy-pasted or which elements were jointly
modified could provide hints about matching elements. This edit
history usage is possible for both the source and target groups.
Manual Corrections. Using manual user corrections is another
way to improve the algorithm’s performance. When the user fixes
an incorrect match, we could use this ground-truth match as a con-
fident match to recompute the graph walk kernels or to infer better
weights for the kernels. If there are multiple output errors, we could
potentially reduce the number of required manual corrections by
propagating the user’s correction to other matching trees. In general,
since the type and power of discriminatory features varies by design
and user intent, learning from user inputs is an interesting avenue
for future work.
Limitations. Our algorithm is designed to handle many variation
types between the source and target graphics. Still, large stylis-
tic, geometrical, and structural variations tend to produce incorrect
matching and clustering results. Clustering is more prone to error
because of its sensitivity to both the number of clusters, k, and the
match results. We use a simple heuristic to determine the number of
target clusters which works for many cases. This method can also
fail easily when there are extraneous elements on the same canvas.
Messier designs that don’t include enough layer or grouping infor-
mation to cleanly select the source and target graphics challenge
our method. Future work to cleanly segment relevant clusters from
complex designs could greatly extend the practical usage of our
algorithm. Alternatively, users could provide the ground-truth k as
input but this becomes tedious if the desired target tree is deeply
nested and each sub-tree requires a different k value.

8 CONCLUSION

We present an approach to help designers apply consistent edits
across multiple sets of elements. Our method allows users to select
an arbitrary set of source elements, apply the desired edits, and then
automatically transfer the edits to a collection of target elements.
Our algorithm retroactively infers the shared structure between the
source and target elements to find the correspondence between them.
Our approach can be applied to any existing design without manual
annotation or explicit structuring. It is flexible enough to accom-
modate common variations between the source and target graphics.
Finally, it generalizes to different types of editing operations such
as style transfer, layout adjustments, or applying animation effects.
We demonstrate our algorithm on a range of real-world designs and
show how our approach can facilitate editing workflows.

REFERENCES

[1] P. Asente, M. Schuster, and T. Pettit. Dynamic planar map illustration.
ACM Trans. Graph., 26(3):30–es, July 2007.

[2] G. L. Bernstein and W. Li. Lillicon: Using transient widgets to create
scale variations of icons. ACM Transactions on Graphics (TOG),
34(4):1–11, 2015.

[3] D. Edge, S. Gulwani, N. Milic-Frayling, M. Raza, R. Adhitya Saputra,
C. Wang, and K. Yatani. Mixed-initiative approaches to global editing
in slideware. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, CHI ’15, pages 3503–3512,
New York, NY, USA, 2015. ACM.

[4] M. Fisher, M. Savva, and P. Hanrahan. Characterizing structural re-
lationships in scenes using graph kernels. In ACM transactions on
graphics (TOG), volume 30, page 34. ACM, 2011.

[5] P. Guerrero, G. Bernstein, W. Li, and N. J. Mitra. PATEX: Exploring
pattern variations. ACM Trans. Graph., 35(4):48:1–48:13, 2016.

[6] Z. Harchaoui and F. Bach. Image classification with segmentation
graph kernels. In 2007 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8. IEEE, 2007.

[7] R. Hoarau and S. Conversy. Augmenting the scope of interactions
with implicit and explicit graphical structures. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’12, page 1937–1946, New York, NY, USA, 2012. Association for
Computing Machinery.

[8] http://www.figma.com. Figma, 2020 (accessed Dec 19, 2020).
[9] R. Kumar, J. O. Talton, S. Ahmad, and S. R. Klemmer. Bricolage:

Example-based retargeting for web design. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’11, page 2197–2206, New York, NY, USA, 2011. Association for
Computing Machinery.

[10] D. Kurlander. Graphical editing by example in chimera. Watch What I
Do: Programming by Demonstration, Cypher, A.(ed.), pages 270–290,
1993.

[11] T. F. Liu, M. Craft, J. Situ, E. Yumer, R. Mech, and R. Kumar. Learning
design semantics for mobile apps. In Proceedings of the 31st Annual
ACM Symposium on User Interface Software and Technology, pages
569–579, 2018.

[12] Z. Lun, C. Zou, H. Huang, E. Kalogerakis, P. Tan, M.-P. Cani, and
H. Zhang. Learning to group discrete graphical patterns. ACM Trans-
actions on Graphics (TOG), 36(6):225, 2017.

[13] P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Extensions
of marginalized graph kernels. In Proceedings of the twenty-first
international conference on Machine learning, page 70, 2004.

[14] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Informa-
tion Retrieval. Cambridge University Press, USA, 2008.

[15] L. Nan, A. Sharf, K. Xie, T.-T. Wong, O. Deussen, D. Cohen-Or, and
B. Chen. Conjoining gestalt rules for abstraction of architectural
drawings, volume 30. ACM, 2011.

[16] G. Nikolentzos, P. Meladianos, F. Rousseau, Y. Stavrakas, and M. Vazir-
giannis. Shortest-path graph kernels for document similarity. In Pro-
ceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 1890–1900, 2017.

[17] J. Shawe-Taylor, N. Cristianini, et al. Kernel methods for pattern
analysis. Cambridge university press, 2004.

[18] O. Št’ava, B. Beneš, R. Měch, D. G. Aliaga, and P. Krištof. Inverse pro-
cedural modeling by automatic generation of l-systems. In Computer
Graphics Forum, volume 29, pages 665–674. Wiley Online Library,
2010.

[19] S. L. Su, S. Paris, and F. Durand. Quickselect: History-based selection
expansion. In Proceedings of the 35th Graphics Interface Conference,
pages 215–221, 2009.

[20] R. Szeliski et al. Image alignment and stitching: A tutorial. Foundations
and Trends® in Computer Graphics and Vision, 2(1):1–104, 2007.

[21] J. Talton, L. Yang, R. Kumar, M. Lim, N. Goodman, and R. Měch.
Learning design patterns with bayesian grammar induction. In Proceed-
ings of the 25th Annual ACM Symposium on User Interface Software
and Technology, UIST ’12, page 63–74, New York, NY, USA, 2012.
Association for Computing Machinery.

[22] O. Van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or. A survey
on shape correspondence. In Computer Graphics Forum, volume 30,
pages 1681–1707. Wiley Online Library, 2011.

[23] K. Wang, Y.-A. Lin, B. Weissmann, M. Savva, A. X. Chang, and
D. Ritchie. Planit: planning and instantiating indoor scenes with rela-
tion graph and spatial prior networks. ACM Transactions on Graphics
(TOG), 38(4):132, 2019.

[24] F. Wu, D.-M. Yan, W. Dong, X. Zhang, and P. Wonka. Inverse pro-
cedural modeling of facade layouts. arXiv preprint arXiv:1308.0419,
2013.

[25] H. Xia, B. Araujo, and D. Wigdor. Collection objects: Enabling fluid
formation and manipulation of aggregate selections. In Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems,
CHI ’17, page 5592–5604, New York, NY, USA, 2017. Association for
Computing Machinery.

[26] P. Xu, H. Fu, C.-L. Tai, and T. Igarashi. GACA: Group-aware command-
based arrangement of graphic elements. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems,

pages 2787–2795. ACM, 2015.

	Introduction
	Related Work
	Overview
	Algorithm
	Relationship Graphs
	Computing Element-wise Correspondence
	Node Kernel
	Edge Kernel
	Graph Walk Kernel
	Kernel Weights
	Element-wise Correspondence

	Computing Ordered Target Trees
	Hierarchical Clustering
	Ordering

	Results
	Ablation Experiments
	Removing Edge Kernels
	Uniform Kernel Weights
	Greedy Matching
	Clustering using Element Positions

	Limitations and Future Work
	Conclusion

