
DESSERT: Debugging RTL Effectively with State
Snapshotting for Error Replays across Trillions of cycles
Donggyu Kim1, Christopher Celio2, Sagar Karandikar1, David Biancolin1, Jonathan Bachrach1, Krste Asanović1

1Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
{dgkim, sagark, biancolin, jrb, krste}@eecs.berkeley.edu

2Esperanto Technologies
christopher.celio@esperantotech.com

Abstract—We present DESSERT, an FPGA-accelerated methodology
for simulation-based RTL verification. The RTL design is automatically
transformed and instrumented to allow deterministic simulation on the
FPGA with initialization and state snapshot capture. Assert statements,
which are present in RTL for error checking in software simulation,
are automatically synthesized for quick hardware-based error checking.
Print statements in the RTL design are also automatically transformed to
generate logs from the FPGA, which are compared on the fly against a
functional golden-model software simulator for more exhaustive error
checking. To rapidly provide waveforms for debugging, two parallel
deterministic FPGA-accelerated RTL simulations are run spaced apart
in simulation time to support capture and replay of state snapshots
immediately before an error. We demonstrate DESSERT, running on
public-cloud FPGAs at extremely low cost, by catching bugs in a complex
out-of-order processor hundreds of billions of cycles into SPEC2006int
benchmarks running under Linux.

Keywords-RTL debugging; hardware verification; simulation-based
verification; FPGA-accelerated simulation

I. INTRODUCTION

The increasing complexity of modern hardware design makes
verification challenging and verification often dominates design costs.
While formal verification approaches are increasing in capability and
can be successfully employed for some blocks or some aspects of a
design, and while unit-level tests can improve confidence in individual
hardware blocks, dynamic verification using simulators or emulators
is usually the only feasible strategy for system-level verification.
As well as verifying directed and random test stimuli, it is also
important to validate the system specifications and design by running
application software on the design. In addition to the large effort to
create a system-level testbench, each bug found requires considerable
effort to diagnose and repair.

Debugging errors found at the system-level while running realistic
workloads is a notoriously difficult task. Existing approaches for
system-level pre-silicon verification and debugging fall into a few
categories as shown in Table I.

Software RTL simulation with assertion detection can be an effec-
tive methodology for RTL verification and debugging, by producing
waveform dumps that give full visibility into bugs. However, software
RTL simulation is far too slow (up to tens of KHz) to run realistic
workloads on complex hardware designs and becomes even slower
when waveform dumps are enabled.

Hardware emulation engines, such as Cadence Palladium and
Mentor Veloce, provide a software-like debug environment while
being fast (around 1 MHz). But these custom emulation engines are
extremely expensive, and can only be justified by the largest projects.
Even in these projects, they remain a scarce resource that must be
shared across multiple teams.

FPGA prototyping is a mainstay of pre-silicon full-system val-
idation, as it is significantly cheaper than commercial hardware

emulation engines and can be faster: single-FPGA prototypes can
execute at tens to hundreds of MHz. However, FPGA prototypes
provide limited visibility for signal activities, making it extremely
difficult to debug any errors encountered. Moreover, many bugs are
sometimes difficult to reproduce, as they may depend on the non-
deterministic initial state and latencies in the host-platform, such
as DRAM or network I/O. While vendors provide FPGA signal
monitoring tools, such as ChipScope and SignalTap, these require
manual selection of a few signals, leading to long debug loops as
the design must be re-instrumented, re-synthesized, and re-executed
to change the observed signals. There has been significant research
towards improving controllability and visibility in FPGA prototypes
by providing GDB-like interfaces [1], [2], [3] that allow emulations
to be carefully advanced, halted, and resumed, selected internal
signals to be read and forced, breakpoints to be set at runtime, and
emulation to be rewound. Unfortunately, like the vendor-provided
tools, effective debugging is predicated on selecting the right subset
of signals to be instrumented for reads, forces, and breakpoints.

Checkpointed FPGA prototyping removes the need to intelli-
gently select signals to instrument [4], [5], [6] by allowing error
waveforms to be reconstructed in software RTL simulation. While
this provides full visibility of the design in a region of interest (ROI),
checkpoint intervals must be carefully chosen as frequent checkpoint-
ing of large designs can easily become a simulation bottleneck, while
taking fewer snapshots lengthens the required I/O trace and the time
it takes to replay the error in software simulation.

In this paper, we present DESSERT, an FPGA-accelerated method-
ology for effective simulation-based RTL verification and debugging
with the following contributions:

• We implement custom compiler passes using FIRRTL [7] to
automatically synthesize assert and print statements existing in
RTL for error checking from the FPGA. Assertion synthesis
provides quick hardware-based error checking with a negligible
simulation performance penalty. Print-statement synthesis, on
the other hand, provides more exhaustive software-based error
checking by generating commit logs from the FPGA, which are
compared on the fly against a functional golden-model software
simulator.

• Since our FPGA-accelerated RTL simulators are deterministic,
we run two identical FPGA simulation instances in parallel,
spaced apart in simulation time, to allow errors detected by the
lead instance to be replayed from an RTL snapshot captured
by the trailing instance, significantly reducing state snapshotting
overhead compared to periodic checkpoints. With this technique,
DESSERT can provide full-visibility waveforms of a buggy
design without needing to rerun the simulator and without
sacrificing simulation performance.

• We demonstrate a fast and easy-to-use methodology for system-

RTL Verification Approach Speed Easy to Use Deterministic Controllability Visibility Cost
Software simulation Very Slow 3 3 High Full Low

Hardware emulation engine Fast 3 3 High Full Very High
FPGA prototype Very Fast 3 7 Low Limited Low

Instrumented FPGA prototype Fast 7 7 Moderate Limited High
Checkpointed FPGA prototype Moderate 7 7 Low Full Moderate

DESSERT Very Fast 3 3 High Full in ROI Low

TABLE I: A Comparison of Contemporary Simulation Technologies for Execution-driven RTL Verification

Hardware(Host FPGA) Software(Host CPU)

FI
RR

TL
 C

om
pi

le
r

Target RTL Design

Assertion & Log Synthesis
FAME1 Transform

Scan Chain Insertion
Simulation Mapping
Platform Mapping

FPGA Backend Flow

Simulation Driver

I/O Devices

C++ Compiler

Driver BinaryMetadata
Text Files

Functional
Simulator

Target Specific
C++ Header

Bitstream

Verilog

Fig. 1: Toolflow for FPGA-Accelerated RTL Simulation

level debugging. We demonstrate our methodology by simu-
lating an open-source RISC-V in-order processor, Rocket [8],
and an open-source RISC-V out-of-order processor, BOOM [9],
to catch and fix bugs that occur hundreds of billions cycles
into the SPECint2006 benchmark suite running under Linux.
While in this paper we study RISC-V processors and pipe a
generated commit log to a reference ISA simulator, our approach
can be generalized to other RTL designs for which a golden
model exists. In lieu of a golden model, inspecting synthesized
assertions already present in the RTL is often a sufficient means
to detect a simulation error.

II. COMPILER PASSES FOR DETERMINISTIC

FPGA-ACCELERATED RTL SIMULATION

Figure 1 shows the tool flow for FPGA-accelerated RTL simulation
including custom compiler passes to automatically transform the
target RTL. All custom transforms are implemented as compiler
passes in the FIRRTL Compiler [7]. This framework is language-
agnostic: once the target design is translated into FIRRTL from its
language frontend, we can apply the compiler passes in Figure 1
regardless of the design’s host HDL.

The FAME1 transform allows simulation modules to run decoupled
from the host FPGA clock to stall simulation when necessary. Simula-
tion Mapping inserts communication channels, wrapping a simulation
module to buffer timing tokens from other simulation modules. Most
importantly, a token-based simulator generated by these compiler
passes is an instance of synchronous dataflow (SDF) [10], which
ensures deterministic execution on the FPGA with the same initial
state.

Platform Mapping links all simulation models including the
FAME1-transformed RTL and abstract timing models for the main
memory and I/O devices, and generates the correct interface for
FPGA-software communications in various platforms. This pass also
inserts the loadmem unit, used to initialize the memory space visible
to the target design (Section III), and helper units for bug detection,
such as an assertion checker and a log stream unit (Section IV-B).
A complete simulation system is mapped to a heterogeneous FPGA
platform as shown in Figure 2. Presently, we support both Amazon
EC2 F1 instances and Xilinx Zynq boards as FPGA-host platforms.

Host FPGA Platform (e.g. Amazon EC2 F1 Instance)
Host CPU Host FPGA

MMIO
I/O Devices

RTL
Memory
System
TimingSimulation

Driver

FPGA DRAM

Main
 Memory

I/O Tranport

Assertion Checker

Log Stream UnitDMAFunctional
Simulator

Loadmem
UnitScanchains

: Target Module :Existing Simulation Component : Debugging Module

Fig. 2: Mapping Simulation to the Host FPGA Platform.

III. STATE SNAPSHOTTING AND INITIALIZATION

The Strober framework implements automatic scanchain insertion
to capture RTL state snapshots for sample-based power modeling
[11]. The DESSERT framework uses this technique for error replays.
The scanchain implementation is extended to support target state
initialization, which is necessary to initialize registers and BRAMs
that may have unexpected values after the host FPGA resets.

The off-chip DRAM should also be initialized as it is part of
the target design’s state. The loadmem unit (Figure 2), which is
automatically added by the platform mapping (Section II), not only
loads the program to execute but also initializes the remaining target
main memory space.

We also need I/O traces for error replays in software simulation.
Specifically, if an RTL snapshot is to be replayed for L cycles,
the inputs and the outputs for L cycles must be recorded by
communication channels after the RTL snapshot is taken [11]. When
the RTL snapshot is loaded in software simulation, the input traces
are fed to the inputs of the target design to drive the replay, while
the output traces are compared cycle by cycle against the outputs of
the target design to check the correctness of the replay.

IV. ERROR CHECKING FROM FPGAS

A. Assertion and Log Synthesis

DESSERT supports two ways to detect RTL bugs: quick hardware-
based assertion checking and more exhaustive software-based check-
ing that compares logs against a software golden-model functional
simulator. Rather than manual instrumentation, DESSERT automat-
ically transforms assertions and logs that are already present in
the source code for software RTL simulation (Assertion and Log
Synthesis in Figure 1).

In FIRRTL there are two constructs to support assertions and logs:
stop and printf. stop is used to halt the simulation for a certain
condition, while printf is used to print a formatted string when
its condition is met. In general, assertions in HDL (e.g. assert
in Chisel) are expressed as stop with their error messages printed
out by printf. Also, logs in HDL (e.g. printf in Chisel) are
expressed as formatted messages in terms of RTL signal values with
printf.

By default, stop and printf are emitted as non-synthesizable
functions in System Verilog (e.g. $fatal and $fwrite). How-
ever, DESSERT automatically transforms stop and printf into
synthesizable logic for error checking from the FPGA.

Top-level Module

Module A

Module B

stop(a)

printf(…, b, …)

Top-level Module

Module A

Module B

a

b

Assertion
Checker

Log
Stream

Unit

Sim
ulation &

Platform
 M

apping

Assertion & Print
Synthesis

Top-level Module

Module A

Module B

a

b

Fig. 3: stop and printf Synthesis for Error Checking

Figure 3 depicts how to automatically transform assertions and logs
into synthesizable logic. Note that their conditions and arguments are
logic expressions of RTL signals. Thus, Assertion and Log Synthesis
(Figure 1) inserts the combinational logic and the signals for the
conditions and the arguments of stop and printf. This pass also
creates output ports and connects the signals inserted for assertions
and logs to these ports so that RTL errors are detected at the
boundary of the top-level module. In addition, this compiler pass
emits encodings of the assertions and logs that are synthesized (e.g.
the error message for each assert and the print format for each
printf) into text files that are used by the software simulation
driver running on the host CPU.

B. Handling Assertions and Logs from FPGAs

After assertions and logs are synthesized, their top-level output
ports are treated in the same way as the other top-level I/Os of the
target design by Simulation Mapping in Figure 1. As a result, these
output ports also generate their own timing tokens, which contain
the cycle-by-cycle values of the output ports, every simulation cycle
(Figure 3).

The timing tokens generated by assertions and logs are crucial for
cycle-exact error checking from FPGAs, which will deterministically
occur at the same target cycle in both software and FPGA-accelerated
RTL simulations. Figure 3 also shows how these timing tokens are
handled by instrumented hardware units in the FPGA, which are
automatically inserted by Platform Mapping in Figure 1.

The assertion checker consumes timing tokens generated by as-
sertions and inspects their values, which has no effect on simulation
progress with no assertion failures. The assertion checker detects an
error at cycle t if the value of the timing token at cycle t is non-zero,
which means at least one assertion has fired. In this case, the checker
records the target cycle t and the assertion id inferred from the timing
token’s value, and then stops accepting new tokens, which will halt
simulation.

In parallel, the software simulation driver infrequently polls the
assertion checker through memory-mapped I/O (Figure 2), and thus
cycle-exact assertion detection can be achieved with negligible loss of
simulation speed. When an assertion is detected from the FPGA, the
simulation driver reads the target cycle and the assertion id from the
checker and reports the assertion message along with its target cycle
using the text file generated by the Assertion and Print Synthesis pass
(Section IV-A).

While the assertion checker simply drops timing tokens after
inspecting them, in a log, these tokens along with their timestamps
must be stored. Suppose a processor simulates at a clock rate of
50 MHz with an IPC of 0.5. If we print 64 bytes per committed
instruction, this simulation would produce a commit log at 1.6 GiB/s.
To manage this bandwidth, the log stream unit relies on inter-FPGA-
CPU DMA to transfer the generated log en masse (Figure 2). Between
DMA events, the log is buffered in a large BRAM FIFO. When the
buffer is full, the log stream unit stops consuming timing tokens to
pause simulation until the buffer is drained, which prevents loss of
log entries.

Once log entries are transferred from the FPGA to the buffers in
the software simulation driver through DMA, they can be output on
a console, piped to a file or consumed by a software golden model
for exhaustive error checking.

C. Commit Log Comparison for Microprocessors

DESSERT is a general methodology that can be applied to any
hardware designs. As such, for software-based error checking, logs
generated from FPGAs are compared against a software golden model
of any RTL. However, if we use DESSERT for microprocessor verifi-
cation, the state of the software functional simulator must be carefully
maintained to prevent divergence from the RTL implementation.

First, the physical memory and device configurations of the func-
tional software simulator and the RTL implementation should be
identical. This ensures the memory zones of Linux are the same in
both implementations, resulting in the same page allocation.

Next, interrupts in both implementations must be synchronized. It
is incredibly difficult to make interrupts happen simultaneously in
both implementations since the functional simulator has no timing
model. Instead, interrupts in the functional simulator are disabled by
default. Whenever an interrupt is raised from the RTL implementa-
tion, the interrupt cause is passed along with the commit logs from
the FPGA to the functional simulator. Then, the functional simulator
is forced to handle the interrupt on the same target cycle as the RTL.

In addition, microarchitecture-dependent state needs to be synchro-
nized. Examples include performance-counter reads, atomic memory
operations, and memory-mapped I/Os. Performance-counter reads
and atomic memory operations are easily identified by their instruc-
tion encoding while memory-mapped I/Os are identified by their
memory addresses. Whenever such events happen, the destination
register values of the functional simulator are updated from the
FPGA’s commit logs.

Some processors support out-of-order completions for long-latency
instructions using a scoreboard to maintain register dependencies (e.g.
the Rocket processor [8]). In this case, the destination register values
may not be available even though instructions have retired. We cannot
ignore these instructions due to microarchitecture-dependent state.
Therefore, commit logs include the information of whether or not
the scoreboard is set by each instruction. When the scoreboard is
set, the destination register values are not compared immediately.
Instead, the functional simulator saves the destination register value
with its address. When the instruction completes in the FPGA, its
destination register value as well as the register address are delivered
from the FPGA to the functional simulator and compared. For
microarchitecture-dependent state, the destination register value of
the functional simulator is updated with the value from the FPGA.

Finally, the permission bits in TLBs are modeled in the functional
simulator. This is because TLB flushes can be delayed by an OS
as a performance optimization, resulting in accesses to stale page-
table entries. Thus, whenever the TLBs in the FPGA are refilled,
the functional simulator updates its TLB models by using the TLB
tag and the permission bits of the page-table entry from the FPGA.
Memory accesses in the functional simulator also go through the TLB
models to match page faults between the function simulator and the
FPGA.

V. GANGED-SIMULATION FOR RAPID ERROR REPLAYS

To detect and replay errors efficiently, we exploit the determinism
of our FPGA-accelerated simulation by running two identical simula-
tors concurrently: a leading master instance, which detects the target

TCP/IP Slave

FPGASoftware
Driver

Master

Software
DriverFPGA

Timestamp
/ Error

Detection

Error
Replays

RTL State
Snapshot

Fig. 4: Ganged-Simulation For Rapid Error Relay

RTL bugs, and a lagging slave, which checkpoints the target RTL
state (Figure 4).

The leading master checks for simulation errors by detecting either
an assertion failure or a mismatch between the golden model and the
simulator-generated log (Section IV). The master controls the advance
of the slave by periodically sending it packets over TCP, each of
which contains a target cycle timestamp and an error detection bit,
indicating whether or not the master has encountered an error at the
timestamped target cycle.

The slave cannot proceed until it receives a timestamped message
from the master. When it receives a message with a clear error bit, it
can safely advance up to the timestamped target cycle of the message.
On the other hand, when the slave receives the message with a set
error bit, it advances up to the timestamped target cycle minus L
cycles to capture an L-cycle snapshot of the ROI (Section III). Since
simulations are deterministic (Section II), the same error, which is
detected by the master, also is captured by the slave at the same target
cycle.

Finally, the captured RTL state snapshot can be replayed L
cycles in software RTL simulation until the same error appears,
thus providing a full-visibility waveform of the target over the ROI.
This waveform dramatically improves debuggability, helping RTL
designers find and fix the cause of the bug.

To mitigate the monetary costs, we use FPGAs in the cloud. This
provides a cheap, elastic source of very large FPGAs, without the
large initial capital expense.

VI. RESULTS

We demonstrate the effectiveness of our methodology with a case
study of two RISC-V processor core designs and report on the types
of bugs found.

A. Target Designs, Golden Model, Benchmarks, and Host Platform

Target Designs: We apply DESSERT to two open-source RISC-V
processors implemented with Chisel [12]: Rocket [8], a productized
scalar in-order processor, and an industry-competitive, open-source
out-of-order processor, BOOM-v2 [9]. Table II shows the processor
configurations used for this study with the number of assertions and
the size of log entries. Log entries are generated when instructions are
committed. The processor and L1 cache represent the design under
test (DUT) and are supplied as RTL, while the supporting L2 cache
and DRAM are implemented as abstract timing models, which can
be configured at runtime [13].

Software Golden Model: We employ Spike [14] as a golden
model for the RISC-V ISA, which is modified for commit log
comparison (Section IV-C). For software-based checking, commit
logs generated by Rocket or BOOM-v2 from the FPGA are compared
against Spike.

Benchmarks: We execute the SPEC2006int benchmark suite on
the target processors hosted on the FPGA. All benchmarks are
compiled using gcc version 6.1.0, and run on Linux kernel version
4.6.2. For each benchmark, we built a BusyBox image including all
necessary files for a given benchmark within an initramfs.

Host Platform: We use Amazon F1 instances (f1.x2large) as
simulation host platforms. An f1.x2large instance is equipped
with Xilinx UltraScale+ VU9P and 1.5GB/s FPGA-CPU DMA.

Parameter Rocket BOOM-v2
Fetch-width 1 2
Issue-width 1 4
Issue slots - 60
ROB size - 80

Ld/St entries - 16/16
Physical registers 32(int)/32(fp) 100(int)/64(fp)
Branch predictor - gshare: 16 KiB history

BTB entries 40 256
RAS entries 2 4

MSHR entries 2 2
L1 $ capacities 16 KiB or 32 KiB

ITLB and DTLB reaches 128 KiB / 128 KiB
L2 $ capacity and latency 1 MiB / 23 cycles

DRAM capacity and latency 2 GiB / 80 cycles
Assertions 123 601

Commit log entry width 60 B 64 B

TABLE II: Parameters of the Target Processors.

B. FPGA Quality Of Results

We compiled bitstreams using Vivado 2017.1 targeting the Xilinx
UltraScale+ VU9P parts present in Amazon EC2 F1 instances. Pure
FPGA mappings for both designs close timing at 62.5 MHz, which is
bounded by the unretimed double-precision FMA in both cores. The
compile time is about 2 hours for Rocket and 4 hours for BOOM on
c4.8xlarge (about $1 and $2 with spot instances, respectively).

Processor Resource Prototype FAME1 Debug Scan All

Rocket
Logic LUTs 18.0% 18.4% 18.5% 24.6% 24.7%

Registers 10.8% 10.8% 10.9% 13.6% 13.7%
BRAMs 18.1% 19.6% 24.9% 21.2% 26.6%

BOOM-v2
Logic LUTs 28.0% 28.4% 30.7% 51.5% 52.1%

Registers 12.9% 12.8% 13.4% 22.4% 22.5%
BRAMs 19.4% 20.9% 27.4% 22.6% 30.1%

TABLE III: FPGA Utilization vs Instrumentation Level

Table III shows the total utilization of the VU9P after place and
route, with varying levels of instrumentation enabled:

• Prototype: just the processor without transformations
• FAME1: FAME1 simulator for deterministic simulation (Sec-

tion II)
• Debug: FAME1 simulator with assertion and print synthesis

(Section IV)
• Scan: FAME1 simulator with scan chains insertion (Section III)
• All: FAME1 simulator with all transforms and instrumentation

LUTRAMs, DSP48s, and URAMs are omitted as they are lightly
used (<1%, <5% and 0%).

The FAME1 transform has marginal overhead over the prototype
due to FPGA tool optimizations. The debug instrumentation uses
slightly more LUTs for assertion synthesis and more BRAMs for
log buffers. As expected, the scanchain instrumentation has large
overhead on both LUTs and Registers. However, the DESSERT
framework can be extended to adopt more resource-efficient check-
point implementation as discussed by Koch et al [6].

C. Simulation Performance

Processor FPGA No-Checking FPGA Assertion FPGA Log
Rocket 52.7 MHz 52.6 MHz 21.3 MHz

BOOM-v2 52.3 MHz 52.1 MHz 13.7 MHz

TABLE IV: Simulation Rates

Table IV shows the simulation rates of a single instance of FPGA-
accelerated simulation with no error checking (FPGA No-Checking),
hardware-based checking from assertion synthesis (FPGA Assertion),
and software-based checking comparing logs from the FPGA against
a golden model (FPGA Log).

First of all, FPGA-accelerated RTL simulation guarantees high
simulation rates regardless of design complexities. In addition,
hardware-based assertion checking has almost no performance over-
head as the assertion checker is infrequently polled by the software
driver (Section IV-B).

On the other hand, software-based checking decreases simulation
rates because, in this case study, the functional simulator must be
run and compared in lock step (Section IV-C). As a result, the log
buffer is not quickly drained, resulting in frequent simulation stalls.
Notably, software-based checking has a larger performance impact on
BOOM-v2, which has greater IPCs, and thus, generates more commit
log entries per cycle. However, exhaustive software-based checking is
still worthwhile as it can discover subtle bugs not found by hardware-
based assertion checking (Section VI-E). We believe the simulation
performance can be further improved with decoupling and speculation
of functional simulation, to reduce synchronization frequency.

D. BOOM-v2 Assertion Failure Bugs Found

BOOM-v2 is a major microarchitectural update of the original
BOOM processor to improve its physical realizability [9]. BOOM-v2
passes all ISA tests, random instruction tests, microbenchmark tests,
and boots Linux. However, we noticed that some of the SPECint2006
benchmarks that passed in BOOM-v1 failed in BOOM-v2. Therefore,
we used DESSERT to debug BOOM-v2.

Benchmark Assertion Cycle (B) Simulation
Failure Time (mins)

483.xalancbmk.test Invalid writeback in ROB 1.9 3.4
464.h264ref.test Pipeline hung 3.2 3.8

471.omnetpp.test Pipeline hung 3.3 3.9
445.gobmk.test Invalid writeback in ROB 14.9 9.0

471.omnetpp.ref Pipeline hung 62.6 22.2
401.bzip2.ref Wrong JAL target 473.7 164.6

TABLE V: Assertion Triggers from BOOM-v2 Running the
SPEC2006int Benchmark Suite.

Table V shows assertions caught from BOOM-v2 when running
the SPECint2006 benchmarks. Note that assertion messages were
shown in FPGA-accelerated RTL simulation when these assertions
were triggered. In addition, RTL state snapshots were taken before
the assertions were triggered (Section V) and replayed in software
RTL simulation for full visibility of the internal signals.

With the waveform from the 1024-cycle error replay, we quickly
tracked down the cause of the invalid writeback in ROB assertion
to a buggy interaction between back-pressure queuing and branch
misspeculation that did not correctly kill instructions moving data
from the integer register file to the floating-point register file. In
general, the pipeline hung assertion was caused by pipeline resource
scarcities for various reasons, which were not found in the 1024-cycle
window, suggesting assertions describing more specific properties
be necessary. Also, the waveform from the 1024-cycle error replay
revealed the wrong JAL target assertion, which was triggered at
almost a half trillion target cycles, was caused by incorrectly handled
signed arithmetic in computing jump target addresses, which is latent
until the processor touches instructions allocated in a high-address
memory region.

E. Boom-v2 Commit Log Bugs found

Software-based checking comparing logs from an FPGA against
a software golden model can discover subtle bugs that may not
immediately affect the results of applications. We verified Linux
boot in Rocket and BOOM against the software golden model using
commit logs from the FPGA (Section IV-C). Linux boot in Rocket

was successfully verified against the golden model. However, Linux
boot in BOOM-v2 failed with the following message:

Instruction mismatch at cycle: 669432906
PRIV PC INST REG

Last: 0 0x0000000000069ce0 (0x00100793) x15 0x0000000000000001
SW : 0 0x0000000000069ce4 (0x1404272f) x14 0x0000000000000000
FPGA: 1 0xffffffff80422a9c (0x14011173) x 2 0xfffffffffcc54000

This shows BOOM jumped into Linux’s exception handler (PC
= 0xffffffff80422a9c) while executing lr.w a4, zero,
(s0) (0x1404272f). The waveform from the 1024-cycle replay
showed BOOM incorrectly triggered a store access fault for load-
reserved instructions. After fixing this bug, Linux boot in BOOM-v2
fully matched against the golden model. This bug was found in less
than three minutes including target memory initialization, but would
have taken a month using VCS.

VII. CONCLUSION

By automatically transforming target RTL into an instrumented
FPGA-accelerated simulator and connecting the FPGA simulator to
a tracking functional golden model for checking, we can rapidly find
and diagnose bugs that only manifest after hundreds of billions of
target clock cycles, with little developer effort and at extremely low
cost, by taking advantage of cloud-hosted FPGA platforms.

ACKNOWLEDGEMENT

Research partially funded by DARPA Award Number HR0011-
12-2-0016, RISE Lab sponsor Amazon Web Services, and ADEP-
T/ASPIRE Lab industrial sponsors and affiliates Intel, Google,
Huawei, NVIDIA, and SK Hynix. Donggyu Kim is supported in part
by the Kwanjeong Educational Foundation. Any opinions, findings,
conclusions, or recommendations in this paper are solely those of the
authors and do not necessarily reflect the position or the policy of
the sponsors.

REFERENCES

[1] K. Camera and R. W. Brodersen, “An integrated debugging environment
for FPGA computing platforms,” in FPL, 2008.

[2] Y. S. Iskander et al., “Improved abstractions and turnaround time for
FPGA design validation and debug,” in FPL, 2011.

[3] S. Banerjee and T. Gupta, “Efficient online RTL debugging methodology
for logic emulation systems,” in VLSI, 2012.

[4] Z. Yang et al., “Si-emulation: system verification using simulation and
emulation,” in International Test Conference, 2000.

[5] C.-L. Chuang et al., “Hybrid Approach to Faster Functional Verification
with Full Visibility,” IEEE Design & Test of Computers, vol. 24, no. 2,
pp. 154–162, 2007.

[6] D. Koch et al., “Efficient hardware checkpointing: concepts, overhead
analysis, and implementation,” in FPGA, 2007.

[7] A. Izraelevitz et al., “Hardware Reusability is FIRRTL Ground: Hard-
ware Construction Languages, Compiler Frameworks, and Transforma-
tions,” in ICCAD, 2017.

[8] K. Asanović et al., “The Rocket Chip Generator,” Tech. Rep.
UCB/EECS-2016-17, 2015.

[9] C. Celio et al., “BOOMv2: an open-source out-of-order RISC-V core,”
in First Workshop on Computer Architecture Research with RISC-V
(CARRV), 2017.

[10] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[11] D. Kim et al., “Strober : Fast and Accurate Sample-Based Energy
Simulation for Arbitrary RTL,” in ISCA, 2016.

[12] J. Bachrach et al., “Chisel: constructing hardware in a scala embedded
language,” in DAC, 2012.

[13] D. Kim, et al., “Evaluation of RISC-V RTL with FPGA-Accelerated
Simulation,” in First Workshop on Computer Architecture Research with
RISC-V (CARRV), 2017.

[14] A. Waterman and Y. Lee, “Spike, a RISC-V ISA Simulator,” 2011.
[Online]. Available: https://github.com/riscv/riscv-isa-sim

