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Figure 1: We use a deep learning based approach to predict whether a selected element in a mobile UI screenshot will be 
perceived by users as tappable, based on pixels only instead of view hierarchies required by previous work. To help designers 
better understand model predictions and to provide more actionable design feedback than predictions alone, we additionally 
use ML interpretability techniques to help explain the output of our model. We use XRAI to highlight areas in the input 
screenshot that most strongly infuence the tappability prediction for the selected region, and use k-Nearest Neighbors to 
present the most similar mobile UIs from the dataset with opposing infuences on tappability perception. 

ABSTRACT 
UI designers often correct false afordances and improve the dis-
coverability of features when users have trouble determining if 
elements are tappable. We contribute a novel system that models 
the perceived tappability of mobile UI elements with a vision-based 
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deep neural network and helps provide design insights with dataset-
level and instance-level explanations of model predictions. Our 
system retrieves designs from similar mobile UI examples from our 
dataset using the latent space of our model. We also contribute 
a novel use of an interpretability algorithm, XRAI, to generate a 
heatmap of UI elements that contribute to a given tappability predic-
tion. Through several examples, we show how our system can help 
automate elements of UI usability analysis and provide insights for 
designers to iterate their designs. In addition, we share fndings 
from an exploratory evaluation with professional designers to learn 
how AI-based tools can aid UI design and evaluation for tappability 
issues. 
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1 INTRODUCTION 
Tapping is a fundamental gesture in mobile User Interfaces (UIs). 
However, because of the highly varied styles of mobile UIs, users 
can have difculty telling if UI elements are tappable [37]. This 
harms the usability of applications, e.g., when false afordances 
suggest an item is tappable when it is not; or when the design of a 
new feature limits its discoverability. 

UI designers and User Experience (UX) researchers traditionally 
run user studies to evaluate the usability of their designs. While 
these studies can provide actionable feedback and lead to signif-
icant design insights, they are often costly and time-consuming 
to conduct. Recent works have applied Deep Learning (DL) tech-
niques to predict whether users will correctly estimate if mobile 
UI elements are tappable [37] and predict user engagement with 
mobile UI animations [42]. These automated approaches can help 
designers gain quick insights into the usability of their applications, 
but lack the design guidance and explanations that can be gained 
from controlled user studies. In addition, many automated tools 
rely on a functional mobile application or UIs with detailed specif-
cations, such as view hierarchies, meaning that they may not be 
able to produce usable results on mockups. Yet, gaining feedback 
in the early stages of design is crucial. 

The goal of this work is to produce a model that faithfully approx-
imates the perception of real users for rapid, automated tappability 
evaluations, and a system which provides explanations of its pre-
dictions that ofer insight for improving designs. To gain a basis 
for understanding tappability perception at scale, we create a new 
dataset of crowdworkers’ estimates of the tappability of UI elements 
in thousands of mobile UI screenshots from the RICO dataset [11]. 
As shown in previous work [37], human perceptions of tappability 
can vary signifcantly. To account for this, our new dataset includes 
5 crowdworkers’ labels for each UI element, by which we can more 
reliably estimate user perceptions at scale. We use this dataset 
to train a purely vision-based deep neural network that, given a 
screenshot and a selected region of interest, predicts the perceived 
tappability of the selected UI element. This allows designers to 
rapidly assess how users may perceive elements of a mobile UI 
design, whether or not it is implemented in an application. 

We take an important step further beyond tappability predic-
tion by drawing upon techniques in Machine Learning (ML) inter-
pretability and Explainable Artifcial Intelligence (XAI) to explain 

our model’s predictions in two ways [34]. We provide a local expla-
nation which highlights regions in the input screenshot, indicating 
areas the model considers most important to the tappability predic-
tion for a given element. We provide a global explanation which uses 
the latent space of our model to fnd contrasting nearest-neighbor 
examples in our source dataset, allowing users to discover patterns 
in visually similar UIs that have opposing infuences on tappability 
perception. To evaluate our model and its explanation outputs, we 
share an in-depth analysis of the behavior of our model using ran-
dom examples from our source dataset, and conduct an exploratory 
evaluation to seek feedback from professional UI/UX designers. 

Specifcally, this paper contributes: 
• A new dataset collecting tappability labels from multiple 
crowdworkers per example on thousands of mobile applica-
tion screenshots1. This extends previous work [37] to better 
address human uncertainty in tappability perception; 

• A vision-based deep neural network that predicts the per-
ceived tappability of selected UI element(s) in a mobile UI 
screenshot by only relying on pixels. Our model is capable of 
examining UI designs that are not fully specifed (e.g., mock-
ups). This signifcantly extends prior work since it enables 
a broader set of applications, e.g., to produce feedback for 
early-stage designs; 

• A novel method for eliciting explanations of tappability pre-
dictions from our model by annotating the screen under in-
spection, and by surfacing similar examples from the dataset 
that have opposing infuences on tappability perception; 

• An in-depth analysis of model behavior on randomly selected 
examples from an evaluation dataset, and an exploratory 
evaluation with 13 professional UI/UX designers, from which 
we distill initial insights into how an AI-based tool can assist 
designers. 

2 RELATED WORK 
Our work builds on three primary areas: automated tools which 
assist UI designers in exploring and evaluating UIs; automated tools 
which assist in evaluating the usability of UIs; and algorithms and 
methods for interpreting the predictions of deep neural networks. 

2.1 Data-Driven UI Design and Exploration 
The HCI community has produced many research artifacts that 
help designers create UIs through the collection and use of large-
scale UI datasets [27]. Datasets such as ERICA [13] and RICO [11] 
have enabled the creation of numerous data-driven systems in this 
domain. While the vast size of RICO has made it attractive for 
data-driven applications in research, it is known to have signifcant 
label noise [26]. Many works add annotations to RICO or take 
additional cleaning steps, e.g., ENRICO, which organizes RICO into 
design topics [24], and RICOclean which relabels icon elements 
in the original dataset [44]. Our work contributes a dataset that 
augments a cleaned subset of RICO with annotations from multiple 
crowdworkers predicting the tappability of various UI elements. 

Designers beneft from viewing selections of varied UI design 
examples to serve as inspiration in the design process [38]. Gallery 

1We release our dataset publicly at https://github.com/google-research/google-
research/tree/master/taperception. 

https://doi.org/10.1145/3491102.3517497
https://github.com/google-research/google-research/tree/master/taperception
https://github.com/google-research/google-research/tree/master/taperception


Predicting and Explaining Mobile UI Tappability with Vision Modeling and Saliency Analysis CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA 

DC uses a neural network to tag elements in mobile UI screen-
shots, presenting them in a gallery to help designers explore a 
large set of UI element examples [7]. Other works help designers 
retrieve examples from datasets like RICO, e.g., from hand-drawn 
sketches [20], low-fdelity wireframes [9], and text-annotated lay-
out information [2, 18, 25]. We also use the latent space of a deep 
neural network for UI retrieval. However, our model is trained on 
the perception of human raters, rather than to reconstruct UI lay-
outs. This means that retrieved examples are similar in how they are 
perceived by humans to be tappable, rather than in visual similarity 
alone. In addition, our model uses the raw pixels of a mobile UI 
as input, allowing it to capture more detailed visual features than 
layouts. 

2.2 Computationally Mediated UI Evaluation 
Because of the cost and time involved in running controlled user 
studies, many systems have emerged which use heuristics, data-
driven techniques, or crowdsourcing to evaluate UIs more rapidly. 
An early example is CogTool, which predicts task completion time 
for skilled users [3]. Other tools detect underlying usability hurdles 
by analyzing UI layouts to fnd rendering errors [8], or by using 
crowdsourcing to fnd issues in interaction traces [12]. 

Other approaches detect usability issues by modeling visual 
perception and highlighting mismatches with designers’ expecta-
tions [23]. Deep neural networks have been used to create attention 
maps of visual designs [4, 14]. Our work is most similar to Tap-
Shoe, which uses a deep neural network to model users’ tappability 
perceptions of mobile UI elements [37]. We extend this work by 
introducing a purely vision-based neural network, which enables 
several new applications due to its ability to run on mockups as well 
as functional applications. In addition, a key limitation of many 
automated evaluation tools is that designers must rely on their 
own judgment to decide how to modify their designs to improve 
evaluation results. Our work takes a signifcant step beyond prior 
work by using ML interpretability techniques to give designers 
more actionable information than predictions alone. Specifcally, 
our system highlights the regions that infuence our model’s tappa-
bility predictions, and it retrieves relevant, contrasting UI examples 
for design inspiration. 

2.3 Interpreting and Explaining Deep Neural 
Network Predictions 

Deep neural networks are considered “black box” models since they 
often have too many parameters to be easily understood, and are not 
considered to be inherently interpretable [28]. Emergent work in 
the ML community has produced several algorithms and techniques 
that can help highlight the particular inputs to a neural network 
that infuence its predictions. Some methods use backpropagation 
to attribute pixels in an input image [36], use the convolutional fea-
tures of vision models [35], or aggregate and merge highly salient 
pixels into regions [21]. Other methods approximate a more in-
terpretable, linear model to annotate what input features are near 
decision boundaries [32], or combinatorially perturb the input to 
determine which of its features are most infuential [30]. We modify 
the XRAI algorithm [21] to attribute input features which infuence 
our model’s tappability predictions. 

Figure 2: The type distribution for the 18,667 labeled UI el-
ements. Blue and white splits show the proportion of leaf 
and inner elements in the view hierarchy. 

Other methods use the training dataset to provide external con-
text that can help explain model predictions. A well-known example 
is to use concept vectors, which can detect the presence of learned 
“concepts” (e.g., “stripes”, “wheels”, or “clouds” in images) in a model 
prediction [22], or identify important features across a dataset [16]. 
In our work, we use the latent space of our model to retrieve simi-
lar examples from our dataset, a known technique for describing 
model predictions by using other examples [31]. We split retrieved 
UIs into contrasting examples [5] by their tappability prediction. 
This exposes designers to similar UI elements with difering ef-
fects on perception, a technique based on the variation theory of 
learning [10]. 

3 CROWDSOURCING PERCEIVED 
TAPPABILITY FROM SCREENSHOTS 

Similar to [37], we perform a tappability study on a large set of 
UI elements in Android mobile app screens. The raters are given a 
screenshot from the screen set with one of the elements highlighted, 
and indicate whether the UI element is tappable or not. Each UI 
element is labeled by 5 diferent raters. Each worker completed up 
to 90 UI elements, with a median of 30. 

We collect 18667 unique UI elements from 3218 screens from the 
RICO dataset [11]. In the view hierarchy of each screen, we select 
up to fve unique clickable and non-clickable elements for labeling. 
Similar to [44], we asked crowdworkers to discard examples whose 
bounding boxes were not aligned with underlying UI elements. 
The same flter rules are applied as [37]: we (1) choose top-level 
clickable elements starting from leaves and, (2) avoid choosing the 
children of already-chosen non-clickable elements. 

There are 24 diferent types of collected elements, 77% of which 
are leaves in their corresponding view hierarchy trees (Figure 2). 
By analyzing the labels and the screens, we notice that some UI ele-
ments are labeled with high agreement, but others are not (Table 1). 
For 44.4% of UI elements, 5 raters agreed unanimously. However, 
24.1% of UI elements were ambiguous to raters, i.e., at most 3 agreed 
on a label. Nonetheless, as each element is inspected by multiple 
raters, our dataset has more precise labels about human tappability 
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Table 1: Agreement of tappability for the 18,667 labeled UI 
elements. 

# of workers for agreement # of UI elements ratio 

3-agreement 4508 24.1% 
4-agreement 5872 31.5% 
5-agreement 8287 44.4% 

perception than prior work, which is desirable for machine learning 
tasks and data analysis. Our dataset also reveals UI elements that 
are indeed ambiguous, for future analysis. For model training in 
this work, we randomly split the dataset into 80% of the UI elements 
for training, 10% for validation to tune hyperparameters, and 10% 
for testing. We release our dataset publicly on github: https://github. 
com/google-research/google-research/tree/master/taperception. 

4 MODELING PERCEIVED TAPPABILITY 
FROM IMAGES 

Since the applications in our dataset use many UI frameworks and 
design styles, the patterns persistent in this data can be generalized 
to predict the tappability of elements in many kinds of mobile UIs. 
In this section, we describe how we use our dataset to train a Con-
volutional Neural Network (CNN) model for tappability prediction. 
The problem statement for our model is: given an input screenshot 
and region of interest (a rectangular area within the input screen-
shot), predict whether or not users will perceive the indicated UI 
element as tappable or not tappable. 

Our CNN model is purely vision-based, which signifcantly dif-
fers from prior work in tappability prediction [37], and provides 
several advantages. While earlier tappability prediction models 
required multiple feature types as input (e.g., a screenshot and a se-
lected element’s Android View type, text content, and its intended 
tappability), our model only uses screenshot pixels as input. This 
signifcantly broadens the set of applications our model may be 
used for, such as UIs that are not fully-specifed. For example, de-
signers may be able to use our model to evaluate iterations in earlier 
design stages since it can operate on visually realistic mockups. 
However, since our model does not directly capture text, element 
type, or intended clickability information from input UIs, the model 
from Swearngin et al. [37] may have advantages in contexts where 
non-visual signifers (e.g., text content) are used by designers to 
explicitly indicate tappability. Since our vision-based model does 
not rely on platform-specifc inputs (i.e., element types), it can be 
fne-tuned for platform-agnostic applications. This also makes it 
easier to adapt our model to other domains in future work, such as 
emergent datasets of iOS applications [41], or other downstream 
tasks, e.g., predicting accessibility barriers [45]. 

Our model’s inputs are specifed as follows. Let I ∈ Rh×w×3 

denote the pixel values of a UI screenshot, where h and w are the 
screen height and width, and 3 is the number of channels (i.e., 
RGB). Let (xmin ,ymin ) and (xmax ,ymax ) denote the top-left and 
bottom-right corner coordinates of a target UI element bounding 
box respectively. 

A naive implementation of using CNNs for learning tappability 
is to crop the target element’s pixels from I and feed them to a 

CNN. However, this discards important contextual information in 
the screen, making it difcult to learn an efective model. Instead, 
we feed the entire RGB screenshot to the model along an additional 
mask channel in the input. For a given element, we frst create 
a binary mask M ∈ {0, 1}h×w , using i and j as row and column 
indices, respectively: (

1, if ymin <= i < ymax and xmin <= j < xmax 
Mi j = 

0, otherwise 

In other words, the entries corresponding to the target element’s 
pixels are 1’s and the others are 0’s in the binary mask. We then 
concatenate I and M along the channel dimension to form the input 

′to the model: I = [I , M] of shape [h, w, 4]. To the model, I provides 
pixel information of the whole screen, while M indicates the screen 
area for which the model should predict tappability (Figure 1). 

Specifcally, our model is a Resnet-18 [17], modifed to accept a 
larger input image with a dimension of 960 by 540 (to accommodate 
mobile UI screenshots) along with the corresponding binary mask. 
The model outputs softmax probabilities for two classes: tappable, or 
not tappable. We train our model on the training set by minimizing 
cross-entropy loss, using Stochastic Gradient Descent with Nesterov 
momentum, with a learning rate of 0.05 and a batch size of 1024, for 
1500 epochs. Our learning rate decayed by an order of magnitude 
(dividing by 10), after epochs 100, 500, 1000, and 1300. We evaluated 
how well our model predicted user perceptions of the tappability 
of UI elements with our test set. Our model achieved a precision of 
91.54% and recall of 80.23% with a decision threshold of 50%, and 
AUC of 0.9030. 

To compare the performance of our model to previous work in 
tappability prediction, we replicated the model from Swearngin et 
al. [37] and benchmarked this model on our new dataset in two 
separate confgurations: by using all of its input features (screenshot 
pixels, region pixels, component text, component type, and intended 
tappability), and by using pixels only (from the screenshot and 
region). Our model, which only uses pixels, clearly outperforms 
the replicated model [37] when it only runs on pixels. When the 
replicated model uses all input features, including those from the 
view hierarchy, on our dataset, our model achieves better AUC and 
similar precision, but has slightly lower recall when using a 0.5 
decision boundary (Table 2). The slightly lower recall of our model 
is likely due to the distribution of tappable elements in our dataset, 
which can be addressed by fne-tuning the decision threshold. 

5 EXPLAINING TAPPABILITY PREDICTIONS 
Our neural network can be used to model users’ perceptions of 
tappability for a broad variety of mobile UI elements. However, 
the predictions of models like ours are limited in the sense that 
designers must rely on their own judgment to determine what 
visual cues were responsible for the prediction, and, if needed, how 
the design must be modifed to improve its perception (Figure 3). 
We draw upon techniques from XAI and ML interpretability to 
provide deeper explanations of our model’s predictions, both in 
the context of the input itself, as well as examples the model has 
learned from. We implement two types of explanations: at the local 
level, to suggest which elements in the input screenshot were most 
infuential, or “salient”, to a given prediction, and at the global level, 

https://github.com/google-research/google-research/tree/master/taperception
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Table 2: Tappability prediction model performance on our new dataset. Our model, which only uses pixels, clearly outper-
forms [37] when only run on pixels. It has slightly higher AUC, similar precision, and slightly lower recall compared to the 
all-features replicated model. 

Model AUC Precision (%) Recall (%) 

Ours (pixels only) 0.9030 91.54 80.23 
Swearngin et al. [37]; pixels + all other features 0.8437 91.65 84.53 
Swearngin et al. [37]; pixels only 0.6521 76.79 80.79 

Figure 3: The input to our model as a running example 
to this section, a randomly selected screenshot from our 
dataset. The element of interest is indicated as a magenta 
dashed rectangle. Our model predicts the element is tap-
pable with a probability of 57.85%. 

to show how other applications with similar design patterns can 
infuence tappability perception positively and negatively. 

5.1 Attributing Tappable UI Elements with 
Saliency Techniques 

To provide a local explanation of the model’s predictions, we use the 
XRAI algorithm [21], a gradient-based algorithm which produces 
a heatmap highlighting what regions of an input image were the 
most infuential to a given model output, also known as a saliency 
map (Figure 4). Importantly, while the output of saliency algorithms 
like XRAI are correlative, and cannot explain the causal reasons 
behind model predictions, they are often useful for gaining a better 
understanding of model behavior in many applications [1]. In our 
use case, we use XRAI to generate a heatmap of the UI components 
in a mobile app screenshot that most strongly infuence the tappa-
bility prediction for a particular element. XRAI calculations and 
heatmaps are particular to the specifed UI element in a tappability 
prediction, since predictions for diferent UI elements can depend 
on their particular context and relationship to other UI elements. 
Designers can use the XRAI heatmap to see when the perceived 
tappability of a particular element is heavily infuenced by other 

Figure 4: Left: The same input screenshot as in Figure 3 
with a selected element in a magenta dashed rectangle. Cen-
ter: the heatmap generated by XRAI, using regions from 
UI elements. The regions which most strongly infuence 
the selected element’s tappability prediction are rendered 
in red, while the least infuential regions are rendered in 
blue. Some text is extremely highly attributed (an anom-
aly). Right: the input screenshot fltered by the values of the 
saliency heatmap. The elements most important to the tap-
pability prediction are the brightest. 

Figure 5: Center: the same XRAI calculation as in Figure 4, 
but without using provided regions from the UI element 
bounding boxes. Regions are generated using Felzenszwalb 
segmentation. 

regions on the screen, e.g., how introducing a new component 
changes the perception of surrounding elements. 

The XRAI algorithm works by frst oversampling the input im-
age into overlapping superpixels of diferent sizes. Next, Integrated 
Gradients, a pixel-based attribution method [36], is calculated on 
the input image from black and white baselines. These pixel-level 
attributions are then aggregated by summing over segments, rank-
ing segments from most to least important, and merging them 
up to a selected threshold. We make one key modifcation to the 
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XRAI technique. Rather than oversample the image using Felzen-
szwalb segmentation, we use the native bounding boxes of mobile 
UI elements if they are available or can be specifed. This means 
we can directly summarize model attributions for regions corre-
sponding to mobile UI widgets, reducing the noise from automated 
segmentation methods (Figure 5). 

5.2 Explaining Predictions with Similar 
Contrasting Examples 

Our global explanation method situates the given prediction in the 
context of retrieved examples from our mobile UI dataset. We use 
nearest neighbors on embeddings from our model to fnd exam-
ples the model considers similar. The model’s embeddings capture 
visual similarity, and the rough position and size of the input bound-
ing box (see section 6). These nearest neighbors are then split by 
the model’s tappability prediction, creating a contrasting explana-
tion [5]—a visualization of a set of UIs that have similar designs to 
the input, but opposing infuences on the perception of tappability. 
This acts as a set of curated examples for design inspiration to help 
designers make changes that afect users’ tappability perceptions 
of UI elements (Figure 6). 

To capture embeddings from our neural network, we take the 
output from its fnal convolutional layer and fatten it into a 512-
dimensional vector. We precompute embeddings for every mobile 
UI example in our source dataset, and split them into two sepa-
rate indexed arrays of predicted tappable and nontappable exam-
ples. To flter out potentially confusing or ambiguous examples, 
we limit these lists to examples which have >65% and <35% tap-
pability probabilities, per our model’s predictions. In practice, we 
found that splitting based on model predictions produces more 
consistent results than ground-truth human labels. We use the 
NearestNeighbors learner from the sklearn Python package to 
search for the 5 nearest neighbors from each list (showing 10 ex-
amples total), to embeddings from an input image. 

6 ANALYSIS OF SELECTED EXAMPLES 
In this section, we sample real-world screenshots from our dataset 
to show how our model performs and what our explanations cap-
ture. We randomly select four elements from our dataset that have 
associated regions corresponding to common Android UI leaf ele-
ments: ImageView, Button, TextView, and EditText. For each of 
these inputs, we show the output of our model and explanation 
methods, and describe what could be inferred about the behavior of 
our model. In section 8, we summarize trends apparent in our model 
across examples and discuss their implications and opportunities 
for future work. 

6.1 ImageView: Food App Header Logo 
This randomly-selected UI and element is a screenshot from a food 
application, presenting a complex login view with many clickable 

Tappable Not Tappable
71.06%; 5/5 marked tappable 29.64%; 3/5 marked tappable

76.27%; 4/5 marked tappable 31.56%; 4/5 marked tappable

74.78%; 5/5 marked tappable 29.59%; 5/5 marked tappable

82.16%; 5/5 marked tappable 33.87%; 5/5 marked tappable

78.09%; 3/5 marked tappable 34.88%; 1/5 marked tappable

buttons and graphics. The selected region paired with this UI screen-
shot is a logo placed above the login form. The model predicts this Figure 6: Nearest neighbors to the input screenshot from Fig-
element is not tappable, with a 10.01% tap probability. ure 3, split by tappability predictions. Examples the model 

The XRAI heatmap strongly attributes the input element as im- predicts as tappable are on the left, with non-tappable ex-
portant to its tappability prediction, and does not factor other ele- amples on the right. Examples contain an entire screen-
ments in the screen much. It is possible that, since the input element shot with a specifed region, and the region in a larger view. 

Columns are sorted by distance to the original input in the 
model’s latent space (most similar on top). 
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Figure 7: Example from subsection 6.1. Left: input screen-
shot with a ImageView element selected, annotated with a 
magenta dashed rectangle. Center Left: Close-up view of 
the selected UI element. The model predicts it is not tap-
pable, with a 10.01% tappability probability. Center Right: 
The XRAI heatmap most strongly illuminates the selected 
element, and does factor in other elements signifcantly. 
Right: the input screenshot fltered by the values of the 
saliency heatmap. 

is a graphic, the model does not consider surrounding elements a 
signifcant factor. Combined with the relatively high model conf-
dence, we can assume that properties of the input element itself (its 
appearance or position) strongly signify non-tappability on their 
own. This means that making signifcant changes to other elements 
on the screen would likely not impact the perceived tappability of 
this element. 

Most nearest neighbors of the food app also contain graphical 
elements and icons, with the exception of large text objects that 
have similar locations and sizes on the screen as the input (Figure 8). 
The non tappable elements are generally larger, and closer to the 
center of the screen, matching the style of the input. Tappable 
elements tend to be icons commonly associated with actions, e.g., a 
shopping cart and an “X” to close a dialog. 

6.2 Button: Health App Card Button 
This element is a screenshot from a health application, presenting 
a complex view with a card, image, and list. The selected region 
paired with this UI screenshot is a “Dismiss” button within a card. 
The model predicts this element is tappable, with a 99.07% tap 
probability (Figure 9). 

Similar to the ImageView example, the XRAI heatmap most 
strongly illuminates the input element itself. This is likely because 
the model has learned to associate Material Design buttons with 
a strong perception of tappability, and does not need to reference 
much context to establish a confdent prediction. The attributed 
text in the screen’s title card (“Learn”) may suggest the model’s 
attention to a common Material UI standard. 

Tappable neighbors are entirely buttons and tabs with over-

Tappable Not Tappable
67.15%; 5/5 marked tappable 9.39%; 1/5 marked tappable

69.44%; 4/5 marked tappable 19.13%; 0/5 marked tappable

67.89%; 5/5 marked tappable 6.67%; 1/5 marked tappable

65.10%; 5/5 marked tappable 18.71%; 4/5 marked tappable

66.72%; 5/5 marked tappable 15.73%; 2/5 marked tappable

laid text and high tappability scores. Non-tappable neighbors are 
more mixed, including descriptive text, icons, and even images. The Figure 8: Nearest neighbors from subsection 6.1, split by 
predictions for several non-tappable examples disagree with the thresholded model predictions (tappable neighbors on the 
underlying raters’ labels (Figure 10). The noise in the non-tappable left). Many neighbors (both tappable and not) are graphical 
examples could be a limitation of discretizing the neighbors by (icons and drawings). Tappable elements tend to be smaller, 
tappability prediction, an efect discussed further in subsection 8.3. and situated near the edges of other elements. Non tappable 

elements are generally larger, and closer to the center of the 
screen. 
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Figure 9: Example from subsection 6.2. Left: input screen-
shot with a Button element selected, annotated with a ma-
genta dashed rectangle. Center Left: Close-up view of the se-
lected UI element. The model predicts it is tappable, with 
a 99.07% tappability probability. Center Right: The XRAI 
heatmap most strongly illuminates the input element itself. 
This is likely because the model has learned to associate Ma-
terial Design buttons with perceptions of tappability, and 
does not need to reference much context to establish a con-
fdent prediction. Right: the input screenshot fltered by the 
values of the saliency heatmap. 

6.3 TextView: Finance App List Item 
This example is a screenshot from a fnance app, with a view present-
ing a chart and pricing details of a stock (Figure 11). The selected 
region paired with this UI screenshot is a text feld displaying a 
bid price. The model predicts this element is not tappable, with a 
36.38% tap probability. 

The XRAI heatmap strongly illuminates the region itself, while 
also strongly highlighting text in tab navigation and an icon adja-
cent to a nearby text view. Although the input region is generally 
expected to be the most important element for its own prediction, 
one element of tab text is highly attributed, an anomaly. This may 
be due to variances in TextView tappability when below naviga-
tion tabs. It is also worth noting that surrounding text views are 
lightly attributed as well, suggesting the model has factored some 
surrounding context into the input element’s prediction. 

All nearest neighbors of this input screenshot share strong vi-
sual similarities with the input (text on a light background), but 
appear in diferent contexts (Figure 12). Many tappable elements 
have icons or graphics nearby, which possibly serve as signifers of 
the tappabillity of the adjacent text. Non tappable elements have 
brighter text, and are often placed as descriptions next to tappable 
elements. It is worth noting that many tappable elements are also 
ListViews, 2 of which have similar color schemes, indicating the 
model is factoring multiple contextual elements within the input 
example besides the region itself. 

6.4 EditText: Entertainment App Login Field 
This element is a screenshot from an entertainment application, a 

Tappable Not Tappable
99.03%; 5/5 marked tappable 34.32%; 2/5 marked tappable

99.03%; 5/5 marked tappable 31.90%; 4/5 marked tappable

99.20%; 5/5 marked tappable 34.13%; 3/5 marked tappable

99.19%; 5/5 marked tappable 28.24%; 4/5 marked tappable

99.39%; 5/5 marked tappable 31.16%; 5/5 marked tappable

simple login view. The selected region paired with this UI screen-
shot is a “Password” text feld. The model predicts this element is Figure 10: Nearest neighbors for subsection 6.2, split by 
tappable, with a 99.47% tap probability (Figure 9). thresholded model predictions (tappable neighbors on the 

Like previous examples, the XRAI heatmap strongly attributes left). While many tappable elements contain similarly-
the selected EditText view, and does not attribute other elements styled buttons from other apps, the non-tappable elements 
on the screen. Similar to the Button example, it is possible that the display highly varied elements, with and without text. A po-

tential cause of this is that most elements near the input but-
ton in latent space are other buttons; and the nearest non-
tappable examples are signifcantly further away, so they 
are not as visually similar. 
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Figure 11: Example from subsection 6.3. Left: input screen-
shot with a TextView element selected, annotated with a 
magenta dashed rectangle. Center Left: Close-up view of 
the selected UI element. The model predicts it is not tap-
pable, with a 36.38% tappability probability. Center Right: 
The XRAI heatmap strongly illuminates the text view region 
itself, while also strongly highlighting text in tab navigation 
and an icon adjacent to a nearby text view. Right: the input 
screenshot fltered by the values of the saliency heatmap. 

model has learned an association between the Material UI EditText 
component and strong perceptions of tappability. 

The image in this view does not appear to be attributed difer-
ently from the entire login card. While it is likely that the model 
determined the image is not a signifer of tappability, it could also 
be, in part, due to these two being the same actual element in 
the source UI view hierarchy. Our use of XRAI is limited by the 
bounding boxes provided from the source UI view structure—large 
objects in UIs may cause XRAI to aggregate too much detail from 
pixel attributions beneath. In practice, this may not be a signifcant 
limitation, since many large UI objects inherit a single tappability 
attribute. 

Like the TextView example, the tappable neighbors are all visu-
ally similar, with text over a light-colored background, comprising 
buttons and text felds. Non tappable neighbors are, similarly, text 
elements in diferent contexts: descriptions of nearby objects, in-
structions, or hyperlinks. Of note, the third non-tappable neighbor 
is also a EditText element. A probable distinguishing feature of 
this element is that the text is dark (not grayed), and thus the model 
could be confusing this element for a text description (Figure 14). 

7 EXPLORATORY EVALUATION WITH 
PROFESSIONAL DESIGNERS 

To better understand how our model and its explanation outputs can 
be used in design practice, we conducted an exploratory evaluation 
with professional UI/UX designers, and analyzed the successes and 
drawbacks of our approach. 

7.1 Participants & Study Design 
We recruited 14 participants at a large technology company. We ex-
cluded one participant’s results from analysis because they did not 
submit any written feedback. These participants were from multiple 
teams and had an average 11 years (standard dev. 7.5 years) of pro-
fessional UI/UX design experience. To capture a variety of scenarios, 
we randomly selected six UI examples (mobile app screenshots with 
a preselected UI element) from our dataset for review. Input UIs 
and predictions are shown in Figure 15, outputs from explanation 

Tappable Not Tappable
72.73%; 5/5 marked tappable 27.05%; 0/5 marked tappable

68.88%; 5/5 marked tappable 31.57%; 1/5 marked tappable

66.50%; 5/5 marked tappable 17.11%; 3/5 marked tappable

76.04%; 5/5 marked tappable 30.51%; 4/5 marked tappable

70.75%; 4/5 marked tappable 23.54%; 2/5 marked tappable

Figure 12: Nearest neighbors from subsection 6.3, split by 
thresholded model predictions (tappable neighbors on the 
left). Tappable elements are similar to the input, in that most 
contain stacked text elements (two with a green header bar). 
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Figure 13: Example from subsection 6.4. Left: input screen-
shot with a EditText element selected, annotated with a ma-
genta dashed rectangle. Center Left: Close-up view of the se-
lected UI element. The model predicts it is tappable, with 
a 99.47% tappability probability. Center Right: The XRAI 
heatmap strongly attributes the EditText view, and does 
not attribute other elements on the screen. Right: the input 
screenshot fltered by the values of the saliency heatmap. 

algorithms are shown in Appendix A. Examples counterbalanced 
prediction (tappable/non tappable), prediction confdence (high: 
> 0.85; low: < 0.15), and rater (worker) agreement (high: 5-rater 
agreement; low: split 2-3 in either direction). We selected the tap-
pable/high confdence/high agreement example for use in onboard-
ing. Tappability labels from raters associated with the examples 
were not shown to participants. Our study plan was reviewed by 
our company’s legal and privacy boards, and participants were 
required to give informed consent before trials. 

During each session, we frst described our model and its ex-
planation outputs using the onboarding example. Then, the fve 
remaining examples were shown in a randomized order, together 
with the model’s outputs. For each example, we asked our partic-
ipants to think out loud; refect on whether they understood or 
agreed with the model’s outputs; and suggest how the selected 
element in the example could be altered to infuence its perceived 
tappability. We explicitly informed participants that both positive 
and negative feedback would be useful to the design team for mak-
ing improvements. A researcher took notes of verbal responses 
while examples were shown. After seeing all examples, participants 
flled out a short survey asking what they thought performed well, 
needed improvement, and could ft into their design practice. An 
entire session took approximately 45 minutes to complete. For anal-
ysis, feedback from written responses was processed in an open 
coding phase, and further grouped by one researcher into the related 
topics, which were agreed upon with the other researchers [39]. 
Quotes shared below are exclusively from survey responses. 

7.2 Results 
7.2.1 Tappability predictions can save significant time and efort 
compared to user studies. From survey responses, 11 participants 
perceived the system as accurate, and 7 remarked how the system 
would be valuable for evaluating designs as a time-saving alter-
native to running user studies: “It’s fairly accurate in predicting 
whether an element is tappable or not” (P7); “I think it’s great to see 
a quantifed results of tappability - it can reduce the time to conduct 
usability study.” (P6); “UI designers could use the model to cross check 
and see if they match the anticipated results. If that happens, it will 

Tappable Not Tappable
99.47%; 4/5 marked tappable 34.38%; 2/5 marked tappable

99.35%; 5/5 marked tappable 31.56%; 4/5 marked tappable

98.67%; 5/5 marked tappable 33.67%; 2/5 marked tappable

99.39%; 4/5 marked tappable 32.49%; 4/5 marked tappable

99.87%; 3/5 marked tappable 32.05%; 2/5 marked tappable

Figure 14: Nearest neighbors from subsection 6.4, split by 
thresholded model predictions (tappable neighbors on the 
left). The tappable neighbors are highly visually similar, al-
though they are not all the same input type as the input 
(many are buttons with a light background). 
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Figure 15: The six mobile UI screenshots with preselcted UI 
elements used in our user evaluation. Selected elements are 
circled with a dotted magenta line. The top left UI screen-
shot was used for onboarding participants. 

save a lot of time running user studies.” (P3). One noteworthy theme 
was the value of using our system for rapid evaluations at multiple 
stages of the design process: “It might be useful during handof to 
engineers as a fnal check on design quality, or assessing a built app 
during a usability audit.” (P4); “I would use it in the evaluative stages 
of design as a gut check on what I’ve done.” (P9). Our system could 
directly enable this capability if implemented in an end-to-end ap-
plication, since it only requires pixels as input and thus can operate 
on fully implemented UIs or visually realistic mockups. 

P5 pointed out a trade-of of using our system for evaluation, 
refecting on its static nature, versus the open-ended format of tra-
ditional usability studies: “Users might have an advantage by being 
able to trial and error. It seems like the model gets a lot correct and 
points out possible design faws, but users tend to explore openly any-
way making choices still situational.” Overall, this feedback suggests 
strong potential uses cases in rapid, heuristic evaluations of UIs 
when user studies would be too time-consuming, both for the early 
stages of design (when prototyping alternatives) and for catching 
potential errors in a design as it nears production. 

7.2.2 Analysis of a single screen ofers limited notion of context 
in a UI flow. While many participants remarked on the model’s 
generally good performance, 4 were more critical or skeptical when 
it came to UI elements that were sensitive to the context of other 
screens in a UI fow, e.g.: “It doesn’t seem as useful for navigation 

or text where the tappability is more contextual” (P4); “Considering 
context and looking at the whole page holistically are very important 
in UI design. The system tend to ignore the the context of the screen. 
E.g. Is it the home screen or interior page? The app logo can be tappable 
depending on the context” (P13). The cases referred to in these quotes 
are examples with low model confdence, refecting a potentially 
ambiguous perception of tappability that depends on how the input 
screenshot is situated in a fow of multiple UIs. One limitation of our 
model is that it only uses a static snapshot of a UI as input. In future 
work, temporal information could be used in our model’s inputs 
to add additional context, as prior work has done for predicting 
user engagement with animations [42] and grounding UI action 
sequences [26]. In addition, this is a case where including additional 
input modalities (e.g., text) can provide additional cues to boost 
prediction confdence. 

7.2.3 Contrasting similar examples provided design feedback for 
iteration. At least 5 participants wrote favorably of the contrasting 
similar examples in open-ended feedback, and remarked on their 
value for inspiring potential design changes: “The initial "Model 
tap prob" metric is extremely useful as are the examples of similar 
UI elements that have both low and high [tappability] scores.” (P14); 
“I might also use some of the comps [examples] to fnd inspirations 
on other ways to design a certain element” (P9). Some participants 
liked the diversity of some sets of contrasting similar examples 
(“the provided examples are useful to reference and compare to, even 
if the similar elements are not exactly the same.” (P10)), while others 
desired a greater degree of semantic similarity (“Heading component 
compares to a CTA button in Settings page. It feels like comparing 
apples to oranges. I would suggest, using similar UI component prox-
imity for similar examples” (P1)). One direction for future work 
could be to allow users to flter and set thresholds for examples 
(e.g., by certain types or locations of UI elements), or reporting 
actual distances (“Maybe for the nearest neighbors, provide some 
indications of how near or far the neighbor is, e.g. 90% vs 10%” (P12)). 

Overall, this feedback suggests that the contrasting similar ex-
amples, curated based on a specifed UI element, have the potential 
to provide useful inspiration for designers. This may help “close 
the loop” beyond tappability prediction scores alone. 

7.2.4 Participants desire more explicit explanations beyond the heatmap. 
While 2 participants remarked that the heatmap was useful, 4 par-
ticipants noted the heatmap was confusing to use, or needed better 
instructions, e.g.: “Heat map. Confused me and would need some 
guidance on how to process the info.” (P14); “Saliency heatmap def-
nitely needs some mental shift to understand.” (P6). While this could 
potentially be mitigated with improved onboarding or more expe-
rience [6, 43], the “black-box” nature of our model means, while 
it may be efective at predicting users’ perceptions of tappability, 
the mechanisms which enable those predictions may not refect the 
same reasoning as users [28]. The mismatch in mental models could 
explain this result: “I found the heat maps and nearest neighbors less 
helpful because they didn’t resemble my own mental model / instincts 
for evaluating the usability of these mockups” (P4). 

Some participants expressed a desire for deeper explanations of 
why certain elements in the heatmap contribute to a tappability 
prediction more than others, which could help improve its usability: 
“On the heat map, add some explanation about why the other elements 
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might or might not impact the probability score of an elemement” 
(P14); and others wished the system could output design suggestions 
directly: “It’d be amazing if the system can provide recommendation 
like boost the color contrast” (P6). One promising direction for future 
work could draw from techniques in ML debugging research, by 
identifying common “heuristics” from patterns in the model’s and 
XRAI heatmap’s outputs and raising messages with concrete design 
suggestions (e.g., increasing contrast or changing colors) [19, 33]. 

8 THEMES IN MODEL BEHAVIOR: 
DISCUSSION AND LIMITATIONS 

In this section, we describe patterns observed in our selected exam-
ples and discuss implications for the use of our model and explana-
tion mechanisms. 

8.1 Persistent Signals and Signifers 
Text as a feature indicating tappability. In examples in section 6 

as well as examples in our user evaluation, bounding boxes sur-
rounding text elements were highly attributed by XRAI. This does 
not necessarily mean the text itself is perceived as tappable, but 
rather that the existence of text serves as a signifer of tappability 
to nearby elements (see subsection 8.2). This is one potential draw-
back to our pixel-based model compared to multimodal models that 
use text as input to gain a deeper understanding of an element’s 
context (e.g., a “submit” button or “click here to unsubscribe” text). 

Icons next to text generally indicate tappable regions. To our model, 
small icons or graphics appearing next to text strongly signify 
tappability. This is demonstrated in Figure 12, where most tappable 
text elements are near radio buttons, icons, and other graphics. 
Using icons to signify the tappability of adjacent text elements is 
a well-known practice [29]. However, our model does not always 
produce reliable tappability predictions of checkbox elements (E.g., 
Figure 12, bottom right). This is likely due to ambiguity in the 
labeling task. Since the checkbox, accompanying description, and 
parent element containing both are each distinct UI elements with 
separate bounding boxes, any one of these elements within a given 
screenshot could be selected for labeling. Crowdworkers may have 
diferent perceptions of the tappability of the diferent elements, 
and this uncertainty is refected in our model’s prediction scores. 

Image views in apps are not consistent predictors. Because the con-
tent of ImageView elements can be highly varied (e.g., containing 
icons, logos, thumbnails, previews, ...), they can sometimes con-
found our purely vision-based model (see Figure 10). While our 
model likely also uses the location and context of the image ele-
ment, the content of the image can overwhelm predictions, possibly 
due to the texture sensitivity of CNNs [15]. One way to potentially 
mitigate this efect would be to replace images with placeholders, 
similar to wireframes [9, 11]. 

8.2 Challenges in Interpreting XRAI 
Attributions 

XRAI attributions highlight infuential regions; highly infuential 
regions are not necessarily tappable themselves. As refected in the 
results of our user evaluation, the XRAI heatmaps require practice 
to take full advantage of, and could beneft from the addition of 

heuristic-based explanations. A critical note for our use of XRAI 
is that the heatmap it produces is not a tappability heatmap, but a 
heatmap showing how regions in the UI screen infuence the tap-
pability prediction for a particular element. For example, if highly 
attributed text near a button was removed, that button would likely 
no longer be classifed as tappable. As such, saliency methods like 
XRAI are often useful in practice for diagnosing the features that 
infuence predictions, and the sensitivity of that prediction to con-
textual factors. 

Summarizing attributions with regions may leave out important de-
tails. In contrast to XRAI, which uses regions, pixel-based saliency 
methods like Integrated Gradients [36] highlight inputs at a fner 
scale. While this may be useful for debugging features of small UI 
elements, pixel-based methods are known to be difcult to inter-
pret by humans compared to region-based methods, and can be 
susceptible to errors [1, 21]. 

XRAI attribution values cannot be compared between examples. 
Like other gradient-based saliency methods, the raw values of XRAI 
attributions are specifc to input examples [1]. Some other algo-
rithms, such as DeepSHAP [30], sum to the probabilities of pre-
dictions, and may be compared between examples. These other 
methods could also enable new interactions, such as aggregated 
analyses, a promising direction for future work. 

8.3 Browsing Nearest Neighbor Examples 
Nearest Neighbors capture many dimensions of similarity. Across 

all of our examples, nearest neighbors appear to capture dimen-
sions beyond visual similarity alone. In particular, bounding box 
locations, sizes, and aspect ratios are generally similar among neigh-
bors. This indicates that our model has not only learned to use the 
appearance of an element to predict its tappability, but also con-
textual information such as its location, shape, and proximity to 
other elements. As participants in our user evaluation noted, adding 
interactivity to the nearest neighbor examples, such as the ability 
to flter and sort by component types and application properties, 
could help narrow down these contextual cues to provide more 
relevant feedback for iterating UI designs. 

Splitting neighbors by binary tappability predictions discards some 
information. While using a discrete boundary can provide useful 
contrasting examples, the average tappability prediction probabili-
ties and distances between splits can contain subtle yet important 
information about the landscape of UI design patterns related to 
the input. For example, the health app’s non-tappable neighbors 
included many seemingly unrelated graphics. This may be because 
of skewed distances, i.e., most nearby examples are tappable, and 
the closest non-tappable neighors are signifcantly further away, 
and, thus, less similar. In other cases, the sets of neighbors may have 
skewed average probabilities (e.g., near 99% for tappable, and near 
49% for non tappable). This is an additional, strong, indicator that 
similar UIs are generally either perceived as tappable or uncertain, 
rather than non-tappable. The contrary is also true: the neighbors 
of confdently non-tappable examples often score near 51% for tap-
pable, and 0% for non-tappable. In future work, these details could 
be made explicit in more continuous, interactive visualizations, to 
help designers explore related UI designs. 
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Encouraging exploration of neighboring examples. While using 
UIs with similar designs but diferent efects on tappability percep-
tion are useful for contrasting explanations, designers often value 
seeing diverse examples of designs for inspiration [9, 38]. Future 
iterations of this work could sample more distant UI examples, 
fltered by UI element types, or even learned concepts, i.e., with 
concept vectors [22]. In addition, since nearest neighbor examples 
are split by model predictions, the similar examples do not have to 
be limited to our source dataset. In other words, our model can be 
used to retrieve nearest neighbors or similar examples from other 
datasets. 

8.4 Additional Limitations 
Concept drift. While UI design styles and trends change over 

time, our model is trained on a “static” snapshot of application UIs, 
and may give less reliable predictions over time. This phenomenon 
is known as concept drift [40], and may be mitigated by augment-
ing the dataset with new examples over time. Furthermore, since 
our dataset comprises only Android applications, our model may 
require fne-tuning to generalize well to UI screenshots from other 
platforms. 

Perceived tappability predictions contain multiple signals. As we 
have found by analyzing the distribution of label agreement in our 
dataset, the tappability of many UI elements in the wild appear 
ambiguous to users. While this uncertainty explicitly limits the 
possible accuracy of our model, it also means that predictions near 
the decision boundary suggest user confusion. This signal, along 
with other usability metrics (e.g., engagement [42] or cognitive 
load) may be useful outputs from future models. 

9 CONCLUSION 
We presented a novel, automated system for predicting the human 
perceived tappability of mobile UI elements and explaining model 
predictions to users. Our work signifcantly advanced the art by 
developing a purely vision-based deep neural network, which only 
relies on pixels and does not require a UI to be fully specifed; 
and by enabling mechanisms for explaining design insights to the 
user with contextual and instance-level interpretations of model 
predictions. We also create a new tappability dataset where each 
element is labeled by multiple crowdworkers for reliable tappabil-
ity estimation. We provided an in-depth discussion of our model 
behavior and explanation mechanisms through extensive analysis 
of examples and collected feedback from experienced professional 
UI/UX designers in how they would use and improve our system. 
Together, our work not only advances tappability modeling research 
but also demonstrates how deep learning approaches can be used 
for automatic UI usability analysis. 
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A USER STUDY FIGURES 
Following are the UIs and outputs of our explanation algorithms shown to participants in the user evaluation in section 7. 
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A.1 Example 1: Onboarding Example 
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A.2 Example 2 
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A.3 Example 3 
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A.4 Example 4 
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A.5 Example 5 
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A.6 Example 6 
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