
Computer Science Logo Style
Advanced Techniques





Volume 2

Brian Harvey

SECOND EDITION

Computer Science Logo Style

Advanced Techniques

The MIT Press
Cambridge, Massachusetts
London, England













′

Computer Power and Human Reason

Compulsory Miseducation

1997 by the Massachusetts Institute of Technology

The Logo programs in this book are copyright 1997 by Brian Harvey.

These programs are free software; you can redistribute them and/or modify them
under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

These programs are distributed in the hope that they will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License (printed in the
first volume of this series) for more details.

For information on program diskettes for PC and Macintosh, please contact the Marketing
Department, The MIT Press, 55 Hayward Street, Cambridge, Massachusetts, 02142.

The quotation on pages 148–149 is reprinted from by
Joseph Weizenbaum, copyright 1976, W. H. Freeman and Company.

The cryptograms on pages 231–232 are reprinted from by Paul
Goodman, copyright 1964, by permission of the publisher, Horizon Press, New York.

This book was typeset in the Baskerville typeface.

The cover art is an untitled mixed media acrylic monotype by San Francisco artist Jon
Rife, copyright 1996 by Jon Rife and reproduced by permission of the artist.

Library of Congress Cataloging-in-Publication Data

Harvey, Brian, 1949–
Computer Science Logo Style / Brian Harvey. — 2nd ed.

p. cm.
Includes indexes.
Contents: v. 1. Symbolic computing. — v. 2. Advanced techniques —
v. 3. Beyond programming.
ISBN 0–262–58151–5 (set : pbk. : alk. paper). — ISBN
0–262–58148–5 (v. 1 : pbk. : alk. paper). — ISBN 0–262–58149–3 (v.
2 : pbk. : alk. paper). — ISBN 0–262–58150–7 (v. 3 : pbk. : alk.
paper)
1. Electronic digital computers–Programming. 2. LOGO (Computer

programming language) I. Title.
QA76.6.H385 1997
005.13 3—dc20 96–35371

CIP



Contents

xi

xvii

1

17

xii
xiv

xv

1
3

4
4

5
8

9
14

19
20

20
21

22
24

25

v

Preface

Acknowledgments

1 Data Files

2 Example: Finding File Differences

About the Projects
About This Series
How to Read This Book

Reader and Writer
End of File
Case Sensitivity
Dribble Files
A Text Formatter
Page Geometry
The Program
Improving the Formatter

Program Overview
The File Information Block Abstract Data Type
Saving and Re-Reading Input Lines
Skipping Equal Lines
Comparing and Remembering Unequal Lines
Reporting a Difference
Program Listing



31

41

73

81

Text Define

3 Nonlocal Exit

4 Example: Solitaire

5 Program as Data

6 Example: BASIC Compiler

31
33

34
36

39

41
42
45

47
48

49
50

54
58

60
61

73
75

76
78

82
86

87
90

92
95
101
102

102

vi Contents

Quiz Program Revisited
Nonlocal Exit and Modularity
Nonlocal Output
Catching Errors
Ending It All

The User Interface
The Game of Solitaire
Running the Program
Program Structure
Initialization
Data Abstraction
Stacks
Program as Data
Multiple Branching
Further Explorations
Program Listing

and
Automated Definition
A Single-Keystroke Program Generator
Procedure Cross-Reference Listings

A Short Course in BASIC
Using the BASIC Translator
Overview of the Implementation
The Reader
The Parser
The Code Generator
The Runtime Library
Further Explorations
Program Listing



Equalp

109

137

147

181

7 Pattern Matcher

8 Property Lists

9 Example: Doctor

10 Iteration, Control Structures, Extensibility

120
120

122
124

127
129

131
131

132
133

138
139

140
141

142
142

144

149
150

157
158

160
160

165
166

167

182
183

186
187

188

Contents vii

Reinventing for Lists
A Simple Pattern Matcher
Efficiency and Elegance
Logo’s Evaluation of Inputs
Indirect Assignment
Defaults
Program as Data
Parsing Rules
Further Explorations
Program Listing

Naming Properties
Writing Property List Procedures in Logo
Property Lists Aren’t Variables
How Language Designers Earn Their Pay
Fast Replacement
Defaults
An Example: Family Trees

Eliza and Artificial Intelligence
Eliza’s Linguistic Strategy
Stimulus-Response Psychology
Property Lists
Generated Symbols
Modification of List Structure
Linguistic Structure
Further Explorations
Program Listing

Recursion as Iteration
Numeric Iteration
Logo: an Extensible Language
No Perfect Control Structures
Iteration Over a List



205

233

245

Apply

For

Localmake

11 Example: Cryptographer’s Helper

12 Macros

13 Example: Fourier Series Plotter

192
195

197
198

200
201

202
204

210
212

214
218

220
221

223
224

233
236

238
242

243

249
257

258
259

260
261

262
264

viii Contents

Implementing
Mapping
Mapping as a Metaphor
Other Higher Order Functions
Mapping Over Trees
Iteration and Tail Recursion
Multiple Inputs to
The Evaluation Environment Bug

Program Structure
Guided Tour of Global Variables
What’s In a Name?
Flag Variables
Iteration Over Letters
Computed Variable Names
Further Explorations
Program Listing

Backquote
Implementing Iterative Commands
Debugging Macros
The Real Thing

Square Waves
Keyword Inputs
Making the Variables Local
Indirect Assignment
Numeric Precision
Dynamic Scope
Further Explorations
Program Listing



267

Appendices

Berkeley Logo Reference Manual
267

268
270

270
271
272

273
274

275
275

276
277

279
279

279
281

281
281

282
282

283
283

284
284
286

286
287

Contents ix

Entering and Leaving Logo
Tokenization
Data Structure Primitives

Constructors
Selectors
Mutators
Predicates
Queries

Communication
Transmitters
Receivers
File Access
Terminal Access

Arithmetic
Numeric Operations
Predicates
Random Numbers
Print Formatting
Bitwise Operations

Logical Operations
Graphics

Turtle Motion
Turtle Motion Queries
Turtle and Window Control
Turtle and Window Queries
Pen and Background Control
Pen Queries



311

317

Index of Defined Procedures

General Index

288
288

290
290

291
291

292
293

295
299

304
307

307
308

x Contents

Workspace Management
Procedure Definition
Variable Definition
Property Lists
Predicates
Queries
Inspection
Workspace Control

Control Structures
Template-Based Iteration

Macros
Error Processing

Error Codes
Special Variables



Preface

Computer Science Logo Style,

xi

This is the second volume of a three-volume series that uses
the Logo programming language as the medium for a presentation of a range of topics
in computer science. The main audience I had in mind for these books was high school
students, but it’s turned out that they have also been used in teacher training, and to
some extent by independent adult learners.

In the first edition, the first volume was a complete Logo tutorial, explaining all of
the features of the language; the second volume was entirely devoted to programming
projects. (The third volume, then and now, is a sampler of topics from undergraduate
computer science courses.) My idea was that students would spend their first year in an
intensive programming course, and would then pursue their own programming projects
on an independent study basis, using my projects as examples.

As it turned out, people found the first volume both too hard and too easy. It was
too hard because it arrived too soon at the more advanced and complicated features of
Logo; it was too easy because the actual programming examples were all short enough
to fit on a page. Such tiny examples didn’t help the learner extrapolate to the design
of a program that could actually do something interesting. This deficiency may have
encouraged some readers to conclude that Logo is just a toy, and that serious projects
should be done in a “serious” language such as Pascal or C++.

In this second edition I’ve rearranged things. The first volume now teaches only
the core features of Logo, the ones every programmer must understand; it also includes
three of the projects that were originally in the second volume. This volume is now a
more advanced programming text; it alternates tutorial chapters on advanced language
features with example projects that demonstrate those features.

The project chapters serve two purposes at once. First, each project is an example
of something you might actually want to do. The emphasis is on getting the computer



About the Projects

am

your

are

xii Preface

to do something fun and interesting. Each of the projects in this book is here because
I thought I’d enjoy writing it myself, not because it fit some subtle pedagogic purpose.
The projects are offered as case studies, as examples to inspire your own creative efforts.

At the same time, I a teacher, and in this book I’m trying to teach some ideas
about programming technique and programming style. Often there is an easy way and
a hard way to achieve a certain result, and you’re better off if you know the easy way.
Nobody has a complete list of such techniques; you’ll be learning new ones for as long as
you maintain your interest in computer programming. The ones I discuss in this book
are the ones that came up in these particular projects. Ideally, as your teacher, I would
look over your shoulder while you’re working, and I’d tell you about the techniques that
apply to projects. I can’t do that in a book, and so instead I’m presenting some
projects of my own and discussing them as I would discuss your projects if I knew you
personally.

With one exception, each example chapter comes after a tutorial chapter that has
introduced a new Logo programming technique, and that technique is used in the
project. (The exception, the pattern matching project, is an advanced programming
technique in its own right, and is used in a later project.) But the technique from the
previous chapter is rarely the most important aspect of the project! Each project exhibits
many different techniques, and the project chapters describe some of them.

This book does not make much explicit reference to the first volume, but to
understand the discussion here, you should be familiar with the ideas presented in
Volume 1: evaluation, procedures, locality, iteration, recursion, mapping, predicates,
operations, and so on.

Teaching and learning, by the way, don’t necessarily imply a classroom in a school.
I like to imagine you curled up with this book in front of your home computer, playing
around with one of these projects just for the fun of it. Pretend I’m a friend or relative
who happens to be a professional computer scientist. On the other hand, if you
reading this for a course in a school, you have the advantage of a living teacher who can
provide the kind of individual attention to your specific projects that I can’t. There are
advantages and disadvantages either way.

Although I now have the projects linked with tutorial chapters, in the first edition I
organized them into five categories, based not on the programming techniques used
but rather on the purposes of the programs. The projects reflect aspects of my own



mathematical

About the Projects xiii

LogoWorks: Challenging Programs in
Logo

* You can find a video game that I wrote in the collection
, edited by Solomon, Minsky, and Harvey (McGraw-Hill, 1985).

character: I came to computers by way of an early interest in mathematics; my computing
background is in artificial intelligence and in systems programming; I tend to think in
words, not in pictures. I think it may give the collection of projects a more coherent feel
if I explain the categories in which they were written, even though the book is no longer
organized around those categories.

The first is cryptography. One of the first books I can remember buying, as a child
in elementary school, was about secret codes. Besides the universal appeal of knowing
a secret, cryptography was interesting to me because it’s a sort of puzzle,
like those logic problems about who lives in the yellow house. The Cryptographer’s
Helper project in this volume includes a very small effort at artificial intelligence: the
program makes some guesses, on its own, to start solving a cryptogram. The Playfair
Cipher project, now moved to the first volume, deals with a more complicated technique
for encoding a message, but it doesn’t try to break such a code.

The second category is games. I’m not a video game enthusiast; hand-eye coordi-
nation isn’t my strong point. (I never really learned to ride a bicycle!) Anyway, writing
video game programs depends too much on the particular hardware of your computer,
so I can’t do it in this general book.* Instead I’ve written two simple strategy games. In
the first volume is a program that plays tic-tac-toe. This game is extremely trivial for a
human being, but it’s surprisingly hard to formulate strategy rules that are simple and
precise enough to embody in a computer program. Also, it’s an opportunity to throw in
a little bit of graphics programming, to draw the board and fill it with Xs and Os. In this
volume is a program that deals out a hand of solitaire and maintains the display of the
layout as you play the hand. Before I wrote this program, I had been feeling bored and
lonely for an extended period, and I was wasting a lot of time playing solitaire myself. I
figured it would be more productive to write a computer program!

The third category is mathematics. I once spent some time working as a systems
programmer at a computer music research center in Paris, and this volume includes a
project about Fourier analysis, the mathematical basis of computer music. The project
demonstrates graphically how a complex waveform, representing the texture of a sound,
can be built up from much simpler elements. In the first volume is a program to solve
the kind of problem, often found on IQ tests, in which you are given pitchers of certain
sizes and asked to use them to measure a given amount of water by pouring back and
forth. This project illustrates the idea of searching through a “solution space” of possible
pouring steps.



equalp

doctor

About This Series

Computer Science Logo Style

top-down

tools:

xiv Preface

The fourth category is that of utility programs. This is actually the area of
programming I know best: writing things that are not complete applications in themselves,
but rather tools to help in the creation of even larger projects. For the second edition I’ve
replaced the original projects in this category with two new ones. The project Finding File
Differences is a utility program that can be used to compare two versions of a file to see
what’s changed from the old one to the new one. Then there is a compiler for the BASIC
programming language; besides illustrating the idea of program as data—the compiler
generates new Logo procedures to carry out the instructions in a BASIC program—this
project may help to prepare the reader for the more complicated Pascal compiler in the
third volume.

The fifth category is pattern matching. This category combines my interests in
systems programming and artificial intelligence. The first project is a tool, like the
ones in the utilities category, but it’s a tool designed specifically for artificial intelligence
applications: a pattern matcher. This program compares a particular list with a general
template, or pattern. Instead of checking for exact equality like , the pattern
matcher checks for a kind of “fill in the blanks” partial equality. The second project in
this category uses the pattern matcher to implement , another famous artificial
intelligence program that simulates a conversation with the user.

is intended to bring to the hobbyist audience a particular point
of view about computer science: the artificial intelligence view. This way of looking at
computers is quite different from the more usual software engineering approach. In that
approach, you are always dealing with a very well-defined problem, and are looking for
the best way to solve it. Software engineers like to start with a formal problem statement,
and then design a computer program to fit. They believe that the design process should
be ; you should start with the overall structure and work down to the details.
Their preferred programming language is Pascal.

In artificial intelligence, the problems are not usually so well defined. Starting with a
vague problem statement like “develop a good strategy for playing chess,” AI programmers
can’t begin with a rigid program specification. Instead, they build program
fragments that can be pieced together to form larger programs. The programming
process involves writing code, testing, coming up with new ideas, and modifying the
program interactively. This process is encouraged by an interactive language like Lisp or
Logo.



How to Read This Book

Beyond
Programming,

How to Read This Book xv

Computer programming is a great intellectual hobby; it provides the same opportu-
nity for creative, concrete work in mathematical thinking that drama or creative writing
does for verbal thinking. A learner can have years of intellectual adventure just learning
to write better and better programs. Finally, though, there may come a time when the
learner gets bored with just writing more and more programs, and seeks a deeper under-
standing of the issues behind this practical work. The third volume of this series,

addresses the needs of these learners by introducing them to some of the
elements of university-level computer science, still in the context of Logo programming.

You should have each program actually available to you on a computer as you read about
it. These programs are available on diskette from the MIT Press, or can be downloaded
from the Internet. Details are in the first volume.

There are many dialects of Logo; this book uses Berkeley Logo, a free version
available for PC, Macintosh, and Unix systems. The more fundamental Logo techniques
used in the first volume are more or less standard among Logo implementations, but
some of the advanced techniques in this volume are unique to Berkeley Logo. It, too, is
on the diskette and the Internet.

The programs you see here are essentially the programs I wrote as I was trying to
get each project to work. I didn’t start with a particular programming style in mind
and then invent an example to illustrate the style. It’s not always obvious what is the
“correct” style for a given problem; sometimes one way is much easier to understand,
for example, while a different solution may run much more efficiently. The comments
in each chapter sometimes suggest alternative ways in which I might have written some
piece of the program. I try to explain why I chose the style I did, although sometimes the
real explanation is simply that that’s the first thing I thought of. I’ve modified almost all
of these programs for the second edition, and some of the chapters explain my second
thoughts.

Each example chapter begins with an explanation of what the project is all about.
Remember that these projects were meant to be interesting in themselves, not just as
vehicles for a discussion of programming techniques! The discussion in each chapter
ends with a return to the purpose of the project, with suggestions for how that purpose
might be extended. One source of ideas for projects of your own is to extend someone
else’s work, and one important purpose of this book is to give you ideas for such starting
points. In between comes a technical discussion of the programming techniques used.



not

xvi Preface

What I do provide, generally, is a guided tour of every procedure. One of the
things you should learn from this book is the ability to read a long program on your own.
You should recognize some of the typical categories of procedures, like ones that apply a
given command to each member of a list. In the discussions, rather than explain every
detail, I try to focus your attention on the parts of the program that seem to illuminate
some more general technical issue. A complete listing of the program is at the end of
each example chapter.

The programs in this book are copyright, but you can use, copy, and redistribute them
freely; the exact terms are given in the GNU General Public License, which is distributed
with the programs and is printed in the first volume of this series. Essentially, the only
restriction is that you can’t use these programs as the basis for your own commercial
programs; if you extend these projects, you can only distribute your extensions on the
same free terms. Share ideas, don’t hoard them!



Acknowledgments

LogoWorks:
Challenging Programs in Logo

LogoWorks

xvii

Cynthia Solomon and Margaret Minsky are the people who got me started at the
enterprise of developing exemplary Logo projects. People in the Logo community had
been talking for many years about the need for an advanced Logo project book, but
nobody got around to it until 1982 when Atari had all the money in the world and used
some of it to establish a Corporate Research Department. Cynthia was in charge of
the Atari research lab in Cambridge, where many MIT old-timers were gathered. She
and Margaret decided that this was the time for the project book. I was one of several
people they recruited to contribute projects. The result of that effort is called

(McGraw-Hill, 1985).

This book is somewhat different from in that it’s part of a series, so I can
make assumptions here about what the reader already knows from having read the first
volume. Still, I’ve benefited greatly from what I learned from Cynthia and Margaret
about how to explain the structure of a large programming project.

The people who have read and commented on early drafts of this book include
Hal Abelson, Alison Birch, Sharon Yoder, Mike Clancy, Jim Davis, Batya Friedman, Paul
Goldenberg, Margaret Minsky, and Cynthia Solomon. As for the first volume, I am
particularly indebted to Hal and Paul for their strong encouragement and their deep
insights into issues both in computer science and in education. Matthew Wright reviewed
some chapters for the second edition.

Berkeley Logo, the interpreter used in this edition, is a collective effort of many
people, both at Berkeley and across the Internet. My main debt in that project is to
three former students: Dan van Blerkom, Michael Katz, and Doug Orleans. At the risk
of missing someone, I also want to acknowledge substantial contributions by Freeman
Deutsch, Khang Dao, Fred Gilham, Yehuda Katz, George Mills, and Randy Sargent.





Computer Science Logo Style
Advanced Techniques




