
1 / 4

björn hartmann research statement

The progress of any creative discipline changes significantly with the quality of
the tools available. As the diversity of user interfaces multiplies in the shift away
from personal desktop computing, yesterday’s tools and concepts are insufficient
to serve the designers of tomorrow’s interfaces. My research in human-computer
interaction focuses on the design, implementation, and evaluation of authoring
environments for novel user interfaces. My dissertation research is concerned with
the earliest stages in ui creation - activities that take a novel idea and transform it
into a concrete, interactive artifact that can be experienced, tested, and compared
against other ideas. The dissertation addresses two research questions: How can
tools enable a wider range of designers to create functional prototypes of ubiquitous
computing interfaces? And how can design tools support the larger process of
learning from these prototypes?

improving how prototypes are built

Prototyping is the fundamental activity that structures innovation in design.
While prototyping tools are now common for graphical user interfaces on
personal computers, prototyping interactions off the desktop remains out of reach
for interaction designers. Our fieldwork at professional design companies showed
that design generalists lack the tools to fluently experiment with interactions for
sensor-based interfaces and information appliances. The first contribution of my
dissertation research is a set of methods, embodied in authoring tools, that lower
the expertise threshold required to author such novel interfaces. These tools enable
more designers to author a wider range of interfaces, faster.
d.tools is a software and hardware toolkit that embodies an iterative-design-
centered approach to prototyping information appliances [1]. d.tools enables
non-programmers to work with the bits and the atoms of physical user interfaces
in concert. Supporting early-stage prototyping through a visual, statechart-based
approach, d.tools extends designers’ existing storyboarding practices. As designers
move from early-stage prototypes to higher fidelity prototypes, d.tools augments
visual authoring with scripting. d.tools offers a plug-and-play hardware platform
based on smart components that communicate on a shared bus. The architecture
exposes extension points for experts to grow the library of supported electronic
components.
d.tools provides software abstractions for hardware and offers rapid authoring of
interaction logic. An additional barrier for practitioners became apparent when
we deployed d.tools to an hci class: students often struggled to transform raw,
noisy sensor data into useful high-level events for interaction design. Exemplar, an
extension to d.tools, bridges the conceptual gap between conceiving of a sensor-
based interaction and formally specifying that interaction through programming-
by-demonstration [2]. With Exemplar, a designer first demonstrates a sensor-
based interaction to the system (e.g., she shakes an accelerometer). The system
graphically displays the resulting sensor signals. The designer then marks up

The d.tools visual authoring
environment enables rapid
construction of UI logic.

The d.tools hardware
interface offers a plug-
and-play bus for smart
components.

Exemplar combines
programming-by-
demonstration with direct
manipulation to author
sensor-based interactions.

björn hartmann · research statement

2 / 4

This evaluation participant
used Exemplar to control 2D
aiming in a game with an
accelerometer, and shooting
with a flick of a bend sensor.

the part of the visualization that corresponds to the action-Exemplar learns
appropriate thresholds and patterns from these markups. The designer can review
the learned actions through real-time visual feedback and modify recognition
parameters through direct manipulation of the visualization.
Both d.tools and Exemplar have been evaluated through individual laboratory
studies and deployment to interaction design courses and to industry. In a first-
use evaluation of Exemplar, participants with little or no prior experience with
sensing systems were able to design new motion-based controllers for games
in less than 30 minutes. In our collaboration with educational toy company
Leapfrog , we provided d.tools hardware schematics and software to Leapfrog’s
advanced development group. In return, Leapfrog manufactured a complete set of
hardware toolkits for us to distribute to a second year of Stanford hci students. In
collaboration with Nokia, we also extended d.tools to author prototype interfaces
for mobile devices. I look forward to deepen and grow such partnerships with
industry and professional designers in the future.

Supporting why prototypes are built

While enabling the construction of prototypes is an important function of design
tools, it should not be the only goal. Prototypes are just a means to an end-they
are built to elicit feedback about design choices. Today’s design tools are largely
ignorant of this larger objective. My dissertation research contributes systems
that explicitly acknowledge and support the context in which prototypes are built.
These accelerate gaining insight from prototypes.
Exploring alternatives: Designers often create multiple alternative prototypes
prior to committing to a direction, because these alternatives provide them with a
more complete understanding of a design space; facilitate comparative reasoning;
and scaffold stakeholder communication. How might interaction design tools
explicitly support creation and management of multiple user interface alternatives?
We investigated this question with Juxtapose, a code editor and runtime
environment for designing multiple alternatives of interaction designs in parallel
[3]. Juxtapose offers a textual editor for uis authored in ActionScript in which
interaction designers can define multiple program alternatives through linked
editing, a technique to selectively modify source files simultaneously. The set of
source alternatives are then compiled into a set of programs that are executed in
parallel. Optimizing user experience also often requires trial-and-error search
in the parameter space of application variables. To improve this tuning practice,
Juxtapose generates a control interface for application parameters through source
code analysis and language reflection. A summative study of Juxtapose with 18
participants demonstrated that parallel editing and execution are accessible to
interaction designers and that designers can leverage these techniques to survey
more options, faster. To demonstrate that general principles of working with
alternatives carry over into other domavins, we also developed Juxtapose runtime
environments for mobile phones and microcontrollers.

Automatic generation
of control interfaces for
application parameters
enables experimentation
with dynamic UI animations.

Side-by-side execution
in Juxtapose allows rapid
comparison of alternatives.

Juxtapose mobile extends
working with alternatives to
smart phone applications.

björn hartmann · research statement

3 / 4

Managing feedback about prototypes: If prototypes are primarily learning
vehicles, how can design tools help designers capture and manage feedback?
We explored two methods for integrating feedback directly into tools. Many
prototypes go through team discussions and reviews before being tested. In
word processing, revision management algorithms and interactions techniques
effectively enable annotation and asynchronous collaboration over text documents.
But no equivalent functionality exists yet for revising interaction designs. d.note
introduces a revision notation for expressing tentative design proposals within
d.tools [4]. The tool comprises commands for insertion, deletion, modification
and commenting on appearance and behavior of interface prototypes. Based
on the insight that changes are often proposed on a higher level of abstraction
and ambiguity than concrete logic, d.note realizes three benefits: it visually
distinguishes tentative changes to retain design history, allows for Wizard of Oz
simulation of proposed functionality, and manages display of alternative design
choices to facilitate comparison.
Contextual inquiry with designers showed that prototype test sessions are
frequently videotaped, but the hours and days of work required for manual video
analysis has limited the practical value of video. The d.tools video suite provides
integrated support for testing prototypes with users and rapidly analyzing the
results to inform subsequent iteration [1]. d.tools logs all user interactions
with a prototype and records an event-synchronized video stream of the user’s
interaction. The video is automatically structured through state transitions
and input events. d.tools provides synchronized video interactions that enable
designers to view video and statechart interaction in parallel, visualize time line
events as they appear in the statechart, and perform direct manipulation queries to
quickly recall, for example, all of the video interactions in a particular state or with
a particular control.

Research Agenda

In future research, I will continue my focus on hci systems in general and
authoring tools in particular. In addition, I am interested in contributing
methodologies for tool evaluation. I will continue collaboration with professional
designers, and expand my network of academic collaborators across departments.
What will the design studio of the future look like? Digital and physical tools
coexist in today’s design spaces, but they are largely unaware of each other. What
would an enhanced design studio look like that acknowledges the co-presence
of digital and physical artifacts and aids designers in working fluidly with both
types of material? As a first step toward the design of room-scale environments,
I recently constructed a large, multi-person workbench with overhead image
capture with collaborators at Microsoft Research [6]. This early work has already
generated many opportunities for continued research.
What would a textual programming language for early prototyping look like?
Prototyping tools for experts often take the shape of libraries for a general purpose

In a first evaluation of d.note,
participants revised d.tools
interaction designs with
freeform annotations and
semantic revision actions on
a pen-driven tablet display.

The d.tools test & analysis
functions connect video
clips of test sessions to
event traces of the tested
prototype.

FourBySix is a design
workbench constructed with
collaborators at Microsoft
Research [6].

björn hartmann · research statement

4 / 4

language such as Python or c++. If prototypes are distinct from ‘polished’ software,
how can a programming language reflect and exploit that difference? How can
language design facilitate gathering feedback, modifying applications at runtime, or
leaving behaviors partially undefined?
How might people author user interfaces on mobile devices? Tools exist to author
applications for mobile devices. But how would one program on a phone? For the
majority of people outside the western world, a cell phone is the only computing
device they are likely to use or own. Given constraints of screen real estate and
input technologies, what are the boundaries of authoring on mobile devices? Can
we enable millions of interested amateurs to experience the empowerment many
of us felt programming our first applications on desktop pcs? I will research how
careful editor design, combined with programming by example modification [5]
can overcome the limitations of mobile devices.
How should the HCI community evaluate tools research? Close-ended
experiments that are appropriate for the evaluation of specific interaction
techniques are not easily transferable to design tools. But the summative usability
evaluation of systems that is prevalent today often does not contribute to building
a theory of design tools. I will investigate methods to evaluate complex authoring
environments that lead to more confident generalization of findings beyond the
particular interface artifact that was tested.

References
Hartmann, Björn, Scott R. Klemmer, Michael Bernstein, Leith Abdulla, Brandon Burr, Avi
Robinson-Mosher, and Jennifer Gee. Reflective physical prototyping through integrated design,
test, and analysis. In Proceedings of uist 2006: ACM Symposium on User Interface Software and
Technology. Montreux, Switzerland, 2006. (best paper award)

Hartmann, Björn, Leith Abdulla, Manas Mittal and Scott R. Klemmer.
Authoring Sensor Based Interactions Through Direct Manipulation and Pattern Matching. In
Proceedings of chi 2007: ACM Conference on Human Factors in Computing Systems. San Jose, ca,
2007. (best paper award)

Hartmann, Björn, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R. Klemmer.
Design as Exploration: Creating Interface Alternatives through Parallel Authoring and Runtime
Tuning. In Proceedings of uist 2008: ACM Symposium on User Interface Software and Technology.
Monterey, ca, 2008. (best student paper award)

Hartmann, Björn, Sean Follmer, Anthony Ricciardi, Timothy Cardenas, and Scott R. Klemmer.
d.note: Tracking Revisions, Alternatives, and Annotations in Interaction Design Prototypes.
In preparation.

Hartmann, Björn, Leslie Wu, Kevin Collins, and Scott R. Klemmer. Programming by a Sample:
Rapidly Creating Web Applications with d.mix. In Proceedings of uist 2007: ACM Symposium on
User Interface Software and Technology. Newport, ri, 2007.

Hartmann, Björn, Merrie Morris, Hrvoje Benko, Andrew Wilson. Imaging for Imagination:
Enabling Design across Physical and Digital Artifacts on an Interactive Workbench. In submission.

[1]

[2]

[3]

[4]

[5]

[6]

