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Figure 1: Diagram illustrating the UI prototyping workflow using this plugin. First, the designer prototypes the UI in Figma
(Box A) and then runs the plugin (Arrow A1). The designer then selects the guidelines to use for evaluation (Box B) and runs
the evaluation with the selected guidelines (Arrow A2). The plugin obtains evaluation results from the LLM and renders them
in an interpretable format (Box C). The designer uses these results to update their design and reruns the evaluation (Arrow A3).
The designer iteratively revises their Figma UI mockup, following this process, until they have achieved the desired result.

ABSTRACT
Feedback on user interface (UI) mockups is crucial in design. How-
ever, human feedback is not always readily available.We explore the
potential of using large language models for automatic feedback.
Specifically, we focus on applying GPT-4 to automate heuristic
evaluation, which currently entails a human expert assessing a
UI’s compliance with a set of design guidelines. We implemented a
Figma plugin that takes in a UI design and a set of written heuris-
tics, and renders automatically-generated feedback as constructive
suggestions. We assessed performance on 51 UIs using three sets
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of guidelines, compared GPT-4-generated design suggestions with
those from human experts, and conducted a study with 12 expert
designers to understand fit with existing practice. We found that
GPT-4-based feedback is useful for catching subtle errors, improv-
ing text, and considering UI semantics, but feedback also decreased
in utility over iterations. Participants described several uses for this
plugin despite its imperfect suggestions.
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1 INTRODUCTION
User interface (UI) design is an essential domain that shapes how
humans interact with technology and digital information. Design-
ing user interfaces commonly involves iterative rounds of feedback
and revision. Feedback is essential for guiding designers towards
improving their UIs. While this feedback traditionally comes from
humans (via user studies and expert evaluations), recent advances
in computational UI design enable automated feedback. However,
automated feedback is often limited in scope (e.g., the metric could
only evaluate layout complexity) and can be challenging to inter-
pret [50]. While human feedback is more informative, it is not
readily available and requires time and resources for recruiting and
compensating participants.

One method of evaluation that still relies on human participants
today is heuristic evaluation, where an experienced evaluator checks
an interface against a list of usability heuristics (rules of thumb)
developed over time, such as Nielsen’s 10 Usability Heuristics [39].
Despite appearing straightforward, heuristic evaluation is chal-
lenging and subjective [40], dependent on the evaluator’s previous
training and personality-related factors [25]. These limitations fur-
ther suggest an opportunity for AI-assisted evaluation.

There are several reasons why LLMs could be suitable for au-
tomating heuristic evaluation. The evaluation process primarily
involves rule-based reasoning, which LLMs have shown capacity
for [42]. Moreover, design guidelines are predominately in text
form, making them amenable for LLMs, and the language model
could also return its feedback as text-based explanations that de-
signers prefer [23]. Finally, LLMs have demonstrated the ability to
understand and reason with mobile UIs [56], as well as generalize
to new tasks and data [28, 49]. However, there are also reasons that
suggest caution for using LLMs for this task. For one, LLMs only
accept text as input, while user interfaces are complex artifacts
that combine text, images, and UI components into hierarchical
layouts. In addition, LLMs have been shown to hallucinate [24]
(i.e., generate false information) and may potentially identify incor-
rect guideline violations. This paper explores the potential of using
LLMs to carry out heuristic evaluation automatically. In particular,
we aim to determine their performance, strengths and limitations,
and how an LLM-based tool can fit into existing design practices.

To explore the potential of LLMs in conducting heuristic eval-
uation, we built a tool that enables designers to run automatic
evaluations on UI mockups and receive text-based feedback. We
package this system as a plugin for Figma [1], a popular UI de-
sign tool. Figure 1 illustrates the iterative usage of this plugin. The
designer prototypes their UI in Figma, and then selects a set of
guidelines they would like to use for evaluation in our plugin. The
plugin returns the feedback, which the designer uses to revise their
mockup. The designer can then repeat this process on their edited
mockup. To improve the LLM’s performance and adapt to individ-
ual preferences, designers can provide feedback on each generated
suggestion, which is integrated into the model for the next round
of evaluation. The plugin produces UI mockup feedback by query-
ing an LLM with the guidelines’ text and a JSON representation

of the UI. The LLM then returns a set of detected guideline viola-
tions. Instead of directly stating the violations, they are phrased as
constructive suggestions for improving the UI. As LLMs can only
process text and have a limited context window, we developed a
JSON representation of the UI that concisely captures the layout
hierarchy and contains both semantic (text, semantic label, element
type) and visual (location, size, and color) details of each element
and group in the UI. To further accommodate context window limits,
we scoped the plugin to evaluate only static (i.e., non-interactive)
UI mockups, one screen at a time.

We conducted an exploration of how several current state of the
art LLMs perform on this task and found that GPT-4 had the best
performance by far. Hence, we solely focus on GPT-4 for the remain-
ing studies. To assess GPT-4’s performance in conducting heuristic
evaluation on a large scale, we carried out a study where three
design experts rated the accuracy and helpfulness of its heuristic
evaluation feedback for 51 distinct UIs. To compare GPT-4’s output
with feedback provided by human experts, we conducted a heuristic
evaluation study with 12 design experts, who manually identified
guideline violations in a set of 12 UIs. Finally, to qualitatively de-
termine GPT-4’s strengths and limitations and its performance as
an iterative design tool, we conducted a study with another group
of 12 design experts, who each used this tool to iteratively refine
a set of 3 UIs and evaluated the LLM feedback each round. For all
three studies, we used diverse guidelines covering visual design,
usability, and semantic organization to generate design feedback.

We found that GPT-4 was generally accurate and helpful in
identifying issues in poor UI designs, but its performance became
worse after iterations of edits that improved the design, making
it unsuitable as an iterative tool. Furthermore, its performance
varied, depending on the guideline. GPT-4 generally performed
well on straightforward checks with the data available in the UI
JSON and worse when the JSON differed from what was visually or
semantically depicted in the UI. Finally, although GPT-4’s feedback
is sometimes inaccurate, most study participants still found this tool
useful for their own design practices, as it was able to catch subtle
errors, improve the UI’s text, and reason with the UI’s semantics.
They stated that the errors made by GPT-4 are not dangerous, as
there is a human in the loop to catch them, and suggested various
use cases for the tool. Finally, we also distilled a set of concrete
limitations of GPT-4 for this task.

In summary, even with today’s limitations, GPT-4 can already
be used to automatically evaluate some heuristics for UI design;
other heuristics may require more visual information or other tech-
nical advancements. However, designers accepted occasional im-
perfect suggestions and appreciated GPT-4’s attention to detail.
This implies that while LLM tools will not replace human heuris-
tic evaluation, they may nevertheless soon find a place in design
practice.

Our contributions are as follows:

• A Figma plugin that uses GPT-4 to automate heuristic evalu-
ation of UI mockups with arbitrary design guidelines.

• An investigation of GPT-4’s capability to automate heuristic
evaluations through a study where three human participants
rated the accuracy and helpfulness of LLM-generated design
suggestions for 51 UIs.

https://doi.org/10.1145/3613904.3642782


Generating Automatic Feedback on UI Mockups with Large Language Models CHI ’24, May 11–16, 2024, Honolulu, HI, USA

• A comparison of the violations found by this tool with those
identified by human experts.

• An exploration of how such a tool can fit into existing design
practice via a study where 12 design experts used this tool to
iteratively refine UIs, assessed the LLM-generated feedback,
and discussed their experiences working with the plugin.

2 RELATEDWORK
2.1 AI-Enhanced Design Tools
Before thewidespread use of generative AI, research in AI-enhanced
design tools explored a variety of model architectures to accomplish
a wide range of tasks. For instance, Lee et al. built a prototyping
assistance tool (GUIComp) that provides multi-faceted feedback for
various stages of the prototyping process. GUIComp uses an auto-
encoder to support querying UI examples for design inspiration
and separate convolutional neural networks to evaluate the visual
complexity of the UI prototypes and predict salient regions [23].
Other studies have utilized computer vision techniques to predict
saliency in graphical designs [14] and perceived tappability [50,
52]. Deep learning models have been developed for generation [7],
autocompletion [5], and optimization [11, 53, 54] of UI layouts. One
limitation of these techniques is that a separate model is needed
for each type of task. In addition, study participants had difficulty
interpreting the feedback from these models [50] and would have
liked natural language explanations of detected design issues [23].
Our work addresses both of these limitations. First, our system
supports arbitrary guidelines that evaluate various aspects of the
UI design as input. Furthermore, the language model uses natural
language to explain each detected guideline violation.

2.2 Applications of Generative AI in Design
The recent emergence of generative AI, such as GPT, has led to
various applications in design support. Park et al. carried out two
studies that employ LLMs to simulate user personas in online social
settings. They used GPT-3 to generate interactions on social media
platforms as testing data for these platforms [44]. They later ex-
panded on this work to build agents that could remember, reflect on,
and retrieve memories from interacting with other agents to realisti-
cally simulate large-scale social interactions [43]. Hämäläinen et al.
used GPT-3 to generate synthetic human-like responses to survey
questionnaires about video game experiences [18]. Finally, Wang
et al. investigated the feasibility of using LLMs to interact with UIs
via natural language [56]. They developed prompting techniques
for tasks like screen summarization, answering questions about
the screen, generating questions about the screen, and mapping
instructions to UI actions. Researchers have also begun to create
design tools that use Generative AI. Lawton et al. built a system
where a human and generative AI model collaborate in drawing,
and ran an exploratory study on the capabilities of this tool [22].
Stylette allows users to specify design goals in natural language and
uses GPT to infer relevant CSS properties [19]. Perhaps most similar
to our work is a study by Petridis et al. [46], who explored using
LLM prompting in creating functional LLM-based UI prototypes.
Their study findings showed that LLM prompts sped up prototype
creation and clarified LLM-based UI requirements, which led to

the development of a Figma Plugin for automated content genera-
tion and determination of optimal frame changes. These existing
studies, however, have not examined the application of LLMs as a
general-purpose evaluator for mobile UIs of any category with a
diverse set of heuristics.

2.3 AI-enhanced Software Testing
Another domain of UI evaluation is testing the functionality of
the GUI (i.e., “software testing”). Existing LLM-based approaches
include Liu et al.’s method [27], which uses GPT-3 to simulate a
human tester that would interact with the GUI. Their system had
greater coverage and found more bugs than existing baselines, and
also identified new bugs on Google Play Store apps. Wang et al.
conducted a comprehensive literature review on using LLMs for
software testing. They analyzed various studies that used LLMs for
unit test generation, validation of test outputs, test input generation,
analyzing bugs, fixing identified bugs in code, and identifying and
correcting bugs. Contrary to software testing, our study focuses
on evaluating GUI mockups, which is at an earlier stage of the
UI development process. Furthermore, evaluation of mockups and
software are intrinsically different; mockup evaluation focuses on
adherence to design guidelines and user feedback, whereas soft-
ware testing focuses on finding bugs in the implementation. Prior
to LLMs, Chen et al. utilized computer vision techniques to iden-
tify discrepancies between the UI mockup and implementation [6].
Their system could identify differences in positioning, color, and
size of corresponding elements. However, their evaluation requires
a UI mockup as the benchmark, while our system could carry out
evaluation using any set of heuristics.

2.4 Heuristics and Design Guidelines
An essential aspect of the design process is gathering feedback to
improve future iterations. One central way designers generate feed-
back is to conduct heuristic evaluations [38, 40], which uses a set of
guidelines to identify and characterize undesired interface charac-
teristics as violations of specific guidelines. While initially designed
for desktop interfaces, other work has adapted heuristic evaluation
to more devices and domains [9, 31, 33, 47]. In general, researchers
have developed design guidelines for a vast category of devices,
tasks, and populations including accessible data visualizations [12],
multi-modal touchscreen graphics [17], smart televisions [58], am-
bient lighting interactions [32], hands-free speech interaction [35],
navigation in virtual environments [55], website readability [34],
supportingweb design for aging communities [21, 61], and for cross-
cultural design considerations [2]. A widely-used set of guidelines
is Nielsen’s 10 Usability Heuristics [39], a set of general principles
for interaction design. Luther et al. surveyed design textbooks and
other resources and compiled a comprehensive set of specific cri-
tique statements for the visual design of an interface, which were
organized into 7 visual design principles [29]. Recently, Duan et al.
developed a set of 5 specific and actionable guidelines for organiz-
ing UI elements based on their semantics (i.e., functionality, content,
or purpose) to help design clear and intuitive interfaces [10]. While
these guidelines are meant to encode common design patterns and
errors distilled from design expert guidance, they still require a
human to interpret and apply them, making adapting to a new set
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of guidelines time-consuming, especially for novice designers. Our
work builds off of these design guidelines as a means of focusing
and justifying the LLM’s design suggestions and feedback.

2.5 User Interfaces for Design Feedback
Prior research has explored several ways to support designers
as they both give and receive feedback across a range of media
[20, 30, 45, 57, 60]. Cheng et al. explore the process of publicly gath-
ering design feedback from online forums [8] and list several de-
sign considerations for feedback systems. For supporting in-context
feedback for graphic designs, CritiqueKit [15] showcased a UI for
providing and improving real-time design feedback, while Charrette
[41] supported organizing and sharing feedback on longer histo-
ries and variations of a design. A study by Ngoon et al. showcased
reusing expert feedback suggestions and adaptive guidance as two
ways of improving creative feedback by making the feedback more
specific, justified, and actionable [36]. This notion of adaptive con-
ceptual guidance is further explored by Shöwn [37], demonstrating
the utility of adapting presented design suggestions and examples
automatically given the user’s current working context. Our plugin
provides in-context design feedback grounded by this prior work on
user interfaces for design feedback, while automatically generating
the provided feedback and design suggestions.

3 SYSTEM DETAILS
In this section, we describe the set of design goals for an automatic
LLM-driven heuristic evaluation tool, how they are realized in our
system, the underlying implementation, techniques to improve the
LLM’s performance, and explorations of alternative prompt designs
and various LLM models for this task.

3.1 Design Goals
Based on design principles and expected LLM behavior, we came
up with a set of goals that lay out what an automatic LLM-based
heuristic evaluation tool should be able to do. The goals are as
follows:

(1) The tool should be able to accommodate arbitrary UI proto-
types; designers should be able to use this tool to perform
heuristic evaluations on their mockups and identify potential
issues, before implementation.

(2) The tool should be heuristic-agnostic, so different guidelines
or heuristics can be used.

(3) The guideline violations detected by the LLM should be
presented in a way that adheres to the principles of effective
feedback [48].

(4) The LLM generated feedback should be presented in the
context of the critiqued design. This is to narrow the gulf
of evaluation, making it easier for designers to interpret the
feedback.

(5) Finally, in case the LLMmakes a mistake, the designer should
be able to hide feedback they find unhelpful. This data should
also be sent to the LLM to improve its prediction accuracy.

3.2 Design Walkthrough
We built our tool as a plugin for Figma, enabling designers to eval-
uate any Figma mockup (Goal 1). Figure 1 illustrates this plugin’s

step-by-step usage with interface screenshots. The designer first
prototypes their UI in Figma and runs the plugin (Figure 1 Box
A). Due to context window limitations, the plugin only evaluates
a single UI screen at a time. Furthermore, it only assesses static
mockups, as evaluation of interactive mockups may require mul-
tiple screens as input or more complex UI representations, which
could exceed the LLM’s context limit. After starting the plugin, it
opens up a page to select guidelines to use for heuristic evaluation
(Box B). Designers can select from a set of well-known guidelines,
like Nielsen’s 10 Usability Heuristics, or enter any list of heuristics
they would like to use (Goal 2). They can also select more than one
set of guidelines for the evaluation.

Once the LLM completes the heuristic evaluation, text explana-
tions of all violations found and a UI screenshot are rendered back
to the designer (Figure 1 Box C). This “UI Snapshot” serves as a
reference to the state of the mockup at the time of evaluation, in
case the designer makes any changes based on the evaluation re-
sults. Each violation explanation contains the name of the violated
guideline and is phrased as constructive feedback, following the
guidelines set by Sadler et al. [48] (Goal 3). According to Sadler,
effective feedback is specific and relevant, highlighting the perfor-
mance gap and providing actionable guidance for improvement. To
accomplish this, the feedback must include these three things: 1)
the expected standard, 2) the gap between the quality of work and
the standard, and 3) what needs to be done to close this gap. Our
design feedback adheres to Sadler’s principles and starts by stating
the standard set by the guideline, followed by the issue with the
current design (the gap between the design and expected standard),
and concludes with advice on fixing the issue. Figure 9 provides
four examples of these explanations.

The plugin also includes several features that help designers con-
textualize the text feedback with corresponding UI elements. (Goal
4). Figure 2 illustrates these features. Selecting a violation fades the
other suggestions and draws a box around the relevant group or
element in the screenshot, as shown in Figure 2 (B). In addition, all
UI elements and groups mentioned are rendered as links. Hovering
over a link draws a box over the corresponding group or element
in the screenshot (C), and clicking on the link selects the item in
the Figma mockup and Layers panel (A), streamlining the editing
process. Finally, to address Goal 5, if the designer finds a suggestion
incorrect or unhelpful, they can click on its ‘X’ icon to hide it (D).
Hiding the violation sends feedback to the LLM for subsequent
evaluation rounds so this violation will not be shown again.

After the designer revises their mockup based on LLM feed-
back, they can rerun the evaluation to generate new suggestions.
This usage is intended to match the iterative feedback and revision
process during design. The plugin uses the information from the
Layers panel of Figma to create the text-based representation of
the mockup (discussed in more detail in the next section). Hence, it
relies on accurate names for groups in the Layers panel to convey
semantic information about the UI; for instance, the group contain-
ing icons in the navbar should be named “navbar”. Designers must
manually add these names, so they are often missing. To address
this, we implemented an auxiliary label generation feature that can
be run before evaluation to generate group names automatically
(based on their contents).
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List of generated heuristic violations UI Snapshot at time of evaluation Corresponding Group in Figma
Mockup and Layers Panel

Clicking group name
selects group in
Figma mockup 

and Layers panel

Dismissing incorrect feedback hides
it and updates next LLM prompt

Hovering highlights 
corresponding element/group in UI

A

C

D

ASelecting one violation
hides all other 
violations and

annotations in UI

B

A

A

B

Figure 2: Illustration of plugin interactions that contextualize text feedback with the UI. “A” shows that clicking on a link in
the violation text selects the corresponding group or element in the Figma mockup and Layers panel. “B” shows the “click to
focus” feature, where clicking on a violation fades the other violations and draws a box around the corresponding group in the
UI screenshot. “C” illustrates that hovering over a group or element link draws a blue box around the corresponding element
in the screenshot. “D” points out that clicking on the ‘X’ icon of a violation hides it and adds this feedback to the LLM prompt
for the next round of evaluation.

3.3 Implementation
We implemented this plugin in Typescript using the Figma Plugin
API. The plugin makes an API request to OpenAI’s GPT-4 for LLM
queries. Since LLMs can only accept text as input, the plugin takes
in a JSON representation of the UI. While multi-modal models exist
that could take in both the UI screenshot and guidelines text (e.g.,
[26]), we found that its performance was considerably worse than
GPT-4’s for this task (at the time).

Our JSON format captures the DOM (Document Object Model)
structure of the UI mockup, and is similar in structure and content
to the HTML-based representation used by [56] that performed
well on UI-related tasks. Figure 4 contains an example portion of a
UI JSON with corresponding groups and elements marked in the
UI screenshot. The tree structure is informative of the overall orga-
nization of the UI, with UI elements (buttons, icons, etc.) as leaves
and groups (of elements and/or smaller groups) as intermediate
nodes. Each node in this JSON tree contains semantic information
(text labels, element or group names, and element type) and visual
data (x,y-position of the top left corner, height, width, color, opacity,
background color, font, etc.) of its element or group. Hence, this
JSON representation captures both semantic and visual features
of the UI, which supports the evaluation of various aspects of the
design and differentiates it from the representation used by [56]

that captures only semantic information. This JSON representa-
tion is constructed from the data (e.g., group/element names) and
grouping structure found in the Layers panel of Figma, which are
editable by designers.

Figure 3 shows the core system design of the plugin. Due to the
context window limits of GPT-4, we remove all unnecessary or
redundant information and condense verbose details into a concise
JSON structure (Box 3). This condensed JSON representation and
guideline text are combined into a prompt sent to the LLM. After
the LLM returns the identified guideline violations, another query
is sent to the LLM to convert these violations into constructive
advice (Box 4). This chain of prompts is illustrated in Figure 12
(Appendix), which describes the components of each prompt. The
LLM response is parsed by the TypeScript code (Box 5) and ren-
dered into an interpretable format for designers (Box 6). Figma IDs
for each element and group are stored internally, which supports
selection of elements or groups in the mockup via links (Figure 2, A)
and quick access to their layout information. Layout information is
used to draw boxes around elements and groups in the screenshot,
as shown in Figure 2 (B and C). Finally, unhelpful suggestions that
were dismissed by the designer are incorporated into the prompt
for the next round of evaluation (Box 7), if there is room in the
context window. The label generation feature is also executed via
an LLM call, with the prompt containing JSON data of all unnamed
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Figure 3: Our LLM-based plugin system architecture. The designer prototypes a UI in Figma (Box 1), and the plugin generates a
UI representation to send to an LLM (3). The designer also selects heuristics/guidelines to use for evaluating the prototype (2),
and a prompt containing the UI representation (in JSON) and guidelines is created and sent to the LLM (4). After identifying
all the guideline violations, another LLM query is made to rephrase the guideline violations into constructive design advice
(4). The LLM response is then programmatically parsed (5), and the plugin produces an interpretable representation of the
response to display (6). The designer dismisses incorrect suggestions, which are incorporated in the LLM prompt for the next
round of evaluation, if there is room in the context window (7).

{ ...
  "id": "78:10",
  "name": ”lyft event card",
  "type": "GROUP",
  "children": [
    {
      "id": "78:11",
      "name": ”lyft event photo and logo",
      "type": "GROUP",
      "children": [
        {
          "id": "78:12",
          "name": "lyft live chat event photo",
          "type": "IMAGE",
          "bounds": {"x": 1869, "y": -184, "width": 353, "height": 233}
        },
        {
          "id": "78:15",
          "name": "lyft logo",
          "type": "VECTOR",
          "strokeWeight": 2.0,
          "bounds": {"x": 1880, "y": 15, "width": 52, "height": 52},
          "strokes": [
            {
              "color": {"r": 1.0,"g": 1.0, "b": 1.0,"a": 1.0}
            }
    …

Figure 4: An example portion of a UI JSON. It has a tree
structure, where each node has a list of child nodes (the
“children” field). Each node in this JSON is color-coded with
its corresponding group or element in the UI screenshot. The
node named “lyft event photo and logo” is a group (“type:
GROUP”) consisting of a photo of the live chat event (“lyft
live chat event photo”) and the Lyft logo (“lyft logo”). The
JSON node for the photo contains its location information
(“bounds”), type (“IMAGE”), and unique identifier (“id”). The
JSON node for “lyft logo” contains its location and some
stylistic information, like the stroke color and stroke weight
for its white border.

groups and instructions for the LLM to create a descriptive label
for each JSON based on its contents.

3.4 Improving LLM Performance
We chose the most advanced GPT version available (GPT-4), as it
has the strongest reasoning abilities [42]. However, GPT-4 does
not support fine-tuning and has a context window limit of 8.1k
tokens. This context window limit leaves inadequate room for few-
shot and “chain-of-thought” [59] examples because each Figma
UI JSON requires around 3-5k tokens, the guidelines text take up
to 2k tokens, and few-shot and chain-of-thought examples both
require the corresponding UI JSONs. Due to these limitations, our
method for improving GPT-4’s performance entailed adding explicit
instructions in the prompt to avoid common mistakes, as shown in
Figure 12 (Appendix). Finally, we set the temperature to 0 to ensure
GPT-4 returns the most probable violations.

The remaining space in the context window was allocated to sug-
gestions that were dismissed (hidden) by designers. Incorporating
this feedback targets areas of poor performance specific to the UI
being evaluated and also adapts GPT-4’s feedback to the designer’s
preferences. Since the UI JSON is already provided in the prompt,
this feedback does not require much space. However, the UI may
have changed due to edits, so JSONs of the groups/elements for
a dismissed violation are still included, but they are considerably
smaller than the entire UI JSON. These items are incorporated in the
conversation history of the next prompt, as examples of inaccurate
suggestions (see Figure 12 in the Appendix). In addition, we ask
GPT-4 to reflect on why it was wrong and add this prompt and its
response to the conversation history. This “self-reflection” has been
shown to improve LLM performance [51].

3.5 Exploration of Alternative Prompt
Compositions

We investigate how different prompt components influence GPT-
4’s output to identify potential opportunities for simplifying our
complex prompt. For our analysis, we used 12 distinct mockups
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Prompt Condition Total
Violations

Helpful
Violations

Complete (Plugin) 63 38
One Call 62 31
No Heuristics 50 14
General UI Feedback 57 24

LLM Total
Violations

Helpful
Violations

GPT-4 (Plugin) 63 38
GPT-3.5-16k 228 23
Claude 2 7 1
PaLM 2 12 3

Table 1: The top table compares the total number of violations
and the number of helpful violations (based on the authors’
judgement) found in 12 UI mockups for different prompt
compositions. The “Complete (Plugin)” condition refers to
the prompt composition used in the plugin. The bottom table
compares the total number of violations and the number of
helpful violations (based on the authors’ judgement) found
in the 12 UI mockups by each LLM, with GPT-4 being used
in the plugin.

of mobile UIs taken from the Figma community. Furthermore, we
used three sets of heuristics covering different aspects of UI de-
sign: Nielsen’s 10 Usability Heuristics [38], Luther et al.’s visual
design principles compiled in “CrowdCrit” [29], and Duan et al.’s
5 semantic grouping guidelines [10]. These 12 UIs and three sets
of heuristics were consistently used in all subsequent analyses and
studies in this paper, except for the Performance Study, which used
a larger set of 51 UIs. We query the LLMwith prompt variations and
then compute the total number of reported violations and the num-
ber of helpful violations (based on the authors’ judgment), and we
also qualitatively examine the violations. We consider a violation to
be helpful if it is both accurate and would lead to an improvement
in the design. Table 3.5 (“Prompt Condition”) compares violation
counts for each condition with the complete prompt chain.

3.5.1 One Call. Our prompt chain makes two LLM calls – one to
carry out the heuristic evaluation and the other to rephrase results
into constructive feedback (Appendix Figure 12). We examine the ef-
fects of combining these two into a single call, as this would reduce
latency. Quantitatively, the total number of violations remained
similar, but the number of helpful violations was lower. However,
more importantly, the output was never formatted correctly with
one call, and the format also varied across different calls. Further-
more, GPT-4 sometimes omitted other important details, such as
how to fix the violation. Since correct output formatting is neces-
sary for the plugin to parse and render the violations, combining
the two calls is not feasible.

3.5.2 No Heuristics. The detailed heuristics text occupies a lot of
space in the LLM’s context window, so we examined the perfor-
mance without including them in the prompt. We edited prompts
to look for “visual design issues”, “usability issues”, or “semantic
group issues” instead of passing in the heuristics.

Table 3.5 (top) shows that GPT-4 provided fewer suggestions
total (50 vs. 63) and considerably fewer helpful suggestions when
heuristics were not included in the prompt (14 vs. 38). Qualitatively,
the suggestions for Crowdcrit and Nielsen were similar to those
from the complete prompt, though the suggestions were more
thorough when the Crowdcrit heuristics were included. However,
for Semantic Grouping, not passing in the heuristics resulted in
only violations that concerned the semantic relatedness of group
members, whereas passing in the guidelines resulted in a more
diverse set of issues found. We conclude that while the LLM could
give plausible UI feedback without passing in heuristics, the quality
of the suggestions is worse.

3.5.3 General UI Feedback. Finally, we investigate how GPT-4 re-
sponds without specific guidance when prompted for general UI
feedback. We removed all mentions of “guidelines” in the prompt
and replaced “violations” with “feedback.” Quantitatively, the per-
formance for this condition was worse. Qualitatively, GPT-4 still
carried out heuristic evaluation to an extent, as the issues were
grounded in existing design conventions, but in a less rigorous and
organized manner. Compared to the complete prompt, the feed-
back was less diverse, and the LLM often focused on only one type
of issue (e.g., misalignment) when there were other types of vi-
olations. We conclude that GPT-4 can produce plausible output
when asked for general UI feedback, but specific guidance produces
higher quality and more diverse suggestions.

3.6 Comparison with other LLMs
We explored the potential of other state-of-the-art LLMs in carrying
out this task: Claude 2, GPT-3.5-turbo-16k, and PaLM 2. Llama 2
was considered but excluded because its 4k context window size is
insufficient for the task. Similar to the prompt analysis, we compute
the total number of violations found and the number of helpful
violations.

We found that Claude 2, GPT-3.5-turbo-16k, and PaLM 2 all had
considerably worse performance than GPT-4, as shown in Table 3.5
(bottom). Claude 2 and PaLM 2 found very few violations; Claude 2
only found violations in 4 UIs, and PaLM 2 only identified one vio-
lation per UI, even after adjusting the prompt to indicate more than
one violation per UI. In fact, all 12 UIs have multiple violations, as
later confirmed in a heuristic evaluation by human experts. The few
violations found by these two LLMs were mostly unhelpful, such as
suggesting the dollar sign needs a text label. GPT-3.5-turbo-16k had
the opposite behavior, finding nearly 4 times as many violations
as GPT-4. However, most of the time, it indiscriminately applied
the same guideline to every element of the appropriate type, re-
gardless if there is an issue (e.g., stating the font is difficult to read
for every text element). This behavior also meant that most of its
helpful violations were found by chance, despite finding fewer help-
ful violations than GPT-4. Finally, GPT-3.5-turbo-16k and PaLM 2
had difficulty following the prompt’s instructions, often formatting
the output incorrectly (with a separate rephrasing call) or making
the mistakes they were told to avoid, such as returning violations
regarding the mobile status bar.

These models are all smaller than GPT-4, with billions of param-
eters, compared to GPT-4’s 1.7 trillion [42]. These models have also
been shown to have worse reasoning skills [3]. These factors likely
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Figure 5: An illustration of the formats of the three studies.
The Performance Study consists of 3 raters evaluating the
accuracy and helpfulness of GPT-4-generated suggestions for
51 UI mockups. The Heuristic Evaluation Study with Human
Experts consists of 12 design experts, who each looked for
guideline violations in 6 UIs, and finishes with an interview
asking them to compare their violations with those found
by the LLM. Finally, the Iterative Usage study comprises of
another group of 12 design experts, each working with 3 UI
mockups. For each mockup, the expert iteratively revises the
design based on the LLM’s valid suggestions and rates the
LLM’s feedback, going through 2-3 rounds of this per UI. The
Usage study concludes with an interview about the expert’s
experience with the tool.

contributed to their poor performance in this task. Since GPT-4
has the best performance by far, we solely focus on GPT-4 for the
remaining three studies on the plugin.

4 STUDY METHOD
To explore the potential of GPT-4 in automating heuristic evalua-
tion, we carried out three studies (see Figure 5). In the Performance
study, three designers rated the accuracy and helpfulness of GPT-
4’s generated suggestions for 51 diverse UI mockups to establish
performance metrics across a variety of designs. Next, we con-
ducted a heuristic evaluation study with 12 design experts, who
each manually identified guideline violations in 6 UIs. Afterwards,
they compared their identified violations with those found by GPT-
4 in an interview. Finally, in the Iterative Usage study, another
group of 12 designers iteratively refined three UIs each with the
tool and discussed how the tool might fit into existing workflows in
an interview. We obtained UIs from the Figma Community, where
designers share their mockups publicly. To attain a diverse set of UIs,
we searched for UIs from various app categories, such as finance
and e-commerce. We selected UIs that have room for improvement
(based on our guidelines) and have JSON representations that could
fit into GPT-4’s context window. We only used mobile UIs because

web UIs were usually too large. For each UI, we ensured that the
grouping structure in the Layers panel matched the visual grouping
structure in the UI screenshot. We also used our tool to automati-
cally generate semantically informative names for unnamed groups
in the Layers panel.

4.1 Performance Study
We recruited three designers for the Performance study through
advertising at an academic institution. Each participant had 3-4
years of design experience, and their areas of expertise include
mobile, web, product, and UX design. This background information
was collected during a brief instructional meeting conducted prior
to participants starting this task. We precomputed the guideline
violations for all 51 UIs to ensure that all participants saw the same
suggestions, allowing us to calculate inter-rater agreement. The 51
UIs were split into three groups of 17, and each group was evaluated
using one set of guidelines. Each participant saw the same set of
51 UIs and were given a week to rate the suggestions. Participants
spent an average of 6.8 hours total on this task.

For each suggestion, participants were asked to select a rating
for accuracy on a scale of 1 to 3 (“1 - not accurate”, “2 - partially
accurate”, “3 - accurate”) and then provide a brief, one-sentence
explanation for their rating. Participants were also asked to rate
the suggestion’s helpfulness on a scale of 1 to 5, with 1 being
“not at all helpful” and 5 being “very helpful”, and also provide
a brief explanation. We stored all GPT-4 suggestions, along with
the corresponding anonymized rating data, explanations, and UI
JSONs from this study, and have made this dataset available in the
Supplementary Materials.

4.2 Manual Heuristic Evaluation Study with
Human Experts

We recruited 12 participants through advertising at a large technol-
ogy company and an academic institution. Two participants had
less than 3 years of design experience, six had 3-5 years, two had
6-10 years, and one had 15 years. Their areas of expertise include
mobile, web, product, UX, cross device, and UX and UI research. The
study was conducted remotely during a 90-minute session, where
participants looked for guideline violations in 6 UIs in a Figma file.
Each UI was assigned one of the sets of guidelines for evaluation.

The first 75 minutes consisted of the heuristic evaluation. Partici-
pants were instructed to provide the name of the guideline violated,
an explanation of the violation following [48], and a usability sever-
ity rating for each violation found. There were a total of 12 UIs
used for this study, and each UI was evaluated by 6 participants.
The remaining 15 minutes were allocated for a semi-structured
interview, where we demoed the plugin and generated feedback
for the same 6 UIs the participant evaluated. We then asked the
participants to compare the LLM’s violations with their own.

4.3 Iterative Usage Study
We recruited another group of 12 participants through advertising
at an academic institution and a large technology company. One
participant had less than 3 years of design experience, five had 3-5
years, three had 6-10 years, two had 11-15 years, and one had over
32 years. Their areas of expertise include mobile, web, product, UX,
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mixed reality design, and UX and HCI research. The study was
conducted either in-person or remotely during a 90-minute session.
Participants were given three UIs in a Figma file, each with their
corresponding heuristics assigned for the evaluation. Participants
worked through one UI at a time. They first rated the accuracy and
helpfulness of GPT-4’s suggestions, following the scales used in the
Performance Study. However, participants in the Usage study were
asked to follow helpful suggestions to edit the mockup, though they
could skip revisions that require too much work, like restructuring
the entire layout. After participants finished revising the UI, they
would rerun the plugin to generate a new set of suggestions for the
revised mockup and then re-rate the new suggestions. For UIs 1
and 3, participants did one round of edits and two rounds of ratings.
For UI 2, participants did two rounds of edits and three rounds of
ratings, which is meant to assess the LLM’s iterative performance.
This study used the same set of 12 UIs as the manual heuristic
evaluation study (with the same guideline assignments for each UI’s
evaluation), and each UI was seen by three participants. To assess
rater agreement, we again precomputed the first round suggestions
for each UI. After participants finished all three tasks, we concluded
with a semi-structured interview, focusing on overall impressions,
potential drawbacks and dangers, potential for iterative use, and fit
with their design workflow.

5 RESULTS
5.1 Quantitative Results: Performance Study
More GPT-4 generated suggestions were rated as accurate and help-
ful than not. Across all generated suggestions, 52 percent were
rated Accurate, 19 percent Partially Accurate, and 29 percent Not
Accurate; 49 percent were considered helpful or very helpful, 15
percent moderately helpful, and 36 percent slightly or not at all
helpful. We show histograms of ratings given to all suggestions
for each set of guidelines in Figure 6, along with averages. In line
with the aggregate statistics, GPT-4 is more accurate and helpful
than not for each set of guidelines. Furthermore, this difference
is largest for CrowdCrit’s visual guidelines and smallest for the
Semantic Grouping guidelines. Regarding the average rating for
all suggestions, CrowdCrit outperformed the other guidelines for
accuracy and helpfulness, with a greater outperformance in helpful-
ness. Semantic Grouping had the worst performance for accuracy,
and Nielsen Norman performed the worst for helpfulness. Later, we
show concrete examples of GPT-4 generated feedback in Figure 9
that includes accurate and helpful suggestions, as well as inaccurate
and unhelpful ones.

We also grouped the ratings by individual guideline and visual-
ized them in horizontal bar charts shown in Figure 7. This reveals
finer-grained types of heuristics on which GPT-4 performed better
than others. The accuracy was highest for the “Recognition rather
than Recall”, “Match Between System and Real World”, and “Con-
sistency and Standards” usability heuristics (highlighted in green
in Figure 7), and participants generally found “Consistency and
Standards” violations helpful. “Consistency and Standards” mostly
caught inconsistencies in the visual layout of the UI, like misalign-
ment and inconsistency in size. In contrast, the “Aesthetic and
Minimalist Design” guideline was generally inaccurate and hence

Performance Metrics GPT-4 Human Evaluator (Avg.)

Precision 0.603 0.829
Recall 0.380 0.336
F1 0.466 0.478

Table 2: Table showing the Precision, Recall, and F1 scores of
GPT-4 and an individual human evaluator, computed from
the ground truth dataset. The metrics for the human evalua-
tor is computed by averaging these metrics across all partici-
pants in the study (for the 6 UIs they each evaluated).

unhelpful, as shown in red in Figure 7. Finally, the “Emphasis” prin-
ciple (shown in orange) from CrowdCrit was bimodal – a fairly
even distribution of “accurate” and “inaccurate”, as well as “very
helpful” and “unhelpful ratings”. The “Emphasis” principle mostly
identified issues related to the visual hierarchy of the UI.

The subjective nature of heuristic evaluation was already high-
lighted by Nielsen [40]. To characterize subjectivity in our study,
we computed inter-rater reliability using Fleiss’ Kappa [13]. Ac-
curacy ratings had an agreement score of 0.112 and helpfulness
ratings had a score of 0.100, which suggests only slight agreement.
In addition to the subjective nature of this task, particular choices in
the phrasing of the suggestions could have also lowered agreement
scores. For example, the suggestion “The icons in this group ... could
be more user-friendly with the addition of text labels” calls for a
subjective opinion on whether or not text labels are needed, and
raters might reasonably disagree.

5.2 Quantitative Results: Comparison with
Human Evaluators

We compiled all violations identified by the 12 experts from the
manual heuristic evaluation study. In total, the experts found 72
distinct guideline violations in the 12 UIs. However, participants
sometimes combined multiple violations for a single group or el-
ement (e.g., “The spacing between each icon is inconsistent, and
the entire bottom menu is not centered.”). After splitting these
combined violations into separate issues, the count increased to 91
distinct violations. GPT-4 found 38 helpful violations for the same
set of 12 UIs (determined from the Usage study). Nine of these vio-
lations were missed by human experts, so in total, the experts and
GPT-4 found 100 distinct violations. In summary, 9 violations were
found by GPT-4 only, 29 were found by both GPT-4 and human
experts, and 62 were found by human experts only.

We built a ground truth dataset consisting of these 100 violations
and computed precision, recall, and F1 performance metrics for
GPT-4, which can be found in Table 2. We also compute the average
performance for an individual human evaluator, by averaging these
metrics across all participants, which can also be found in Table 2.
On average, a human evaluator had higher precision than GPT-4,
which means the guideline violations they found were more likely
to be helpful. The average human precision is less than 1, because
study participants sometimes found issues irrelevant to the set of
heuristics used (e.g., recorded visual grouping issues when using
the Semantic Grouping guidelines). GPT-4 scored slightly higher in
recall and slightly lower in the F1 score than the average human
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Figure 6: Histogram showing the number of ratings in each category for accuracy and helpfulness, from the 3 participants in
the Performance Study. For accuracy, the scale is: “1 - not accurate”, “2 - partially accurate”, and “3 - accurate”. The scale for
helpfulness ranges from “1 - not at all helpful” to “5 - very helpful”. The rating data is also visualized as horizontal bar charts
for this study and the Usage Study.

Crowdcrit NN Usability Semantic Grouping

Figure 7: Horizontal bar charts showing the distribution of ratings from the Performance Study for each individual guideline.
The ratings for accuracy are in the top row, and helpfulness is in the bottom row, and each chart has a horizontal black line
depicting the average rating. We highlight several guidelines with high ratings in green, such as “Consistency and Standards”
from Nielsen Norman’s 10 Usability Heuristics. We used orange to highlight an average performing guideline – “Emphasis”
(from CrowdCrit), which had bimodal ratings for accuracy and helpfulness. Finally, we used red to highlight the worst
performing guideline – “Aesthetic and Minimalist Design”, which had generally poor accuracy and helpfulness ratings.
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evaluator, though both these differences are much smaller than the
difference in precision.

5.3 Quantitative Results: Iterative Usage Study
We collected accuracy and helpfulness scores in the Usage study. Sta-
tistics on ratings for suggestions on initial UIs, before participants
made any changes, closely match that of the Performance Study: 52
percent were rated Accurate, 28 percent Partially Accurate, and 20
percent Not Accurate; 47 percent were considered helpful or very
helpful, 19 percent moderately helpful, and 34 percent slightly or
not at all helpful (see Figure 8).

However, score distributions were lower for later rounds, after
participants edited the UIs. Namely, 39 percent were rated Accu-
rate, 26 percent Partially Accurate, and 35 percent Not Accurate; 33
percent were considered helpful or very helpful, 16 percent mod-
erately helpful, and 51 percent slightly or not at all helpful. This
discrepancy suggests that participants’ opinions of suggestions
changed during the iterative re-design process. To investigate this,
we examined the ratings given per round of iteration in the Usage
Study. Since GPT-4’s suggestions vary in accuracy and helpful-
ness, we used a horizontal bar chart to show the distributions of all
ratings given to suggestions in each round. Figure 8 shows a gen-
eral trend of decreasing performance per round for both accuracy
and helpfulness. This trend also generally holds for both metrics
when broken down by guidelines and participants (available in the
Supplementary Materials).

The average inter-rater reliability score, based on the first round
of suggestions, is 0.155 for accuracy and 0.085 for helpfulness, which
again indicates subjectivity in the experts’ opinions towards the
suggestions.

5.4 Qualitative Results: GPT-4 Strengths and
Weakness

We analyzed GPT-4’s suggestions, corresponding expert ratings, ex-
planations, and interview responses from the Usage study. Through
grounded theory coding [16] of the qualitative data and subsequent
thematic analysis [4], we identified the following emerging themes
on GPT-4’s strengths and weaknesses. Figure 9 contains examples
of high and low-rated LLM suggestions to illustrate some of these
themes.

5.4.1 Strength 1: Identification of Subtle Issues (12/12 Participants).
All participants found GPT-4’s ability to identify subtle, easy-to-
miss issues helpful. This includes problems like misalignment, un-
even spacing, poor color contrast, redundant elements, and uncom-
mon icons without text labels. UI B in Figure 9 contains an example
of a misalignment caught by GPT-4 that all three participants found
very helpful. Seven participants mentioned this theme as a strength
during the interview. For instance, P5 stated that the tool is “useful
for pointing out things that are not obvious to the naked eye, like
minor visual details”, and P4 said that they “liked the UI at first, but
then the LLM found small issues with labels, etc.”

5.4.2 Strength 2: Fixing Text-related Issues in the UI (12/12 Partici-
pants). GPT-4 was also effective in identifying text-related issues,
like incorrect grammar, unclear text labels, and text that is not
user-friendly (e.g., uses too much jargon). In addition, GPT-4 would

usually include the correct text to use in its feedback. For instance,
one UI had a grammatically incorrect header: “what kind of pet
your Looking?” and GPT-4 suggested revising it to “What kind of
pet are you looking for?” P1 rated this suggestion as very helpful
and explained that “it gave me the right content to copy and use in
the design.”

5.4.3 Strength 3: Reasoning with UI Semantics (8/12 Participants).
GPT-4 was skilled at reasoning with UI semantics. This includes
identifying large groups of items that could be subgrouped into
smaller, more semantically-related groups. This is illustrated in UI
A of Figure 9, where the LLM suggested subgrouping the menu
items into more related categories. P2 commented “Yes, I think it
would be helpful to separate out the sections into categories, as
some relate to the purpose of the application (traveling), and other
parts are related to basic maintenance of the account (e.g., settings)”.
Other semantics-related issues that GPT-4 identified include finding
groups or subgroups with elements are not clearly related, groups or
visualizations where the purpose is unclear and requires a text label
to explain them, and confusing UIs that require documentation.

5.4.4 Other Strengths. For two participants, GPT-4 made clever,
high-level suggestions. For instance, GPT-4 recommended that a
product quantity value be changed to an editable field, so users
will not have to rely on the ‘+’ or ‘-’ buttons to adjust the quantity,
and cited Nielsen’s “Flexibility and Efficiency of Use” heuristic. In
addition, GPT-4 suggested that a list of reviews for a cafe should
display aggregate statistics, like the total number of reviews or an
average star rating. P1 encountered both these suggestions and
stated that GPT-4 “found two good ones that I would think about –
with reviews and product quantity input field”. P12 encountered a
violationwhere the selected tab in the navbar was called “strategies”,
but the displayed page was about stock performance, which was
unrelated to strategies. They commented that GPT-4 was “spot on”.

5.4.5 Weakness 1: Overapplication of Guidelines (12/12 Participants).
GPT-4 sometimes over-applied guidelines too literally, without
considering the context provided by the rest of the UI, popular
design conventions, nor conflicts with other guidelines. UI C in
Figure 9 shows an example where the LLM correctly identified that
the line thickness is inconsistent for the two tabs; however, this was
a conscious design decision to show the selected tab in the broader
context of the UI. P7 commented “the line under favorites indicates
that we are on the favorites tab/screen; making it consistent would
eliminate this distinction”. Regarding popular design conventions,
GPT-4 often recommended labels for common icons, like the ‘X’
and shopping bag icons, but “universal icons do not need to be
labeled”, as stated by P1.

5.4.6 Weakness 2: Repetition of Feedback (6/12 Participants). GPT-4
sometimes repeated the same feedback for every element of the
same type. For instance, in the second UI of Figure 9, the LLM
suggested increasing the spacing between the “Name:” label and
the name “Suraj shakaya” and then repeated this same suggestion
for both “Contact:” and “Location:”. P4 commented that the LLM
“repeats the same type of issue, and it is especially annoying when
it is incorrect.”
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Number of Ratings

Figure 8: Horizontal bar charts showing the distribution of ratings for each round of evaluation in the Usage study. The ratings
are for suggestions from all participants and sets of guidelines. The average rating and standard deviation is marked for each
round, and there is a general downward trend in performance as the number of rounds increases.

In a well-structured design, the text 
fields for "Name:", "Contact:", and 
"Location:" would be aligned along 
a common line, contributing to a 
clean and organized look. The 
current alignment of these fields 
could be improved for better visual 
coherence. To achieve this, ensure 
that all these fields are aligned 
along the same line. 
(Guideline: Alignment)

Ideally, a group named "menu" should contain 
subgroups that are clearly related to each other. For 
instance, the subgroups could be all related to 
account settings or user profile management. In the 
current design, the subgroups "Change password", 
"Travel agent", "Ticket history", "Payment", "Help 
Center", and "Setting" seem to be a collection of 
various features of the application rather than a 
coherent group. To improve this, consider 
reorganizing these subgroups into more coherent 
categories that reflect their relatedness. 
(Guideline: Related Group Members)

Ideally, the line under 
"FAVOURITES" should be of 
the same thickness as the line 
under "ADS" (Label: ADS) to 
maintain consistency. At 
present, there is a difference in 
thickness between these two 
lines. To address this, consider 
making the thickness of these 
lines consistent. (Guideline: 
Consistency principle)

In the "Graphic Design Group with 
Multiple Rectangles", an effective use of 
overlap would ensure each rectangle is 
distinct and its content clearly visible. 
Currently, the rectangles are 
overlapping in a way that makes it 
challenging to distinguish between 
them. To improve this, consider 
adjusting the positioning or size of the 
rectangles to reduce overlap and 
enhance clarity. (Guideline: Effective 
Use of Overlap)

A B DC

Figure 9: Examples of GPT-4 suggestions that all participants found very helpful or unhelpful, along with their corresponding
UIs above (with the relevant group marked). The suggestions for UIs A and B received ratings of 5 for helpfulness and were
rated as accurate by all three participants (from the Usage study). The “Contact:” field for UI B is slightly misaligned from
the other fields, which GPT-4 caught. UIs C and D were rated 1 for helpfulness by all three participants. For UI C, the LLM
stated that the line thickness was uneven under the “ADS” and “FAVORITES” tab, which is technically accurate (and some
participants rated it as accurate) but unhelpful as the uneven line thickness is meant to indicate the selected tab.
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5.4.7 Weakness 3: Limitations of the JSON Representation (8/12
Participants). A limitation of using JSON to represent the UI is that
GPT-4 cannot capture violations that would require processing the
rendered image of a UI. For example, GPT-4 will call out issues
with elements overlapping when there is no visual overlap. UI D
in Figure 9 is an example where the LLM flagged an overlap issue
because the bounding boxes overlap, but the photos do not overlap
visually. Another error is that the LLM does not recognize center
alignment for items of different sizes. This is explained by P9: “The
elements are of different sizes and the bounding boxes of elements
are not aligned, but the inner contents of the boxes are visually
aligned.”

5.4.8 Weakness 4: Vague Suggestions (5/12 Participants). Five partic-
ipants stated that GPT-4’s suggestions were too vague, specifically
regarding how to fixing the violation. P1 stated that the LLM would
“be more useful if it were more specific and gave more examples
on how to fix things”, and P11 said they would “like to see more
actionable suggestions, like change this color to a specific value”.
The reason for this vagueness is due to our system implementation.
We first attain a set of guideline violations from GPT-4 and then
send the violation explanations only (without the UI) for the LLM
to rephrase into constructive feedback. Since GPT-4 does not have
information on the UI, it cannot suggest specific fixes in the UI to
address each violation. We tried passing in the UI for the rephrasing
call, but it led to high latency (several minutes), so we decided to
not include the UI JSON from a usability perspective.

5.4.9 Other Weaknesses. We noticed an interesting behavior of
GPT-4 in response to designer feedback. When the LLM is notified
that the guideline violation is incorrect for a group or element
(from the designer hiding the suggestion), it would sometimes
select a different guideline to explain the same issue. For instance,
GPT-4 would often cite a violation of “Recognition over Recall”
for unlabeled icons, but if the designer dismisses this suggestion,
GPT-4 would repeat the same suggestion in the next round and cite
“Match Between System and Real World” instead. This behavior
was encountered by 5 participants.

5.5 Qualitative Results: Comparison with
Human Evaluators

We used grounded theory coding and thematic analysis to charac-
terize key qualities for 1) issues violations found by GPT-4 only, 2)
found by both GPT-4 and human experts, and 3) found by human
experts only. Finally, we summarize participants’ feedback for the
LLM from the concluding interview.

5.5.1 Violations Found by GPT-4 only (9 percent). A small fraction
of the violations were found by the LLM only. Eight of the nine
issues were quite subtle, covering poor text contrast, text labels
that require clarification, and misalignment. The ninth suggestion
missed by all participants recommended adding a new feature to
filter through the cafe’s reviews, and participant H8 commented
“this type of suggestion did not cross my mind during the manual
evaluation”.

5.5.2 Violations Found by both Humans and GPT-4 (29 percent).
Twenty-nine issues were identified by both humans and the LLM.

The majority of these violations (15 violations) involved text labels
– labels that require clarification, and missing labels to explain an
icon, element, or group. The second most common issue (6 issues)
involved positioning and alignment, with four being quite obvious
(e.g., the misaligned elements were scattered like in Figure 9C).
Other issues found by both include problems with the UI text (e.g.,
the text had too much jargon) and the hierarchical subgrouping
violation shown in Figure 9A.

5.5.3 Violations Found by Humans only (62 percent). The major-
ity of the violations were found by human experts only (62 vi-
olations). Common characteristics of violations in this category
include “global” (i.e., high-level) issues of the UI, advanced visual
issues, and violations consisting of multiple distinct issues. Par-
ticipants found 11 high-level issues that require understanding of
the UI’s purpose and context. Figure 10 (Violation H1) illustrates a
global violation identified by a human expert, where a large image
hides important content, and compares it to a similar, but more
specific, violation found by GPT-4 (L1). While GPT-4 is able to find
these “global” violations, as discussed in Sections 5.5.1 and 5.4.4,
human experts found considerably more. Eight violations, found
only by human experts, required advanced visual understanding
of the UI. The right screenshot in Figure 10 illustrates two such
violations. The tooltip (Figure 10 H3) displayed a monetary amount
that not only exceeded the axes of the graph but also mismatched
the graph’s content about sleep duration. Violation H2 highlighted
redundant links to the user profile with via both a profile image
and a profile icon. Finally, a few participants stated that parts of
the UI shown in Figure 11 (Round 1) had clashing visual design and
an overly complicated background.

Ten of the violations recorded by the participants involved com-
binations of several distinct issues for a single group or element.
For instance, a violation for the UI in Figure 11 (Round 1) stated
that “The title has incorrect spelling and grammar, is not aligned
on the page/has awkward margins, has inconsistent text styles for
the same sentence, and includes clashing visual elements”. Finally,
participants found 22 issues that were similar to the types of is-
sues caught by GPT-4, such as misalignment, unclear labels, and
redundancy. This implies that GPT-4 is less comprehensive than
a group of 6 human experts, as each UI was evaluated by 6 study
participants.

5.5.4 Interview Findings. Participants were generally impressed by
the convenience of this plugin, which could find helpful guideline
violations at a much faster speed than manual evaluation. H6 said
that it “can cut about 50 percent of your work, and is at the level of
a good junior designer”, and H3 said they “wish it was already out
for use”. Compared to the violations they found manually, several
participants said GPT-4 was more thorough and detailed (H3, H4,
H5, H6, H10). H1 “appreciated how the LLM could find subtle vi-
olations that were missed”, and P5 said they were “overwhelmed
by the number of issues in some UIs” and appreciated how the
LLM can catch violations that were “tedious to find”. H6 said GPT-4
“goes into a much lower level of resolution than is commercially
feasible to do, since it takes a long time”. H1, H3, and H9 valued how
GPT-4 could sometimes better articulate the violation. H9 stated
that they were “pleasantly surprised at how it picked the right way
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L1

L1: For the “Interactive Frame 
with Swipe Up Details and 
Navigation Dots” group, the 
“Swipe up for details” label 
should ideally provide a clear 
indication of the details that will 
be revealed. The current design 
does not provide this clarity, 
which could lead to confusion to 
users. To improve, consider 
specifying what details will be 
shown when the user swipes up.

H1

H1: This seems to be a 
transaction screen, yet entire 
screen’s focus is on large image of 
person and details are collapsed 
behind a swipe making it hard to 
retrieve valuable information. 
Interface can be improved by 
minimizing the user’s memory 
load. 

H2

H2

H3

H2: The expected standard is that a 
group should not have members 
with redundant functionality. The 
gap right now is that there is a 
profile picture in the header, and a 
profile icon at the footer, both of 
which likely lead to a “profile” page. 
This would create redundant 
functionality. To close the gap, 
consider removing the profile 
picture in the header (or the profile 
icon in the footer).

H3: The label says ‘$27,632’, which 
seems irrelevant in the sleep 
situation. It’s also unclear why this 
particular point is highlighted, 
unless it’s triggered by a user 
action. To fix this, consider changing 
the labels to the proper data point 
related to bed time.

Figure 10: The screenshot on the left compares a high-level “global” violation found by a human expert with a similar, but
more specific, violation found by the LLM. The right screenshot contains two violations found by human experts that require
advanced visual understanding of the UI.

to describe the problem”, regarding an issue they struggled with de-
scribing. Finally, H1, H2, H4, H7, and H8 all appreciated how GPT-4
found violations that were missed during their manual evaluation.
H7 said “it was useful, as it captured more cases than I found”.

Participants brought up weaknesses of GPT-4’s feedback, which
mostly aligned with the findings in Sections 5.4 and 5.5.3. These
limitations include missing the majority of the “global” violations
(H1, H5, H9), limited visual understanding of the UI (H2, H8, H11),
and poor knowledge of popular design conventions (H2, H7, H8,
H10, H11). Finally, like the participants in the Usage study, those
in this study also did not consider the LLM’s mistakes to be a
significant issue. H10 said “if the feedback is correct, then is it very
helpful, and if not, it is not a big deal as you can just dismiss it”, and
H6 said “the 60 percent success rate is not a problem, as it saves a
lot of time in the end”.

5.6 Qualitative Results: Integration into
Existing Design Practices

We analyzed the interview responses from the Usage study with
grounded theory coding and thematic analysis to determine this
tool’s fit into existing design practice. The emerging themes cen-
tered around how and when designers would integrate it in their
practice, potential broader use cases, and possible dangers of an
imperfect tool.

5.6.1 How andWhen Designers Would Integrate this Tool in Practice.
Nine out of 12 participants said they would use this tool. The three
who would not cited inaccurate and vague suggestions as reasons.
Of the nine participants who would use this tool, three said they

would use it during the initial stages of the design. This includes
tasks like determining the hierarchy of components in low-fidelity
prototypes (P5, P7) and “exploring early stage concepts” (P7). The
other six participants would use this tool in the later design stages.
P5 said they would also use it “after the first draft of high fidelity
for alignment issues”. P11 said “after finalizing their design, I would
run a check before sending it to engineering”, and they would also
run this tool “after making large design changes to see if any design
considerations were missed”. Finally, P6 said they would run this
tool “after prototyping and before usability testing; it is valuable to
test the LLM’s recommendations during the user test”.

Regarding iterative or one-shot usage, seven participants pre-
ferred using this tool for a single check, and the other five preferred
iterative usage. The participants who preferred one-shot usage
stated that the LLM feedback was less accurate and helpful in later
rounds (P4, P5, P7), found that the “first round of edits was suffi-
cient” (P8), or preferred to use the LLM’s suggestions as “tips to
start off the thinking process, but not rely on it” (P7).

Participants also had positive feedback on the interaction design
of the plugin. Six participants stated that they liked being able to
click on the group or element’s name in the suggestion to select it
in the mockup (Figure 2, A). Four participants stated they like the
references to guidelines, as it “adds credibility” (P3), and they could
reference the guideline’s source material for more context (P9). P3
liked the constructive framing of the violations, saying that “the
type of language is encouraging, which is nice to see”. Finally, P4
liked the “built-in guideline options and the flexibility to specify
my own guidelines”.
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5.6.2 Potential Broader Use Cases. The participants brainstormed
a long list of use cases for this tool. Some use cases are based on
real observations from the Usage study, and others are hypothetical
(from speculation). For observed use cases, the most common was
using this tool to save busywork, which was mentioned by 5 partic-
ipants. P10 said this tool would “save time on mundane tasks”, for
things like “spellcheck”, and 3 participants said it can catch small de-
tails like line spacing, size, and “small things you might miss” (P11).
Other observed use cases include evaluating other people’s designs
during teamwork (P3) and secondary research (P8), and using it “as
a first round of usability testing” (P8). Common hypothetical use
cases include using it for accessibility checks (4 participants) and
training novices (10 participants). P5 stated that this tool can “help
younger designers learn and reinforce these guidelines”, and P11
and P12 said the mistakes made by the LLM can train novices to
carefully consider design suggestions and be more skeptical. Other
speculative use cases include getting a second opinion on your UIs
(for designers working solo) (P6), checking for compliance with
brand standards (P10) and company rules (P12), and “large-scale
evaluation, where you designed a lot of screens and want a quick
evaluation” (P9).

5.6.3 Potential Dangers of this Tool. Although the tool sometimes
reported inaccurate violations, most participants (8 out of 12) con-
sidered the tool not dangerous because there is a human in the loop
to catch errors. However, some potential dangers stated by partici-
pants include “thinking there is something wrong with the design
when there might not be” (P2) and users who trust the LLM 100
percent (P1, P4, P6, P9). For instance, novices may fully follow the
LLM’s advice (P1, P2, P3, P6, P11), and P3 suggested that they could
use this tool with expert supervision. However, 4 participants felt
that novices should be able to detect the LLM’s mistakes. P3 stated
that “the wrong suggestions are outlandish enough that novices
can tell that it does not make sense”. There were also some negative
feedback regarding the plugin design. Three participants (P2, P8,
P11) found the LLM suggestions too wordy, and P7 did not like how
the tool “can only evaluate one screen at a time, as opposed to the
whole flow.”

6 DISCUSSION
We explored the potential of using LLMs for automated heuristic
evaluation. In particular, we assessed the feasibility of the best
performing LLM (GPT-4) and how a tool built on this can fit into
existing design practice. We discuss interesting insights from our
findings, and implications for its feasibility and integration into
design practice.

6.1 Feasibility of GPT-4 for Heuristic Evaluation
We assessed GPT-4’s performance quantitatively and qualitatively.
From our qualitative analysis, we identified a concrete set of
strengths and weaknesses. Most of these weaknesses could poten-
tially be addressed, which we will discuss in Future Work (Section
7). Quantitatively, the GPT-4 was judged to be more accurate and
helpful than not during the Performance study and the first round
of the Usage study. The authors selected the UIs for both studies
because they identified issues according to the chosen guidelines.
This suggests that the LLM can identify some weaknesses in poor

UI designs. The decrease in performance after each iteration during
the Usage study could be explained by the fact that the participants
are design experts, so their edits likely improved the UI overall,
leaving fewer guideline violations for GPT-4 to detect. As a result,
the task becomes harder for the LLM, causing it to detect erroneous
violations. Figure 11 illustrates this; GPT-4’s suggestions become
less accurate and helpful as P2 iterates on the UI using the Crowd-
Crit guidelines, while the UI’s visual design becomes noticeably
better going into each round of evaluation. This general decrease
in performance as the UI improves implies that this tool is perhaps
not yet suitable for iterative usage by expert designers. In addition
to being affected by the quality of the UI mockup, the performance
also varies depending on the guidelines used.

6.1.1 CrowdCrit. GPT-4 performed the best with CrowdCrit’s vi-
sual design heuristics in both accuracy and helpfulness. This is
likely due to the prevalence of specific visual design heuristics that
rely on mathematical checks for alignment, spacing, and consis-
tency in size – all checks that are straightforward to compute with
layout information found in the UI JSON (except for center align-
ment and overlap). CrowdCrit also covers UI text accuracy (i.e.,
grammar and spelling), where LLMs excel in identifying and fixing
issues. Regarding helpfulness, many visual design errors are subtle
(like slight misalignment), and participants found it very useful
when the LLM found them.

6.1.2 Nielsen Norman 10 Usability Heuristics. We expected the
Nielsen Norman 10 Usability Heuristics to have the best perfor-
mance, as they are widespread on the web and would have appeared
in GPT-4’s training data. However, its worse performance, espe-
cially for helpfulness, could be because many of its heuristics apply
to interactions or flows (like “User Control and Freedom”, “Help
and Documentation”, and “Error Prevention”) that are out of scope
for single-screen, static mock-ups. In addition, the “Aesthetic and
Minimalist Design” heuristic covers visual design but had poor
performance. This is probably because this heuristic is quite vague,
focusing on only presenting necessary information to the user; this
is difficult to assess, especially without the context provided by
other screens in the flow. On the other hand, GPT-4 performed
well on “Consistency and Standards”, which mostly checked for
consistency in the visual layout, like size and alignment, which are
straightforward numerical checks.

6.1.3 Semantic Grouping. The lack of training data on Semantic
Grouping guidelines, which were recently developed, could explain
their lower accuracy. In addition, the quality of group/element
names in the UI JSON impacts the assessment of the UI’s semantic
organization. Since designers must manually add these names, they
may not always be accurate. While we can automate the naming of
groups, they are determined from the labels of their members. Many
leaf elements, like icons and images, are also missing labels, which
may affect the accuracy of the automatically generated labels.While
GPT-4 generally performed well for evaluating the relatedness
of elements, as mentioned by study participants, the times it did
not perform well for semantic grouping were probably for poorly
annotated UIs.
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A. Consider revising  the phrase “what kind of 
pet\nyour Looking?” to “What kind of pet are you 
looking for?” to enhance clarity and 
communication.
B. Consider correcting "Catogeries" to 
“Categories” to ensure accuracy and 
professionalism.
C. The “View All” button seems to be misaligned 
with the Categories title. Consider centering it to 
enhance the visual flow and consistency. 
D. The top menu icons appear to have unequal 
spacing. Consider adjusting the spacing to be 
equal for improved visual balance. 
E. The search bar appears to be misaligned 
with the other elements on the page. Consider 
centering it to enhance the visual flow and 
consistency. 
F. The Categories Group seems to have a large 
space between the title and the categories. 
Consider reducing the line spacing to improve 
readability and association. 
G. The "petsee" text appears to be misaligned 
with the hamburger menu. Consider centering it 
to enhance visual balance and consistency. 

A

B

H

J
H. Ideally, the text elements "Adopt pets", 
"sell pets", "Groom pets", and "Rental pets" 
in the "Pet Exploration Group" should be 
aligned properly to facilitate easy navigation. 
To enhance the user experience, consider 
adjusting the alignment of these text 
elements. 
I. The expected standard is to have the text 
"What kind of pet are you looking for?" 
aligned with the image in the "Pet Selection 
Group" to create a clear relationship 
between the two. 
J. The "Search Bar Group" should ideally be 
aligned with the rest of the elements on the 
page for easy location. To improve this, 
consider adjusting the alignment of the 
"Search Bar Group" with the rest of the 
elements. 
K. The expected standard for the 
"Categories Group" is to have even spacing 
between the text and the images to ensure 
clear association. 
L. Ideally, the "Top Menu Group" should 
have even spacing between the icons to 
facilitate easy distinction. 

F

Round 1 Round 2 Round 3

Initial UI Feedback for Initial UI
Designer’s 

First Revision 
Feedback for  UI After First 

Revision
Designer’s 

Second Revision

HelpfulnessAccuracy

M. The expected standard for text elements 
within a group (Label: Explore Pets, Adopt 
pets, Sell pets, Groom pets, Rental pets) is 
to have consistent font sizes and colors to 
maintain a clear hierarchy and importance 
of information. 
N. The "Header Group" should ideally have 
a clear visual hierarchy, with elements like 
the "hamburger" icon and the "petsee" text 
differing in size to indicate their importance. 
O. Ideally, the text "What kind of pet are you 
looking for?" should have a clear and 
distinct space from the image to ensure 
users can easily associate the text with the 
image.
P. The "Search Bar Group" and the 
"Categories Group" should ideally be 
placed with enough space in between to 
distinguish their separate functions.
Q. The "View All” Button Group should 
ideally align with the other elements on the 
page to maintain balance and aesthetic 
appeal. 

Feedback for  UI After 
Second Revision

Accuracy: 2.9 Helpfulness: 3.8 Accuracy: 2.0 Helpfulness: 3.4 Accuracy: 1.4 Helpfulness: 1.8 

Figure 11: Plots of the average accuracy and helpfulness rating per round from P2, who used the CrowdCrit guidelines to
evaluate the UI shown above. Paraphrased GPT-4 suggestions from each round and their average accuracy and helpfulness
ratings are also provided. The suggestions P2 used to edit the UI are highlighted in gray, and the corresponding changes are
annotated in the revised UI. Participants made at most 2 rounds of edits, so the “Feedback for UI After Second Revision” was
never used for edits. Note that participants were instructed to approach this task as if they were using this plugin for their own
design work and to put as much effort into the edits as they would like. This sometimes led them to fix issues in the design
beyond what the LLM explicitly stated. The UI’s visual design improves per round, while the average accuracy and helpful
ratings decrease.

6.2 General Insights into LLMs and their Future
Development

The LLM comparison analysis revealed that this automated heuris-
tic evaluation task of UIs in JSON form is hard enough to require
the largest state-of-the-art model with the strongest reasoning
skills (GPT-4). The other state-of-the-art models were smaller and
struggled with this task; they either missed most of the violations
or indiscriminately applied the guidelines and had difficulty fol-
lowing the detailed instructions. While these LLMs found some
helpful violations, their performance falls short for building a sys-
tem. The prompt exploration study showed that breaking tasks
into smaller, simpler ones and providing the maximum amount of
guidance yielded the strongest performance for GPT-4, and this
insight probably applies to other LLMs.

Furthermore, LLMs are rapidly advancing. Recent developments
include multimodal models that can accept images as input (e.g.,
GPT-4V), and models with much larger context windows (e.g., GPT-
4-Turbo). Multimodal LLMs could accept UI screenshots, which
may give the model a better visual understanding of the UI; larger
context windows would enable more complex UIs, an extensive
list of few shot examples, or chain-of-thought prompting. These
developments could address some of the limitations we discussed
and may improve LLM performance for this task; however, this
would have to be evaluated in future work, as our experiments with
earlier multimodal models were not successful.

6.3 Comparison with Human Evaluators
While GPT-4 and a human evaluator had comparable F1 scores,
human evaluators had higher precision, a better understanding of
the UI’s context, found more “global” (i.e., high-level) violations,
and had superior visual understanding of the UI. GPT-4, on the
other hand, was more thorough, detailed, and specific, catching a
greater number of helpful issues than an individual human eval-
uator. Furthermore, GPT-4 was better at catching detailed errors
that were tedious for humans to find and was also better at finding
subtle violations. These findings imply that the strengths of humans
and GPT-4 are complementary for heuristic evaluation.

6.4 Fit into Design Practice
We found that even with its current performance, participants were
generally positive towards this tool and would use it in their prac-
tice. They stated that the errors made by GPT-4 were easy to de-
tect and not dangerous, as there is a human in the loop to ensure
that updates to the UI mockup are based only on valid feedback.
Given the LLM’s strengths, designers have brought up various use
cases for this plugin, such as finding subtle visual design errors in
their high-fidelity mockups and planning the grouping structure
of their low-fidelity designs. The core capabilities of this plugin
allow designers to evaluate their Figma mockup against any set
of guidelines, and participants suggested extending it to check for
accessibility and compliance with company/brand standards. The
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experts’ acceptance of the LLM’s imperfect suggestions, combined
with numerous suggested use cases, implies that an automated
LLM-driven heuristic evaluation tool may soon find a place in de-
sign practice, supporting human designers with various aspects of
the design process.

7 LIMITATIONS AND FUTUREWORK
There are several limitations with this system and studies. For the
system, the LLM’s accuracy on semantic heuristics depends on the
quality of the names designers manually add to elements. Further-
more, due to context window limitations (8.1k tokens for GPT-4),
the plugin could only evaluate one static mobile UI screen at a time.
This prevents the plugin from evaluating interactivity, design con-
sistency across screens, and task flows. Larger UIs, like websites and
desktop apps, are more complex and would also exceed this context
window size. While there are models with larger context windows
(Claude 2 and GPT-3.5-16k), they did not produce sufficiently help-
ful output in our exploration. Other LLMs with even smaller context
windows, such as Llama 2 and GPT-3.5-turbo, are not suitable for
realistic UIs. Regarding the studies, they captured the quality of the
LLM’s feedback, and participants used the plugin to revise mostly
high-fidelity mockups. These studies did not capture the impact
of this plugin’s usage on a more realistic design scenario, where
designers start with an idea and design a UI mockup based on it.

These limitations suggest exciting opportunities for future work.
To start with, we describe potential ways to address the LLM limi-
tations discussed in Section 5.4. We have stored the data on LLM
suggestions, ratings, rating explanations, and UI JSONs from both
studies (available in the Supplementary Materials). Future work
can use this data to fine-tune an LLM to improve performance. Fur-
thermore, to address repetitive suggestions, P5 suggested grouping
them into one long suggestion, which could be accomplished by
some engineering effort to identify elements of the same type in
the UI JSON. Future work should also evaluate the performance of
emerging multimodal models (e.g., GPT-4V) with a prompt consist-
ing of both the UI screenshot and JSON representation to see if it
improves the LLM’s visual understanding of the UI. Models with
larger context windows (e.g., GPT-4-turbo) should be evaluated
to see if they can enable evaluation of task flows across multiple
screens. Such models could also enable use of few-shot or chain-of-
thought examples. Once these limitations of the plugin have been
addressed, a study could be conducted where participants use this
plugin to assist in creating a design from a given prompt. This study
would more realistically simulate the tool’s usage in practice.

8 CONCLUSION
We designed and built a Figma plugin that uses LLMs to automate
the heuristic evaluation of Figma mockups with arbitrary text-
based design guidelines. After determining the optimal LLM for this
task (GPT-4), we investigated its capability to automate heuristic
evaluation through a study where three design experts rated the
accuracy and helpfulness of GPT-4 generated design suggestions
for 51 UIs, and also compared its feedback with those provided
by human experts. Finally, we explored how this tool can fit into
existing design practice via a study where 12 design experts used
this tool to iteratively refine UIs, assessed the generated feedback,

and discussed their experiences working with the plugin. We found
that GPT-4 generally performswell on poor UI designs, but its utility
decreases through iterations of revising the design. Participants
generally do not find the LLM’s mistakes to be an issue, as they
are easily detected by human designers. Most participants would
already use this tool as part of their design practice.
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A APPENDIX

System Instructions:
These are the guidelines you will use to evaluate the given UI:

1. Visibility of system status: The design should always keep users informed about what is going on, 
through appropriate feedback within a reasonable amount of time. Tips for applying guideline: 1) 
Communicate clearly to users what the system’s state is …

Conversation History of Designer’s Feedback:
Assistant:
Interactive Group with Navigation: The navigation arrows point downwards when the text instructs 
to swipe up, which does match user expectation (Guideline: Match between system and real world) 
and group {GROUP JSON} ...
User:
These violations you stated are all incorrect, please reflect on why you were wrong. 
Assistant:
Upon reflection, I see that I incorrectly assumed that the navigation arrows are pointing up …

...

User:

{'id': '5:45', 'name': 'Events UI Detailed Semantic Annotations', 'type': 'FRAME', 'children:…}

What guidelines does this UI violate? The "name" and "characters" attributes contain semantic 
descriptions of the functionality or content of groups and elements in the UI. The "bounds" 
attribute contains the location (x,y) and size (width, height) of each element and group…

When conducting your evaluation, please completely ignore (i.e. do not return any violations for) 
the group representing the mobile system status bar or any of the items in the status bar. The 
status bar is located at the top of the screen and contains items like the time and icons for the 
battery, wifi, etc. …

System Instructions:
For the provided mapping of guidelines to violations, please copy this entire mapping, except for 
each guideline violation (labeled "Violation Explanation"), please rephrase the explanation into 
constructive advice on design choices to think about and label it with the same label ("Violation 
Explanation"). For the rephrased explanation, please include these three things: 1. describe what 
following the guideline would look like (expected standard) …

User:
Nielsen Norman Heuristics: [Header Bar: The search icon and the login text are. … ] (LLM Response)

Heuristic Evaluation Prompt

LLM Evaluation Response 
(Identified Violations)

LLM Eval. Response Rephrasing Prompt

Task Instructions

Design Guidelines

Conversation History of 
incorrect violations,

 self-reflection prompts, 
and the LLM’s self-

reflection responses

UI JSON

Instructions to identify 
guideline violations

Instructions to avoid 
common errors

Instructions to rephrase 
violations into 

constructive feedback

LLM Eval. Response 
(Identified Violations)

For the UI specified in this JSON:

Figure 12: Diagram illustrating the components of each prompt. The Heuristic Evaluation Prompt and the LLM Eval. Response
Rephrasing Prompt form a chain, where the Rephrasing Prompt takes the LLM response from the Heuristic Evaluation prompt
and instructs the LLM to rephrase it. The Heuristic Evaluation prompt starts with system instructions to guide the LLM’s
behavior and contains the set of guidelines for evaluation. It is followed by a conversation history with incorrect/unhelpful
violations found by the LLM (as “Assistant”) that were denoted by the designer, a “User” query telling the LLM that these
violations were wrong and to self-reflect, and the LLM’s response to the self-reflection. There may be zero to multiple sets of
this conversation, depending on the number of evaluation rounds. The final component is the user message, which contains
the UI JSON, instructions to identify guideline violations, a short description of the content available in the UI JSON, and
specific instructions to avoid common errors. The Rephrasing prompt contains system instructions that direct the LLM to
constructively rephrase the violation explanation (following [48]) and also guides the LLM to format the response correctly.
The user query contains the LLM Eval. response with the identified violations.


	Abstract
	1 Introduction
	2 Related Work
	2.1 AI-Enhanced Design Tools
	2.2 Applications of Generative AI in Design
	2.3 AI-enhanced Software Testing
	2.4 Heuristics and Design Guidelines
	2.5 User Interfaces for Design Feedback

	3 System Details
	3.1 Design Goals
	3.2 Design Walkthrough
	3.3 Implementation
	3.4 Improving LLM Performance
	3.5 Exploration of Alternative Prompt Compositions
	3.6 Comparison with other LLMs

	4 Study Method
	4.1 Performance Study
	4.2 Manual Heuristic Evaluation Study with Human Experts
	4.3 Iterative Usage Study

	5 Results
	5.1 Quantitative Results: Performance Study
	5.2 Quantitative Results: Comparison with Human Evaluators
	5.3 Quantitative Results: Iterative Usage Study
	5.4 Qualitative Results: GPT-4 Strengths and Weakness
	5.5 Qualitative Results: Comparison with Human Evaluators
	5.6 Qualitative Results: Integration into Existing Design Practices

	6 Discussion
	6.1 Feasibility of GPT-4 for Heuristic Evaluation
	6.2 General Insights into LLMs and their Future Development
	6.3 Comparison with Human Evaluators
	6.4 Fit into Design Practice

	7 Limitations and Future Work
	8 Conclusion
	References
	A Appendix

