
A Hardware Accelerator for Computing an Exact
Dot Product

Jack Koenig, David Biancolin, Jonathan Bachrach, and Krste Asanović
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, USA

{jack.koenig3, biancolin, jrb, krste}@eecs.berkeley.edu

Abstract—We study the implementation of a hardware accel-
erator that computes a dot product of IEEE-754 floating-point
numbers exactly. The accelerator uses a wide (640 or 4288 bits for
single or double-precision respectively) fixed-point representation
into which intermediate floating-point products are accumulated.
We designed the accelerator as a generator in Chisel, which can
synthesize various configurations of the accelerator that make
different area-performance trade-offs.

We integrated eight different configurations into an SoC com-
prised of RISC-V in-order scalar core, split L1 instruction and
data caches, and unified L2 cache. In a TSMC 45 nm technology,
the accelerator area ranges from 0.05 mm2 to 0.32 mm2, and
all configurations could be clocked at frequencies in excess
of 900 MHz. The accelerator successfully saturates the SoC’s
memory system, achieving the same per-element efficiency (1
cycle-per-element) as Intel MKL running on an x86 machine
with a similar cache configuration.

I. INTRODUCTION

Floating-point arithmetic is a mainstay of modern comput-
ing, yet lay programmers are often unaware of the numerical
issues caused by the non-associativity of addition and mul-
tiplication. The trend towards multicore CPUs over the last
decade has only exacerbated these concerns, as parallelization
of a floating-point kernel over multiple threads of execution
can easily introduce non-deterministic reorderings of inter-
mediate operations. While sequential floating-point code can
sometimes also produces unexpected results, these results can
be easily reproduced to help debugging, whereas problematic
execution interleavings in parallel codes can be difficult to
capture, let alone reproduce.

Ideally, for a given sequence of floating-point operations,
a computer would return the exact result, with no loss of
information in the intermediate calculations. An exact result
is reproducible by definition, as any valid interleaving of
the operations would necessarily produce the same outcome.
One could guarantee exactness by using an arbitrary-precision
arithmetic library like GNU Multiple Precision Floating-Point
Reliably (MPFR) [1]. Unfortunately, when configured to retain
full precision, MPFR is two to three orders of magnitude
slower than performing the same operations at native preci-
sion. For applications that are more compute-intensive, one
could use Exact BLAS (ExBLAS) [2], a parallel and exact
implementation of the BLAS algorithms [3]. However, here
too there is an appreciable performance loss over computing
a conventional dot product [4].

In many cases, the programmer is content with a result that
is inexact but reproducible. Sequential code produces the same
result on every invocation since operations are always per-
formed in the same order, but to exploit the resources provided
by modern multicore CPUs, multithreaded code is desired.
Relaxing the exactness constraint enables parallel reproducible
software libraries, like ReproBLAS [5], that are nearly as fast
as their high-performance, irreproducible counterparts.

If, however, both exactness and high-performance are re-
quired, hardware acceleration becomes an attractive alterna-
tive. Moore’s law has given computer architects a wealth
of transistors with which to build increasingly diverse and
powerful arithmetic units. Naı̈vely, one could perform floating-
point operations in the equivalent fixed-point arithmetic. The
fixed-point representation of an IEEE-754 double requires
2100 bits [6]. Performing arbitrary arithmetic on such large
values is intractable. For example, successive multiplications
result in exponential growth of the number of bits required to
represent the product.

Nevertheless, use of fixed-point arithmetic as a stand-in
for floating point may be feasible in hardware when: first,
a bound can be placed on the widest necessary fixed-point
representation; and second, operations on wide-fixed point rep-
resentations can be restricted. This is the case for dot products
and scalar sums. Given the ubiquity of the dot product across
a wide range of applications, it may be expedient, especially
in application-specific domains, to have hardware acceleration
of an exact dot product. Exact dot products may be computed
by performing unrounded floating-point multiplications and
accumulating the result into a single fixed-point representation
called a complete register [7].

In this paper, we conduct a design-space exploration of
hardware accelerators for computing exact dot products of
floating-point numbers using a wide fixed-point accumulator.
The designs studied herein are based on those first proposed by
Kulisch et al. [7] and implemented in the 1990s as off-chip
coprocessors. Recent work explored FPGA implementations
of the accelerator in isolation [8]. We build on the prior work
by assessing the cost of similar accelerators when they have
been integrated on die and are closely coupled to the processor
core. We study single and double-precision implementations
of two different accelerator microarchitectures, each of which
can be attached to various levels of the cache hierarchy. To



measure area and delay, we implemented the design in a
TSMC 45 nm technology. Finally, we contrast the performance
of the complete SoCs with the performance of Intel MKL and
ReproBLAS running on an Intel Xeon with a similar cache
organization.

II. BACKGROUND

The idea of an exact sum originates in mechanical calcula-
tors. In addition to the four elementary operations (addition,
subtraction, multiplication, and division), calculators often had
a fifth operation: “running total.” The result register was
much wider than the input registers, allowing for accumulation
without loss of precision.

A. Motivating the Need for an Exact Dot Product

Dot product is a kernel of many applications that would
benefit from greater precision. One could simply accumulate
into a wider precision—using a quadruple precision accumu-
lator for double precision dot product, for instance—there are
still cases where this approach may not be sufficient. For
example, computers solve large systems of linear equations by
iterative refinement. In calculating the residual, cancellation in
floating-point arithmetic can lead to difficult error analysis and
slow down or even prevent convergence. An exact dot product
precludes these issues, and can even speed up convergence
compared to inexact arithmetic. For more detailed discussion
of these problems, see [7], [9].

Another motivation for exact dot product is the general im-
portance and cost of error analysis in numerical applications.
Accumulating into higher precision (like quad) can simplify
this analysis, but not remove it. An exact dot product provides
a primitive that simplifies error analysis because it cannot
introduce any error.

B. Previous Exact Dot Product Hardware

In the early 1990s, Kulisch et al. created a vector arithmetic
coprocessor, called the XPA 3233, to compute exact dot
products [7]. The XPA 3233 consisted of 207,000 transistors
and was connected to a PC through a PCI bus. The long
latency of the PCI bus greatly limited the usefulness of the
coprocessor.

III. EXACT DOT PRODUCT ACCELERATOR DESIGN

Although modern CPUs are comprised of billions of tran-
sistors, not all of them can be switching simultaneously
at maximum frequency without exceeding practical power
densities. Specialization, in the form of hardware accelerators,
improves performance under these constraints by using less
area and less energy to perform the same computation [10].

Our accelerator uses a modest amount of area to acceler-
ate a common arithmetic task at a precision existing FPUs
cannot provide natively. The accelerator avoids the instruction
fetching and intermediate operations required by an exact or
reproducible software library while fully utilizing available
cache bandwidth.

A. Principle of Operation

The basis of our accelerator is a fixed-point representation of
the entire space produced by the product of two floating-point
numbers. The product of two floating-points numbers with the
representation (−1)s×m×2e requires 1+2×(2ebits +mbits)
bits to be represented exactly, where ebits and mbits are the
number of bits in the exponent and the mantissa respectively.
To prevent overflow from a long accumulation, we add an
additional k bits, where k is sufficiently large such that
the machine would fail before overflow could occur from
accumulation. We calculate the size of the complete register
as follows:

• For IEEE Double Precision: mbits = 53, ebits = 2047,
k = 92: CRbits = 4288.
(67× 64-bit words)

• For IEEE Single Precision: mbits = 24, ebits = 256,
k = 86: CRbits = 640.
(10× 64-bit words)

We divide the complete register into 64-bit words because
it is a standard width in SRAM macros.

Let a and b be two corresponding elements of the input
vectors; computation proceeds as follows:

1) a and b are fetched from memory and fed into the
datapath.

2) The product of the mantissas (prodmant) and the sum
of the exponents (sumexp) of a and b are calculated in
parallel.

3) The high-order bits of sumexp index into the complete
register and select the correct words for accumulation.

4) The low-order bits of sumexp are used to align the
prodmant with corresponding words of the complete
register.

5) The aligned prodmant and the selected words from the
complete register are summed and written back to the
complete register.

6) If necessary, any carry or borrow produced by the initial
sum is propagated.

B. SoC Architecture

To perform a design-space exploration, we implemented
our accelerator in the parameterizable hardware construction
language Chisel [11] to plug into the open-source Rocket Chip
System-on-Chip (SoC) Generator [12], which is based on the
free and open RISC-V ISA [13].

We integrated the accelerator into the Rocket Chip SoC
generator in order to evalute it in the context of a realistic
system. Rocket Chip has been used to fabricate over a dozen
academic and industrial SoCs. We chose a Rocket Chip
configuration consisting of an in-order scalar pipeline, L1
instruction and data caches, and a unified L2 cache.

Figure 1 shows the architecture of the full SoC. The
accelerator connects to the CPU through the Rocket Custom
Coprocessor (RoCC) interface [14]. RoCC is an extension to
the RISC-V ISA that supports decoupled accelerators. We
provided a small set of RoCC instructions to program the



L1 D$
32 KiB

L1 I$
32 KiB

Rocket Core

L2 Cache
256 KiB

Accelerator
RoCC

128-bit128-bit

64-bit 64-bit 64-bit

128-bit

Fig. 1: High-Level System Architecture

accelerator as shown in Table I. These instructions include
clearing the complete register (CLR_CR), loading the complete
register from memory (LD_CR), storing the complete register
to memory (ST_CR), summing the complete register with
another stored in memory (ADD_CR), rounding the complete
register to single or double precision (RD_DBL/RD_FLT),
and running a dot product on two vectors stored in memory.
Executing a dot product requires two instructions: PRE_DP,
which provides the starting memory addresses for each input
vector, and RUN_DP, which provides the length of the vectors
and begins execution.

The accelerator can be configured to connect to memory
through either the L1 data cache or the L2 cache. The L1
provides a 64-bit interface that is sufficient for performing
one single-precision FMA per cycle or one double-precision
FMA every other cycle. The L2 provides a 128-bit interface
which allows for a double-precision FMA every cycle. While
the L2 provides double the bandwidth of the L1, fully
utilizing this bandwidth requires a non-trivial amount of logic
and buffering to handle multiple outstanding requests that
can be reordered. We provide both interfaces to evaluate the
trade-off between memory bandwidth and performance vs.
accelerator area.

C. Microarchitectural Implementation

The accelerator is organized in four major components.
1) Control unit: decodes RoCC instructions and drives the

other units.
2) Memory unit: fetches operands from memory.
3) Front-end datapath: Computes products of incoming

operands and shifts them into alignment with complete
register.

4) Accumulator and complete register: Accumulates in-
coming products into the complete register.

D. Control Unit

The control unit decodes commands from the host processor
and utilizes the rest of the accelerator to execute them. The
control unit has two parts: the control state machines and
rounding logic.

1) State Machines: For simplicity and verifiability, we
implemented mutually exclusive state machines for each of the
supported instructions. This decision led to a small amount of
functional and state replication but simplified designing and
verifying the accelerator.

2) Rounding Logic: The rounding logic takes the most
significant words from the complete register and outputs
an IEEE floating-point number. Using a priority encoder to
find the most significant bit, the rounding logic selects the
appropriate most significant 23 or 52 bits for the mantissa
(ignoring the implicit most significant bit of 1). If the number
is negative, the rounding logic negates the mantissa. This is
due to the fact that the complete register is stored in a signed
fixed-point format in contrast to the unsigned format of an
IEEE floating-point mantissa. The exponent is calculated based
on the position of the most significant bit of the mantissa
relative to the bit representing the coefficient of 20 in the
complete register.

Our accelerator only supports round towards zero, but it
would be straightforward to implement other rounding modes.
Round up, down, away from zero, and to nearest all require
logic to determine when to increment as well as associated
incrementers. Deciding to increment is a function of the round-
ing mode, the sign, and all bits in the complete representation
less significant than the mantissa. While there are potentially
thousands of bits to consider, microarchitectural techniques
like the all_ones and all_zeros registers described in
Section III-G2 can make this process both simpler and more
efficient.

E. Memory Unit

The memory unit in Figure 2 shows the logic and state
elements required to issue memory requests every cycle. It
contains two arrays corresponding to the vector operands
for the dot product operation. Each array keeps track of the
address of the current element as well as the number of
elements remaining in the vector.

An arbiter issues requests from each array in a round-robin
manner. When the arbiter grants an array’s request, the array
pushes the tag of the corresponding memory request into a
FIFO for memory reordering. The array also reserves a slot in
the memory response reordering queue. When requests return
from memory, they are stored into the reordering queue. When
the tag of a request in the reordering queue matches a tag from
the front of either array’s tag queue, the floating-point data is
issued to the datapath.



31 25 24 20 19 15 14 13 12 11 7 6 0
func7 rs2 rs1 xd xs1 xs2 rd opcode

6 5 5 1 1 1 5 7
CLR CR 00000 00000 0 0 0 00000 custom-0

RD DBL/RD FLT 00000 00000 1 0 0 rd custom-0
LD CR 00000 rs1 0 1 0 00000 custom-0
ST CR 00000 rs1 0 1 0 00000 custom-0

ADD CR 00000 rs1 0 1 0 00000 custom-0
PRE DP rs2 rs1 0 1 1 00000 custom-0
RUN DP 00000 rs1 0 1 0 00000 custom-0

TABLE I: Accelerator Instruction Encodings

Array 0

Array 1

Arbiter

tag
tag
tag
tag

data
data
data
data

v
v
v
v

r
r
r
r

tag
tag
tag

tag
tag
tag

req0

req1

grant1

grant0 =

=

tag data

Req to Cache
Resp from Cache

To Datapath

tag
tag

data
data

Tag FIFOs

Memory 
Response 
Reordering 
Queue

Fig. 2: Memory Unit

F. Front-end Datapath

The front-end datapath consists of three modules: exponent
adder, multiplier, and shifter. Aside from some initial floating-
point decoding (eg. prepending one to the mantissa or zero
to properly handle denormalized numbers), the functionality
of these blocks are expressed with Chisel’s addition, multi-
plication, and shift operators respectively. Chisel maps these
operations to the equivalent Verilog HDL operator so that the
VLSI toolchain can infer optimized implementations for these
operators in logic synthesis. These modules are parameterized
by pipeline latency, which inserts the requisite number of
registers on the output of the shifter. These registers are
retimed by the design tools across the three modules to
pipeline the datapath as a whole.

G. Complete Register

We explore two complete register implementations which
are described at length in [7]. This first is a segmented imple-
mentation, which has a separate adder for each word of the
complete register. The second is a centralized implementation,
which shares a single wide adder and stores the complete
register in SRAM.

1) Segmented Accumulator and Complete Register: This
implementation divides the complete register into segments
of width k, each with its own k-bit adder. In a single cycle,
a segment adds a portion of the prodmant and incorporates

C/B
2 2

k

+/ - 

CR Segment

k

S0

C/B C/B2 2

k

+/ - 

CR Segment

k

S1

2 2

k

+/ - 

CR Segment

k

S2

C/B

Fig. 3: Segmented Accumulator and Complete Register

an incoming carry or borrow if present. If a given segment
produces a carry or borrow, the carry or borrow is latched
and propagated to the next segment in the next cycle (akin
to the implementation of a carry-save multiplier). To ease
carry/borrow propagation, and simplify most-significant word
detection, each segment includes two flags to denote if the
segment’s bits are all ones or all zeros.

2) Centralized Accumulator and Complete Register: Given
that the multiplicand for double-precision floating-point is 106
bits while the total fixed-point space is 4288 bits, it is much
more efficient to implement a complete register where a single
adder is shared for accumulation. The centralized accumulator
microarchitecture is shown in Figure 4.

The following explanation assumes a double-precision im-
plementation: a similar discussion applies for single precision.
The accumulator receives the 104-bit summand—zero-padded
to 192-bits and aligned to the 64-bit word boundaries of the
complete register—from the shifter. It reads the appropriate
four words (as indicated by the summed exponents), and adds
the summand to the lower three words. The fourth word is
incremented or decremented in the event of a carry or borrow
respectively. The resulting sum is then written back to the
complete register during the next cycle.

It is possible for a carry or borrow to propagate beyond the
fourth word. A common example of this is when the sign of the
entire complete register flips—requiring carry/borrow propa-
gation all the way past the top word. We make this process
more efficient by introducing two registers: all_zeros and
all_ones. Both of these registers have one bit for each word
in the complete register which indicates whether the word is
composed of all zeros or all ones respectively.

When a carry propagates beyond the fourth word, the carry
logic uses the all_ones register to find the next word in
the complete register that is not all ones. If there is such a



Complete 
Register
SRAM 

4 Banks, 1R/1W

01
al

l_
on

es
, 

al
l_

ze
ro

s

unresolved 
carry/borrow+/-

01 01

W
rit

e 
ad

dr
es

s

01

Sum

0101 0101

C
on

tro
l L

og
ic

Incr/Decr
c/b

Exponent

R
ea

d 
ad

dr
es

s

Fig. 4: Centralized Accumulator and Complete Register

word, the pipeline stalls while the word is read, incremented,
and then written back. Every word that was skipped over on
account for being all ones is switched to being indicated as
all zeros without any reads or writes to the complete register.
If the carry propagates past the highest word, then no pipeline
stall is necessary as the carry is handled by modifying the all
ones and all zeros registers.

Borrows work in the same way except that borrows propa-
gate past words that are all zeros, turning those words to all
ones. One subtle point is that any time a word is read from the
complete register, the all_zeros and all_ones registers
are used to select whether the output of the complete register
or the appropriate all zero or all ones constant should be used.

We implemented the centralized accumulator as a 4-bank,
dual-ported 8T SRAM that supports writing back the accu-
mulated sum while reading words for the next accumulation.
There is a forwarding path for each bank since back-to-
back accumulates may touch the same words in the complete
register.

IV. METHODOLOGY

To justify the addition of an accelerator for computing
an exact dot product, we compare its performance against a
range of software implementations and measure the cost of its
hardware implementation. Software libraries are more flexible
and have no additional hardware cost since they use structures
already present in desktop and server class microprocessors.
Specialized hardware should be more efficient at performing
a fixed-function, but incurs additional hardware cost.

A. Benchmarking

We compare the performance of our accelerator against
two important software solutions: Intel MKL, one of the
fastest inexact BLAS libraries, and ReproBLAS, a slower but

reproducible library. These libraries are highly tuned to run
on commercial architectures (x86) using SIMD instructions
which have no equivalent in the Rocket Chip generator. As
such, it is difficult to fairly compare a port of these libraries to
our microarchitecture. In lieu of this, we compare cycles-per-
element (CPE). Since the product of every pair of elements is
independent of one another, it is trivial to deeply pipeline our
accelerator. As such it should be possible to achieve clock-
periods comparable to those present on a commercial x86
machine.

Secondly, these libraries rely deeply on multi-threading
to achieve their performance (and libraries like ReproBLAS
only become necessary once they are run in parallel). Our
accelerator has the capacity to add complete representations
stored in memory, so it is possible to divide the arithmetic load
across multiple cores each with their own accelerator before
doing a final exact reduction into a single accelerator. In this
paper, we measure only the single-threaded performance of
these libraries, reducing our comparison to a challenge of how
well each library can use the memory bandwidth provided to
a single core.

We ran the library implementations on an Intel Xeon E5-
2667 V2, running at 3.3 GHz, with 32 KiB L1 instruction
and data caches and a shared 256 KiB L2 cache, supporting
SSE4.1, 4.2 and AVX SIMD extensions. We compiled with
ICC (version 14.0.1) with -O3 enabled. We used PAPI [15] to
query the core’s performance counters to measure cycle count
and calculate CPE. As benchmarks, we calculated the dot
product of vectors of randomly generated double and single-
precision floating-point numbers with uniformly distributed
mantissas and exponents (we excluded infinity and NaN). We
warmed the caches to control for memory hierarchy effects.
Each vector spanned a contiguous region of virtual memory.
We did not measure sparse vector representations because they
are not supported by our accelerator.

We ran benchmarks on Rocket Chip “bare metal”, without
an operating system and accessing physical memory directly,
to simplify gate-level simulation to measure energy. We mea-
sured cycle counts using the RISC-V RDCYCLE instruction.
All Rocket Chip benchmarks were simulated using Synopsys
VCS [16]. The Rocket Chip configurations we used for
benchmarking had a similar cache hierarchy (L1 - 32 KiB,
L2 - 256 KiB), providing 64 and 128 bits/cycle of memory
bandwidth respectively.

B. VLSI Flow

Since both the accelerator and Rocket Chip are implemented
in Chisel as hardware generators, we had the ability to sweep
a wide space of design points that varied both the host Rocket
core and the accelerator itself. We present 8 representative
design points that are the product of three binary parameters.

1) Complete register organization: how the complete regis-
ter is implemented in silicon. Segmented (S) or central-
ized (C).

2) Cache interface: the cache layer from which operands
are fetched: L1 or L2 cache interface.



0

2

4

6

8

10

12

100 1000 10000 100000

C
PE

Vector Length

MKL

RBLAS

C_L2_F

C_L1_F

Fig. 5: Single-Precision CPE vs Vector Length

3) Operand precision: The largest floating-point operand
type supported by the accelerator. Single/float (F), or
double (D) precision.

We refer to each design point by concatenating parameters
like so: {organization} {cache interface} {precision}. For
example, the C L1 F configuration refers to an accelerator
with a centralized CR, L1 cache interface, and support for
single-precision operands.

We used Synopsys tools for synthesis and place-and-route
(Design Compiler and IC Compiler respectively), and targeted
an industry standard 45 nm process. Since we did not have
access to a memory compiler in this technology, we used an
in house pseudo-compiler that used CACTI [17] to generate
timing and area models that were black-boxed into cells.

V. RESULTS

A. Benchmarking Results

Figure 5 and Figure 6 present the performance of our
accelerator versus ReproBLAS (RBLAS) and Intel MKL.
Across both precisions, MKL succeeds in fully utilizing the
data cache bandwidth provided, giving 1 and 0.5 CPE on
single and double-precision respectively.

Only the centralized CPE is shown as the segmented version
has roughly the same performance. The datapath stalls in the
centralized implementation only in the extremely rare case in
which a carry or borrow creates a structural hazard on one of
the banks being accessed by the following accumulation. The
segmented implementation never stalls, however it may take
several cycles for an outstanding carry or borrow to propagate
the length of register upon completion.

The L1 variant performance of the accelerator is consider-
ably worse than L2 variants as soon as the input vectors no
longer fit in the L1 cache. Our L1 cache implementation ac-
cepts 4 outstanding 64-bit requests, a grossly insufficient num-
ber to hide the miss penalty. With an appropriate prefetcher,

0

2

4

6

8

10

12

100 1000 10000 100000

C
PE

Vector Length

MKL

RBLAS

C_L2_D

C_L1_D

Fig. 6: Double-Precision CPE vs Vector Length

it should be possible to achieve 1 and 2 CPE for single and
double-precision variants respectively.

Finally, since our accelerator can only issue a single product
per cycle, single-precision L2 variants cannot achieve a CPE
less than 1 whereas MKL can. This is the only case in which
the accelerator is not memory bound. To rectify this, the
datapath could be duplicated. Sharing the same accumula-
tor across multiple datapaths is easy to implement with a
segmented complete register. However, sharing a centralized
accumulator is more difficult. It requires either additional
read and write ports commensurate with the increase in the
number of datapaths (which is very expensive) or stall logic
to circumvent constant structural hazards.

B. VLSI Results

Figure 7 shows the SoC area (excluding L2) breakdown
for each of the 8 representative design points mentioned
in IV-B. Because the L2 occupies about 70% (1.65mm2, σ =
0.006mm2) of the total SoC area, we excluded it for clarity.
We distinguished the Rocket Chip FPU from the Rocket Core
to show the cost of a standard floating-point unit. As expected,
segmented complete registers tend to occupy more area than
centralized, double-precision support requires more area than
single precision, and interfacing the L2 requires more area
than interfacing with the L1. Figure 8 further illustrates these
observations by breaking down the accelerator itself into its
major components.

Given that the segmented complete register uses registers
instead of SRAM cells to store the accumulator and includes
an adder for each segment, it follows that the segmented
complete register should be much larger than the centralized
configuration. Notably, the penalty for using a segmented
complete register is reduced for single-precision configura-
tions. This is due to the fact that this configuration of the
centralized complete register also uses registers instead of
SRAMs since only 10 × 64-bit words are necessary for



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C_L2_D 

S_L2_D 

C_L2_F 
S_L2_F 

C_L1_D 

S_L1_D 

C_L1_F 
S_L1_F 

A
re

a 
(m

m
2)

 

Accumulator Configuration 

I$

D$

FPU

Core

Accelerator

Fig. 7: SoC Area (excluding L2)

single-precision. There are also thus only 10 64-bit adders
in the segmented version compared to 1 128-bit adder in the
centralized configuration.

The control module is responsible for buffering responses
from the caches, it thus makes sense that buffering 64-bit L1
responses takes far less area than 512-bit (128-bit × 4 beats)
L2 responses.

The accelerator ranges from 2.1% to 12.4% of the total
SoC area. The most sensible configuration (centralized com-
plete register, L2 cache interface, double precision operands)
occupies 6.4% of the total area. Due to a critical path through
the L2, ICC found each design point to have a clock period
of 1.45 ns. Without the L2, ICC found the following critical
paths:

• Centralized: 1.24 ns (from accumulator SRAM out to
accumulator SRAM in)

• Segmented: 1.09 ns (through the Rocket Chip FPU)

VI. CONCLUSION

In this paper, we presented an accelerator for computing an
exact dot product, the first of its kind to share the same die
as the host core. Implemented in Chisel, the accelerator can
be tailored at different area costs to support single or double
precision operands, and interface with different levels of the
cache hierarchy to exploit more memory bandwidth if it is
available.

Our accelerator achieves peak memory throughput, pro-
viding equivalent performance to sequential Intel MKL dot
product kernels leveraging AVX (1 CPE for double precision
vectors). Versus a fast reproducible implementation, ReproB-
LAS, the accelerator is approximately 3× faster. Implemented
in an industry-standard 45 nm process, the area cost of the
accelerator is small relative to a modern SoC, at only 6.4% of
the area of our test setup, which includes typical-size caches
but a very small in-order scalar processor pipeline.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C_L2_D 

S_L2_D 

C_L2_F 
S_L2_F 

C_L1_D 

S_L1_D 

C_L1_F 
S_L1_F 

A
re

a 
(m

m
2)

 

Accumulator Configuration 

CR

Datapath

Ctrl

Fig. 8: Accelerator Area

Whether an accelerator such as this one should be inte-
grated into a general-purpose computer remains an outstanding
question. One notable problem with this scheme is that it
challenges cache-blocking approaches used in BLAS-2 and
BLAS-3 kernels. For example, in GEMM, block dimensions
should tend away from squares to help amortize the cost of
flushing and fetching the complete register to memory. While
this presents longer sub-vectors for the accelerator to process,
it comes at the expense of temporal reuse of cache-resident
data.

However, in an application-specific SoC that may require
strong assurances of accuracy and whose workload is well
matched to our accelerator, the area costs are modest. These
costs can be further ameliorated if the accelerator can be
more tightly coupled to the floating-point pipeline of the host
core, allowing the reuse of already present arithmetic units.
More aggressively, an existing SIMD or vector unit could be
augmented to behave like our accelerator. It is not uncommon
for a vector machine to have 64 element 64-bit vectors, only
192 bits short of the double-precision complete representation.

Other avenues for future work include: supporting the
accelerator in a multi-programmed environment, parallelizing
the datapath to achieve < 1 CPE, and supporting additional
arithmetic operations between multiple complete registers
within an accelerator. Finally, a more thorough evaluation
comparing the energy trade-offs of our accelerator versus
modern software libraries that provide reproducibility and
greater accuracy, like ReproBLAS and EXBLAS, would shed
more light on the accelerator’s utility.

ACKNOWLEDGMENT

This research was partially funded by DARPA Award
Number HR0011-12-2-0016 and ASPIRE Lab industrial spon-
sors and affiliates Intel, Google, HPE, Huawei, LGE, Nokia,
NVIDIA, Oracle, and Samsung. Any opinions, findings, con-
clusions, or recommendations in this paper are solely those of



the authors and does not necessarily reflect the position or the
policy of the sponsors.

J.K. and D.B. would like to deeply thank Jim Demmel,
Hong Diep Nguyen, and William Kahan for their insights into
computer arithmetic. They’d also like to thank Colin Schmidt,
who shepherded them through the early stages of project.

REFERENCES

[1] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“MPFR: A Multiple-precision Binary Floating-point Library with
Correct Rounding,” ACM Trans. Math. Softw., vol. 33, no. 2, Jun. 2007.
[Online]. Available: http://doi.acm.org/10.1145/1236463.1236468

[2] R. Iakymchuk, S. Collange, D. Defour, and S. Graillat, “ExBLAS:
Reproducible and Accurate BLAS Library,” Jul. 2015. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01202396

[3] BLAS (Basic Linear Algebra Subprograms). [Online]. Available:
http://www.netlib.org/blas/

[4] R. Iakymchuk, S. Collange, D. Defour, and S. Graillat, “ExBLAS:
Reproducible and Accurate BLAS Library,” in NRE: Numerical
Reproducibility at Exascale, Austin, TX, United States, Nov. 2015,
numerical Reproducibility at Exascale (NRE2015) workshop held as
part of the Supercomputing Conference (SC15). [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01202396

[5] P. Ahrens, H. D. Nguyen, and J. Demmel, “Efficient reproducible float-
ing point summation and blas,” EECS Department, University of Cali-
fornia, Berkeley, Tech. Rep. UCB/EECS-2015-229, Dec 2015. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-
2015-229.html

[6] “IEEE Standard for Binary Floating-Point Arithmetic,” ANSI/IEEE Std
754-1985, 1985.

[7] U. Kulisch, Computer Arithmetic and Validity: Theory, Implementation,
and Applications, 2nd ed. de Gruyter, 2013.

[8] Y. Uguen and F. de Dinechin, “Design-space exploration for the
Kulisch accumulator ,” Mar. 2017, working paper or preprint. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01488916

[9] T. Ogita, S. M. Rump, and S. Oishi, “Accurate Sum and Dot Product,”
SIAM J. Sci. Comput., vol. 26, no. 6, pp. 1955–1988, Jun. 2005.
[Online]. Available: http://dx.doi.org/10.1137/030601818

[10] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark Silicon and the End of Multicore Scaling,” SIGARCH
Comput. Archit. News, vol. 39, no. 3, pp. 365–376, Jun. 2011. [Online].
Available: http://doi.acm.org/10.1145/2024723.2000108

[11] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing Hardware
in a Scala Embedded Language,” in Proceedings of the 49th
Annual Design Automation Conference, ser. DAC ’12. New
York, NY, USA: ACM, 2012, pp. 1216–1225. [Online]. Available:
http://doi.acm.org/10.1145/2228360.2228584

[12] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar,
B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas,
A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson,
B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman, “The
rocket chip generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, Apr 2016. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-
2016-17.html

[13] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, “The
RISC-V Instruction Set Manual, Volume I: User-Level ISA,
Version 2.0,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2014-54, May 2014. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

[14] C. Schmidt, “Risc-v ’rocket chip’ tutorial,” Jan. 2015. [Online].
Available: http://riscv.org/workshop-jan2015/riscv-rocket-chip-tutorial-
bootcamp-jan2015.pdf

[15] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A Portable
Interface to Hardware Performance Counters,” in In Proceedings of the
Department of Defense HPCMP Users Group Conference, 1999, pp.
7–10.

[16] Synopsys VCS. [Online]. Available:
https://www.synopsys.com/verification/simulation/vcs.html

[17] S. J. E. Wilton and N. P. Jouppi, “CACTI: An Enhanced Cache Access
and Cycle Time Model,” IEEE Journal of Solid-State Circuits, vol. 31,
pp. 677–688, 1996.


