
7 Pattern Matcher

conversational

pattern

109

match

equalp
memberp

every is a

[Every # is a #]

[Every man is a mortal]
[Every computer programmer is a genius]
[Every is a word]
[Every datum is a word or a list]

Program file for this chapter:

In a program, one that carries on a conversation with the user, you may
often have occasion to compare what the user types with some expected response. For
example, a quiz program will compare the user’s response with the correct answer; if
you’ve just asked “how are you,” you might look for words like “fine” or “lousy” in the
reply. The main tools that Logo provides for such comparisons are , which
compares two values for exact equality, and , which compares one datum with a
list of alternatives. This project provides a more advanced comparison tool.

Most of the projects in this book are fairly complicated in their inner workings, but
relatively simple in the external appearance of what they do. This project is the reverse;
the actual program is not so complex, but it does quite a lot, and it will take a while to
explain all of it. Pattern matching is a powerful programming tool, and I hope you won’t
be put off by the effort required to learn how to use it.

A is a list in which some members are not made explicit. This definition is
best understood by considering an example. Consider the pattern

The words , , and represent themselves explicitly. The two number signs,
however, are symbols representing “zero or more arbitrary data.” Here are some lists that
would match the pattern:

not

would

110 Chapter 7 Pattern Matcher

every
an a everyone every

I think every

Match
true

false

match

Match

[Socrates is a man]
[Every man is an animal]
[Everyone I know is a friend]
[I think every list is a match]

[# every # is a #]

?
true
?
false

?
true
?
[Hay]
?
[horses]

print match [Every # is a #] [Every book is a joy to read]

print match [Every # is a #] [Every adolescent is obnoxious]

print match [#food is for #animal] [Hay is for horses]

show :food

show :animal

Here are some lists that would match the pattern:

The first of these examples doesn’t match the pattern because the word is missing.
The second has instead of , while the third has instead of . The
fourth has the extra words before the word . This last example
match the pattern

because this new pattern allows for extra words at the beginning.

is a predicate that takes two inputs. The first input is a pattern and the second
input is a sentence. The output is if the sentence matches the pattern, otherwise

.

Patterns can be more complicated than the ones I’ve shown so far. In the following
paragraphs I’ll introduce the many ways that you can modify patterns to control which
sentences they’ll match. As you read, you should make up sample patterns of your own
and try them out with .

Often, in a conversational program, it’s not good enough just to know whether or
not a sentence matches a pattern. You also want to know the pieces of the sentence that
match the variable parts of the pattern. meets this requirement by allowing you
to tell it the names of variables that you want to receive the matching words from the
sentence. Here is an example:

Chapter 7 Pattern Matcher 111

Here is a short conversational program using the parts of the pattern matcher we’ve
discussed so far.

print match [#food is for #animal] [C++ is for the birds]

show :food

show :animal

converse

My name is Brian and I like Chinese food

?
true
?
[C++]
?
[the birds]

to converse
local [response name like]
print [Hi, my name is Toby and I like ice cream]
print [Tell me about yourself]
make "response readlist
if match [# my name is #name] :response [do.name strip.and :name]
if match [# i like #like] :response [do.like strip.and :like]
print [Nice meeting you!]
end

to do.name :name
print sentence "Hello, :name
end

to do.like :like
print sentence [I’m glad you like] :like
end

to strip.and :text
local "short
if match [#short and #] :text [output :short]
output :text
end

?
Hi, my name is Toby and I like ice cream
Tell me about yourself

Hello, Brian
I’m glad you like Chinese food
Nice meeting you!

112 Chapter 7 Pattern Matcher

converse

I like spaghetti and meat balls

zero or more
one or more
zero or one
exactly one

match false
Converse match

true

Converse
my name is I like

and

name

strip.and and

and

Match

?
Hi, my name is Toby and I like ice cream
Tell me about yourself

I’m glad you like spaghetti
Nice meeting you!

My name is Brian and I like Chinese food

Brian and I like Chinese food

[# my name is #name and #]

my name is Mary

#
&
?
!

If outputs , there is no guarantee of what values will end up in the variables
mentioned in the pattern. uses the result of the match only if outputs

.

looks for each part of the sentence (the name and the thing the person
likes) in two steps: first it finds the keywords or and extracts
everything following those phrases, then it looks within what it extracted for the word

and removes anything following it. For example, when I typed

the result of matching the name pattern was to give the variable the value

Then used a second pattern to eliminate everything after the . You
might be tempted to extract the name in one step by using a pattern like

but I wanted to avoid that pattern because it won’t match a sentence that only contains

without expressing any likes or dislikes. The program as I’ve written it does accept these
shorter sentences also. Later we’ll see a more complicated pattern that accepts sentences
with or without using a single pattern.

The special symbol in a pattern represents zero or more words. recognizes
other symbols with different meanings:

any

Chapter 7 Pattern Matcher 113

converse

My name is Brian Harvey

ask.age

I will be 36 next month

converse

!name Brian
Brian Harvey

converse strip.and
do.name name

ask.age
numberp true

[# my name is !name #]

?
Hi, my name is Toby and I like ice cream
Tell me about yourself

Hello, Brian
Nice meeting you!
?

to ask.age
local "age
print [How old are you?]
if match [# !age:numberp #] readlist ~

[print (sentence [You are] :age [years old.]]
end

?
How old are you?

You are 36 years old.

For example, if you’d like the program to recognize only the first name of
the person using it, you could change the relevant pattern to

Then a conversation with the program might look like this:

The word in the pattern matched just the single word , not the multiple
words that the original pattern would have selected. (If you modify

in this way, it should be possible to remove the invocation of in
computing the input to . The single word stored in the variable won’t
contain any other clauses.)

So far, the patterns we’ve seen allow two extremes: the pattern can include a single
word that must be matched exactly, or it can allow word at all to be matched. It is also
possible to write a pattern that calls for words in some specified category—that is, words
that satisfy some predicate. Here is an example:

This is a slightly silly example, but it does illustrate the use of a predicate to restrict which
words can match a variable part of a pattern. The pattern used in looks for
a single word for which is , that is, for a number. Any number of words
surrounding the number are allowed.

114 Chapter 7 Pattern Matcher

numberp

true match

colorp

the Ohio Turnpike

in memberp
in

the Mass Massachusetts Pike
Turnpike

and

to colorp :word
output memberp :word [red orange yellow blue green violet white black]
end

to ends.y :word
output equalp last :word "y
end

Mass Pike
the Massachusetts Turnpike
the Pike

[?:in [the] ?:in [Mass Massachusetts] !:in [Pike Turnpike]]

[# my name is #name and #]

Of course, a predicate used in a pattern need not be a primitive one like .
You may find it useful to write your own predicates that select categories of words. Such
a predicate might have a list built in:

Or you could check some inherent property of a word:

In either case, what is essential is that your predicate must take a word as its single input,
and must output if you want to accept the word to fill a slot in the pattern.

It is most common to want a predicate like above—one that tests its input
word for membership in a certain list. A special notation makes it possible to include
such a list in the pattern itself, instead of writing a predicate procedure. For example,
suppose you are writing a quiz program, and you want to ask the question, “What is the
quickest route from Boston to Framingham?” You’d like to accept answers like these:

but not ! Here is a pattern you could use.

The special predicate is a version of that knows to look in the pattern,
right after the element that invokes , for the list of acceptable words. This pattern
accepts zero or one , zero or one of or , and one of or

. That is, the first two words are optional and the third is required.

Earlier I rejected the use of a pattern

because I wanted also to be able to accept sentences without following the name. I
promised to exhibit a pattern that would accept both sentence forms. Here it is:

notand and

#

match

Match

sentence,

Chapter 7 Pattern Matcher 115

no variable, no predicate accept any word
set variable, no predicate
no variable, test predicate
set variable, test predicate

[# my name is #name:notand #]

to notand :word
output not equalp :word "and
end

()
#name
?:in
!age:numberp

?
true
?
[is [very much] like]
?
true
?
[and then]
?
false

print match [hello #middle goodbye] [hello is [very much] like goodbye]

show :middle

print match [hi #middle:wordp bye] [hi and then bye]

show :middle

print match [hi #middle:wordp bye] [hi and [then] bye]

This pattern uses a predicate that allows any word except . It’s easy to write
this predicate:

(By the way, the symbols indicating the number of words to match are meant to be
mnemonic. The question mark indicates that it’s questionable whether or not the word
will be in the sentence. The exclamation point looks a little like a digit 1, and also shouts
emphatically that the word is present. The number sign means that any number of words
(including zero) is okay, and the ampersand indicates that more words are required,
namely at least one instead of at least zero.)

We’ve seen various combinations of quantifiers (that’s what I’ll call the characters
like that control how many words are matched), variable names, and predicates:

We are now about to discuss some of the more esoteric features of the
program. So far, we have always compared a pattern against a a list of words. It
is also possible to match a pattern against a structured list, with smaller lists among its
members. treats a sublist just like a word, if you don’t want to examine the inner
structure of the sublist. Here are some examples.

together

116 Chapter 7 Pattern Matcher

match

! ?

all
some

match
!:

#:predicate

@

?
true
?
[and]
[[then]]

?
true
?
false

?
true
?
[[x 111 y] [x 222 y]]
[222]

?
true
?
[3 2 1]
[blastoff!]

print match [hi #mid:wordp #dle:listp bye] [hi and [then] bye]

show :mid show :dle

print match [a #:[x # y] b] [a [x 111 y] [x 222 y] b]

print match [a #:[x # y] b] [a [x 333 zzz] b]

print match [a #all:[x #some y] b] [a [x 111 y] [x 222 y] b]

show :all show :some

print match [#nums:numberp #rest] [3 2 1 blastoff!]

show :nums show :rest

A more interesting possibility is to ask to apply a sub-pattern to a sublist. This is
done by using the pattern (that is, a list) in place of the name of a predicate. Here is an
example:

It is possible to include variable names in the subpattern, but this makes sense only if the
quantifier outside the pattern is or because otherwise you may be trying to assign
more than one value to the same variable. Here’s what I mean:

The variable is properly set to contain both of the lists that matched the subpattern,
but the variable only contains the result of the second match.

If a list appears in a pattern without a quantifier before it, treats it as if it were
preceded by “ ”; in other words, it tries to match the subpattern exactly once.

A pattern element like can match several members of the target
sentence; the predicate is applied to each candidate member separately. For example:

Sometimes you may want to match several members of a sentence, but apply the predicate
to all of the candidates in one list. To do this, use the quantifier :

match
headtailp

xx
xx front back

xx front back

nature
number

ambiguous;

Chapter 7 Pattern Matcher 117

print match [@begin:threep #rest] [a b c d e]

show :begin show :rest

print match [#front @good:headtailp #back] [a b c x d e f g x h i]

show :front show :good show :back

to threep :list
output equalp count :list 3
end

?
true
?
[a b c]
[d e]

to headtailp :list
if (count :list) < 2 [output "false]
output equalp first :list last :list
end

?
true
?
[a b c]
[x d e f g x]
[h i]

match [#front xx #back] [a b c d xx e f g xx h i]

In this example, I haven’t used the predicate to examine the of the matching
words, but rather to control the of words that are matched. Here is another
example that looks “inside” the matching words.

Think about all the different tests that has to make to find this match! Also, do
you see why the first instruction of is needed?

Some patterns are that is, there might be more than one way to associate
words from the matched sentence with quantifiers in the pattern. For example, what
should the following do?

The word appears twice in the matched sentence. The program could choose to use
everything up to the first as , leaving six words for , or it could choose to
use everything up to the second as , leaving only two words for . In fact,
each quantifier, starting from the left, matches as many words as it can:

^ #

^ converse

strip.and
and xx #

few

118 Chapter 7 Pattern Matcher

print match [#front xx #back] [a b c d xx e f g xx h i]

show :front show :back

print match [^front xx #back] [a b c d xx e f g xx h i]

show :front show :back

converse

My name is Brian and I like bacon and eggs

converse

My name is Brian and I like bacon and eggs

If that’s not what you want, the quantifier behaves like except that it matches as
words as possible.

We can use the quantifier to fix a bug in the program on page 111:

The problem here is that the pattern used by divided the sentence at the
second , just as the earlier example chose the second when I used as the
quantifier. We can fix it this way:

?
true
?
[a b c d xx e f g]
[h i]

?
true
?
[a b c d]
[e f g xx h i]

?
Hi, my name is Toby and I like ice cream
Tell me about yourself

Hello, Brian and I like bacon
I’m glad you like bacon
Nice meeting you!

to strip.and :text
local "short
if match [^short and #] :text [output :short]
output :text
end

?
Hi, my name is Toby and I like ice cream
Tell me about yourself

Hello, Brian
I’m glad you like bacon
Nice meeting you!

list of patterns

Chapter 7 Pattern Matcher 119

match
in anyof anyof

Match
anyof

@
converse

notand
and

converse

My name is Brian and I hate cheese

converse

I like wings and my name is Jonathan

to converse
local [response name like rest]
print [Hi, my name is Toby and I like ice cream]
print [Tell me about yourself]
make "response readlist
while match [@:anyof [[My name is #name:notand]

[I like #like:notand]
[&:notand]]
?:in [and] #rest] ~

:line ~
[make "response :rest]

if not emptyp :name [print sentence "Hello, :name]
if not emptyp :like [print sentence [I’m glad you like] :like]
print [Nice meeting you!]
end

?
Hi, my name is Toby and I like ice cream
Tell me about yourself

Hello, Brian
Nice meeting you!

?
Hi, my name is Toby and I like ice cream
Tell me about yourself

Hello, Jonathan
I’m glad you like wings
Nice meeting you!

There is just one more special feature of left to describe. It is another special
predicate, like , but this one is called . When you use , the next member
of the pattern should be a to test. tries each pattern in turn, applied
to list members as determined by the quantifier used. In practice, though, only
makes sense when applied to several members as a group, so the quantifier should
always be used. An example may make this clear. I’m going to rewrite the
program to check for names and likes all at once.

This program uses the predicate I wrote earlier. It checks for clauses separated
by the word . Each clause can match any of three patterns, one for the name, one for
the liking, and a general pattern that matches any other clause. The clauses can appear
in any order.

Equalp

words

sentences

120 Chapter 7 Pattern Matcher

Reinventing for Lists

A Simple Pattern Matcher

Match equalp
match

equalp
equalp

wordequalp listequalp
butfirst

output "false
output "true

listequalp wordequalp

listequalp
#

to listequalp :a :b
if emptyp :a [output emptyp :b]
if emptyp :b [output "false]
if wordequalp first :a first :b ~

[output listequalp butfirst :a butfirst :b]
output "false
end

to match :pat :sen
if emptyp :pat [output emptyp :sen]
if emptyp :sen [if equalp first :pat "#

[output match butfirst :pat :sen]
[output "false]]

if equalp first :pat "# [output or match butfirst :pat :sen
match :pat butfirst :sen]

if equalp first :pat first :sen ~
[output match butfirst :pat butfirst :sen]

output "false
end

is a kind of fancy with a complicated understanding of what equality
means. One way to approach an understanding of is to begin with this question:
Suppose Logo’s primitive only worked for comparing two for equality. (For
the remainder of this section, I won’t use the word at all; I’ll call this imaginary
primitive instead.) How would you write a to compare two
lists? This is basically a -style recursive operation, but you have to be a little
careful about the fact that either input might be smaller than the other.

(This procedure contains the instruction twice, but it never says
. How can it ever say that two lists are equal?)

There is one deficiency in the procedure as I’ve defined it. The problem is that it
only works for —lists whose members are words. If either list contains a sublist,

will try to apply to that sublist. If you enjoy the exercise of
reinventing Logo primitives, you may want to fix that. But for my purposes, the version
here is good enough as a basis for further development of the pattern matcher.

We can extend the idea of slightly to make a pattern matcher that only
recognizes the special word to mean “match zero or more words.” We won’t do any of
the fancy things like storing the matching words in a variable.

A Simple Pattern Matcher 121

listequalp

[#]

#
true

#

true #

true

#

ice

match butfirst :pat :sen

match [# cream] [cream]

match butfirst :pat :sen

match [cream] [cream]

match :pat butfirst :sen

match [# cream] [ice cream]

match :pat butfirst :sen

match [# cream] [cream]

The end test is more complicated in this program than in because the
combination of an empty sentence and a nonempty pattern can still be a match, if the
pattern is something like that matches zero or more words.

The really interesting part of this procedure is what happens if a is found in the
pattern. The match succeeds (outputs) if one of two smaller matches succeeds.
The two smaller matches correspond to two possible conditions: the can match zero
words, or more than zero. The first case is detected by the expression

For example, suppose you want to evaluate

This expression should yield the value , with the matching no words in the
sentence. In this example the expression

is equivalent to

which straightforwardly outputs .

On the other hand, the expression

comes into play when the has to match at least one word. For example, consider the
expression

Here the should match the word . The expression

is here equivalent to

Efficiency and Elegance

both

either

122 Chapter 7 Pattern Matcher

true

match
butfirst

true

match false
or true

true match

or

match [# cream] [vanilla ice cream]

match :pat butfirst :sen match [# cream] [ice cream]
match :pat butfirst :sen match [# cream] [cream]
match butfirst :pat :sen match [cream] [cream]

match butfirst :pat :sen

match :pat butfirst :sen

if equalp first :pat "# [output or match butfirst :pat :sen
match :pat butfirst :sen]

But this is the example that was just above.

If the has to match more than one word, several recursive invocations of are
required, each one taking the of the sentence once. For example, suppose
we start with

Here is the sequence of recursive invocations leading to a match:

I have been talking as if Logo only evaluated whichever of the two expressions

and

is appropriate for the particular inputs used. Actually, expressions are evaluated each
time, so there are many recursive invocations of that come out . However,
the purpose of the primitive operation is to output if of its inputs is

. To understand fully how works, you’ll almost certainly have to trace a few
examples carefully by hand.

Pattern matching is a complicated task, and even the best-written programs are not
blindingly fast. But what is the “best-written” program? In the simple pattern matcher of
the last section, the instruction

is extremely compact and elegant. It packs a lot of power into a single instruction, by
combining the results of two recursive invocations with . The similarity of the inputs
to the two invocations is also appealing.

true

match

#

Efficiency and Elegance 123

if equalp first :pat "# ~
[if match butfirst :pat :sen

[output "true]
[output match :pat butfirst :sen]]

match butfirst :pat :sen

match [cat # bat] [cat rat bat]

match [cat # bat] [cat rat bat] [cat # bat] [cat rat bat]
match butfirst :pat butfirst :sen [# bat] [rat bat]
match butfirst :pat :sen [bat] [rat bat]
match :pat butfirst :sen [# bat] [bat]
match butfirst :pat :sen [bat] [bat]
match butfirst :pat butfirst :sen [] []

* match :pat butfirst :sen [# bat] []
* match butfirst :pat :sen [bat] []

The trouble with this instruction is that it is much slower than necessary, because it
always tries both recursive invocations even if the first one succeeds. A more efficient way
to program the same general idea would be this:

This new version is much less pleasing to the eye, but it’s much faster. The reason is that
if the expression

outputs , then the other recursive invocation is avoided.

It’s a mistake to make efficiency your only criterion for program style. Sometimes
it’s worth a small slowdown of your program to achieve a large gain in clarity. But this is
a case in which the saving is quite substantial. Here is a partial trace of the evaluation of

using the original version of the procedure:

The two invocations marked with asterisks are avoided by using the revised version. These
represent 25% of the invocations of , a significant saving. (Don’t think that the
program necessarily runs 25% faster. Not all invocations take the same amount of time.
This is just a rough measure.) If there were more words after the in the pattern, the
saving would be even greater.

In this situation we achieve a large saving of time by reorganizing the flow of control
in the program. This is quite different from a more common sort of concern for
efficiency, the kind that leads people to use shorter variable names so that the program

Logo’s Evaluation of Inputs

fput sentence

match

#
[#a #b]

a :b

true

match

or
match or true

analysis of algorithms;

evaluates

124 Chapter 7 Pattern Matcher

match [# #] [any old list of words]

if equalp first :pat "# ~
[if match :pat butfirst :sen

[output "true]
[output match butfirst :pat :sen]]

will be a little smaller, or to worry about whether to use or in a case
where either would do. These small “bumming” kinds of optimization are rarely worth
the trouble they cause. Figuring out how many times is invoked using each version
is a simple example of the branch of computer science called a more
profound analysis might use mathematical techniques to compare the two versions in
general, rather than for a single example.

In the full version of the pattern matcher, listed at the end of this project description,
I’ve taken some care to avoid unnecessary matching. On the other hand, the full version
has less flexibility than the simple version because of its ability to assign matching words
to variables. Consider a case like

Which matches how many words? It doesn’t matter if you don’t store the result of the
match in variables. But if the pattern is instead, there has to be a uniform rule
about which part of the pattern matches what. (In my pattern matcher, all of the words
would be assigned to , and would be empty. In general, pattern elements toward the
left match as many words as possible when there is any ambiguity.) The simple pattern
matcher doesn’t have this problem, and can be written to match the ambiguous pattern
whichever way gives a result most quickly.

By the way, what if the two expressions that invoke recursively were reversed
in the revised instruction? That is, what if the instruction were changed again, to read

Would this be more or less efficient than the previous version?

The discussion about efficiency started because Logo the inputs to the primitive
operation before invoking the procedure. That is, in the example in question, Logo
invokes twice before using to check whether either invocation output .
This is consistent with the way Logo does things in general: To evaluate an expression
that uses some procedure, Logo first evaluates all the inputs for that procedure, and then
invokes the procedure with the evaluated inputs. Logo’s rule is extremely consistent

not

Logo’s Evaluation of Inputs 125

to

set make

setq setq

to

doit

edit

edit

edit

(set ’var 27)

make "var 27

(setq var 27)

edit "doit

edit doit

(except for the command), but it isn’t the only possible way. In Lisp, a language that’s
like Logo in many ways, each procedure can choose whether or not its inputs should be
evaluated in advance.

An example may make it clearer what I mean by this. Lisp has a procedure called
that’s equivalent to the Logo . You say

as the equivalent of

But Lisp also has a version called whose first input is evaluated before is
invoked. It’s as if there were an automatic quote mark before the first input, so you just
say

with the same effect as the other examples.

Except for the special format of the command that forms the title line of a
procedure, Berkeley Logo and many other Logo dialects do not have any form of
automatically-quoted inputs. The design principle was that consistency of evaluation
would make the rules easier to understand. Some other versions of Logo do use auto-
quoting for certain procedures. For example, in Berkeley Logo, to edit the definition of
a procedure named you type the instruction

But in some other versions of Logo you instead say

because in those versions, the command auto-quotes its input. One possible reason
for this design decision is that teachers of young children like to present Logo without
an explicit discussion of the evaluation rules. They teach the command as a special
case, rather than as just the invocation of a procedure like everything else. Using this
approach, auto-quoting the input avoids having to explain what that quotation mark
means.

The advantage of the non-auto-quoting version of isn’t just in some abstract
idea of consistency. It allows us to take advantage of composition of functions. Suppose
you are working on a very large project, a video game, with hundreds of procedures. You

would

126 Chapter 7 Pattern Matcher

speed shipspeed asteroidspeed
speedcontrol

Procedures
substringp

edit

or and
or true and

false

and if
print

if

:list

and
first

and or

edit filter [substringp "speed ?] procedures

if not emptyp :list [if equalp first :list 1 [print "one]]

if and (not emptyp :list) (equalp first :list 1) [print "one]

(equalp first :list 1)

want to edit all the procedures having to do with the speed of the spaceships, or whatever
moves around the screen in this game. Luckily, all the procedures you want have the
word as part of their names; they are called or or

. You can say

(is a Berkeley Logo primitive operation that outputs a list of all procedures
defined in the workspace; is a predicate that checks whether one word
appears as part of a longer word.) An auto-quoting command wouldn’t have this
flexibility.

The reason all this discussion is relevant to the pattern matcher is that the Lisp
versions of and have auto-quoted inputs, which get evaluated one by one. As
soon as one of the inputs to turns out to be (or one of the inputs to is

), the evaluation stops. This is very useful not only for efficiency reasons, as in
the discussion earlier, but to prevent certain kinds of errors. For example, consider this
Logo instruction:

It would be pleasant to be able to rewrite that instruction this way:

The use of , I think, makes the program structure clearer than the nested s. That
is, it’s apparent in the second version that something (the) is to be done if two
conditions are met, and that that’s all that happens in the instruction. In the first version,
there might have been another instruction inside the range of the first (outer) ; you
have to read carefully to see that that isn’t so.

Unfortunately, the second version won’t work in Logo. If is in fact empty, the
expression

is evaluated before is invoked; this expression causes an error message because
doesn’t accept an empty input. In Lisp, the corresponding instruction

work, because the two predicate expressions would be evaluated serially and the second
wouldn’t be evaluated if the first turned out to be false.

The serial evaluation of inputs to and is so often useful that some people
have proposed it for Logo, even at the cost of destroying the uniform evaluate-first rule.

Indirect Assignment

Indirect Assignment 127

and or

serial.and if

serial.or or

serial.and serial.or

match

But if you want a serial or , it’s easy enough to write them, if you explicitly quote
the predicate expressions that are its inputs:

Here’s how you would use to solve the problem with the nested s:

Similarly, you could use instead of to solve the efficiency problem in the
first version of the pattern matcher:

These procedures depend on the fact that the predicate expressions that are used as
their inputs are presented inside square brackets; that’s why they are not evaluated before

or is invoked.

From now on, I’ll be talking about the big pattern matcher, not the simple one I
introduced to illustrate the structure of the problem. Here is the top-level procedure

:

to serial.and :pred1 :pred2
if not run :pred1 [output "false]
output run :pred2
end

to serial.or :pred1 :pred2
if run :pred1 [output "true]
output run :pred2
end

if (serial.and [not emptyp :list] [equalp first :list 1]) [print "one]

output serial.or [match butfirst :pat :sen] [match :pat butfirst :sen]

to match :pat :sen
local [special.var special.pred special.buffer in.list]
if or wordp :pat wordp :sen [output "false]
if emptyp :pat [output emptyp :sen]
if listp first :pat [output special fput "!: :pat :sen]
if memberp first first :pat [? # ! & @ ^] [output special :pat :sen]
if emptyp :sen [output "false]
if equalp first :pat first :sen ~

[output match butfirst :pat butfirst :sen]
output "false
end

data

another
value name

128 Chapter 7 Pattern Matcher

[foo [some # pattern] baz]

[foo !:[some # pattern] baz]

?howmany:numberp

make "howmany ...

make :special.var ...

?howmany:numberp

if emptyp
if memberp if emptyp if equalp

memberp #

if

match listp

match
match special

special

special
howmany

match
special.var howmany

make

Special

As you’d expect, there are more cases to consider in this more featureful version, but the
basic structure is similar to the simple matcher. The instructions starting ,

, , and play the same roles as similar instructions in
the other version. (The test replaces the comparison against the word with a
wider range of choices.)

The first instruction tests for errors in the format of the pattern or the sentence
to be matched, in which a word is found where a list was expected. It’s not important if
you use well-formed inputs to . The test essentially converts a pattern like

to the equivalent form

The interesting new case comes when sees a word in the pattern that starts with
one of the six special quantifier characters. In this case, invokes to
check for a match.

One of the interesting properties of is that it has to be able to assign a
value to a variable whose name is not built into the program, but instead is part of the

used as input to the program. That is, if the word

appears in the pattern, (or one of its subprocedures) must assign a value to the
variable named , but there is no instruction of the form

anywhere in the program. Instead, has variable, whose name is
, whose is the . The assignment of the matching

words to the pattern-specified variable is done with an instruction like

Here the first input to is not a quoted word, as usual, but an expression that must
be evaluated to figure out which variable to use.

, then, has two tasks. First it must divide a word like

Defaults

meaning

syntax semantics

parse

default

Defaults 129

Special

Parse.special

set.special
special.var

howmany special.pred numberp

Set.special

special.buffer

special.buffer
match match

to special :pat :sen
set.special parse.special butfirst first :pat "
output run word "match first first :pat
end

[howmany numberp]

?:numberp

if emptyp :special.var [make "special.var "special.buffer]

[a # b # c]

into its component parts; then it must carry out the matching tasks that are the
of those parts. These two tasks are like a smaller version of what a programming language
interpreter like Logo does. Finding the meaningful parts of an instruction is called the

of a language, and understanding what the parts mean is called the of the
language. has two instructions, one for the syntax and one for the semantics:

To something is to divide it into its pieces. outputs a list of the
form

for the example we’re considering. Then assigns the two members of this
list as the values of two variables. The variable named is given the value

, and the variable named is given the value . This
preliminary work is what makes possible the indirect assignment described earlier.

What happens if the pattern has a word like

without a variable name? What happens when the program tries to assign a value to the
variable named in the pattern? contains the instruction

The effect of this instruction is that if you do not mention a variable in the pattern, the
variable named will be used to hold the results of the match. This
variable is the variable, the one used if no other is specified.

It’s important, by the way, that the variable is declared to be local
in procedure . What makes it important is that is recursive; if you use a
pattern like

won’t

130 Chapter 7 Pattern Matcher

print match [a #x b &y ! c] [a i b j c b k c]

show :x show :y

print match [a #x b &x ! c] [a i b j c b k c]

?
true
?
[i]
[j c b]
?
false

?howmany

if emptyp :word [output list :var "always]

to always :x
output "true
end

#
Match special match# #test
match butfirst butfirst #

special.buffer

match
match

x
match

match !

first

parse.special

always Always

then the matching of the second is a subproblem of the matching of the first one.
invokes , which invokes , which invokes , which invokes
on the of the pattern. That contains another . Each of

these uses the variable to remember the words it is trying as a match;
since the variable is declared local, the two don’t get confused. (This means, by the way,
that you can really confuse by using the same variable name twice in a pattern. It
requires a fairly complicated pattern to confuse , but here is an example. The first
result is correct, the second incorrect.

The only change is that the variable name is used twice in the second pattern, and as a
result, doesn’t find the correct match. You’ll know that you really understand how

works if you can explain why it fail if the is removed from the pattern.)

When writing a tool to be used in other projects, especially if the tool will be used
by other people, it’s important to think about defaults. What should the program do if
some piece of information is missing? If you don’t provide for a default explicitly, the
most likely result is a Logo error message; your program will end up trying to take
of an empty list, or something like that.

Another default in the pattern matcher is for the predicate used to test matches. For
example, what happens when the word

appears in the pattern, without a predicate? This case is recognized by ,
in the instruction

The special predicate is used if no other is given in the pattern. has a
very simple definition:

Parsing Rules 131

Program as Data

Parsing Rules

special

?
match?

run special match?

match try.pred

true false

output run word "match first first :pat

?howmany:numberp

output run list :special.pred quoted first :sen

[begin !:[smaller # pattern] end]

[begin !: [smaller # pattern] end]

The instruction in that carries out the semantics of a special pattern-matching
instruction word is

If the pattern contains the word

then this instruction extracts the quantifier character (the first character of the first
word of the pattern) and makes from it a procedure name . That name is then

as a Logo expression; that is, invokes a procedure whose name is .

Most programming languages do not allow the invocation of a procedure based on
finding the name of the procedure in the program’s data. Generally there is a very strict
separation between program and data. Being able to manipulate data to create a Logo
instruction, and then run it, is a very powerful part of Logo. It is also used to deal with
the names of predicates included in the pattern; to see if a word in the sentence input
to is a match for a piece of the pattern, the predicate contains the
instruction

This instruction generates a list whose first member is the name of the predicate found
in the pattern and whose second and last member is a word from the sentence. Then
this list is run as a Logo expression, which should yield either or as output,
indicating whether or not the word is acceptable.

When you are reading the program, remember that the kind of pattern that I’ve written
as

is read by Logo as if I’d written

Further Explorations

but

132 Chapter 7 Pattern Matcher

!

set.special

listp parse.special
Set.special

match

match

in notin

threep

converse while
rest

@@

emptyp :special.pred

[@begin:3 #rest]

[@@: [@:anyof [[my name is #name:notand]
[i like #like:notand]
[&:notand]]

?:in [and]]]

That is to say, this pattern is a list of four members. I think of the middle two as a unit,
representing a single thing to match. The sublist takes the place of a predicate name
after the quantifier. But for Logo, there is no predicate name in the word starting with
the exclamation point; the pattern is a separate member of the large list. That’s why

uses the expression

to test for this situation, rather than . After does its work, all it
has found is a colon with nothing following it. has to look at the next
member of the pattern list in order to find the subpattern.

Chapter 9 is a large program that uses . It may give you ideas for the ways in which
this tool can be used in your own programs. Here, instead of talking about applications
of , I’ll discuss some possible extensions or revisions of the pattern matcher itself.

There are many obvious small extensions. For example, to complement the special
primitive, you could write , which would accept all the members of the

following list. You could allow the use of a number as the predicate, meaning that exactly
that many matching words are required. That is, in the example for which I invented the
predicate , I would instead be able to use

as the pattern.

There is no convenient way to say in a pattern that some subpattern can be repeated
several times, if the subpattern is more than a single word. That is, in the second version
of , instead of having to use to chop off pieces of the matched sentence
into a variable , I’d like to be able to say in the pattern something like

Here the doubled atsign () means that the entire pattern that follows should be
matched repeatedly instead of only once.

Program Listing

Program Listing 133

For other approaches to pattern matching, you might want to read about the
programming languages Snobol and Icon, each of which includes pattern matching as
one of its main features.

to match :pat :sen
local [special.var special.pred special.buffer in.list]
if or wordp :pat wordp :sen [output "false]
if emptyp :pat [output emptyp :sen]
if listp first :pat [output special fput "!: :pat :sen]
if memberp first first :pat [? # ! & @ ^] [output special :pat :sen]
if emptyp :sen [output "false]
if equalp first :pat first :sen

[output match butfirst :pat butfirst :sen]
output "false
end

;; Parsing quantifiers

to special :pat :sen
set.special parse.special butfirst first :pat "
output run word "match first first :pat
end

to parse.special :word :var
if emptyp :word [output list :var "always]
if equalp first :word ": [output list :var butfirst :word]
output parse.special butfirst :word word :var first :word
end

to set.special :list
make "special.var first :list
make "special.pred last :list
if emptyp :special.var [make "special.var "special.buffer]
if memberp :special.pred [in anyof] [set.in]
if not emptyp :special.pred [stop]
make "special.pred first butfirst :pat
make "pat fput first :pat butfirst butfirst :pat
end

134 Chapter 7 Pattern Matcher

to set.in
make "in.list first butfirst :pat
make "pat fput first :pat butfirst butfirst :pat
end

;; Exactly one match

to match!
if emptyp :sen [output "false]
if not try.pred [output "false]
make :special.var first :sen
output match butfirst :pat butfirst :sen
end

;; Zero or one match

to match?
make :special.var []
if emptyp :sen [output match butfirst :pat :sen]
if not try.pred [output match butfirst :pat :sen]
make :special.var first :sen
if match butfirst :pat butfirst :sen [output "true]
make :special.var []
output match butfirst :pat :sen
end

;; Zero or more matches

to match#
make :special.var []
output #test #gather :sen
end

to #gather :sen
if emptyp :sen [output :sen]
if not try.pred [output :sen]
make :special.var lput first :sen thing :special.var
output #gather butfirst :sen
end

to #test :sen
if match butfirst :pat :sen [output "true]
if emptyp thing :special.var [output "false]
output #test2 fput last thing :special.var :sen
end

Program Listing 135

to #test2 :sen
make :special.var butlast thing :special.var
output #test :sen
end

;; One or more matches

to match&
output &test match#
end

to &test :tf
if emptyp thing :special.var [output "false]
output :tf
end

;; Zero or more matches (as few as possible)

to match^
make :special.var []
output ^test :sen
end

to ^test :sen
if match butfirst :pat :sen [output "true]
if emptyp :sen [output "false]
if not try.pred [output "false]
make :special.var lput first :sen thing :special.var
output ^test butfirst :sen
end

;; Match words in a group

to match@
make :special.var :sen
output @test []
end

to @test :sen
if @try.pred [if match butfirst :pat :sen [output "true]]
if emptyp thing :special.var [output "false]
output @test2 fput last thing :special.var :sen
end

136 Chapter 7 Pattern Matcher

to @test2 :sen
make :special.var butlast thing :special.var
output @test :sen
end

;; Applying the predicates

to try.pred
if listp :special.pred [output match :special.pred first :sen]
output run list :special.pred quoted first :sen
end

to quoted :thing
if listp :thing [output :thing]
output word "" :thing
end

to @try.pred
if listp :special.pred [output match :special.pred thing :special.var]
output run list :special.pred thing :special.var
end

;; Special predicates

to always :x
output "true
end

to in :word
output memberp :word :in.list
end

to anyof :sen
output anyof1 :sen :in.list
end

to anyof1 :sen :pats
if emptyp :pats [output "false]
if match first :pats :sen [output "true]
output anyof1 :sen butfirst :pats
end

