
255

pour

14 Example: Pitcher Problem Solver

Program file for this chapter:

You have probably seen puzzles like this one many times:

You are at the side of a river. You have a three-liter pitcher and
a seven-liter pitcher. The pitchers do not have markings to allow
measuring smaller quantities. You need two liters of water. How
can you measure two liters?

These puzzles are used in some IQ tests, so many people come across them in schools. To
solve the problem, you must pour water from one pitcher to another. In this particular
problem, there are six steps in the shortest solution:

1. Fill the three-liter pitcher from the river.

2. Pour the three liters from the three-liter pitcher into the seven-liter pitcher.

3. Fill the three-liter pitcher from the river again.

4. Pour the three liters from the three-liter pitcher into the seven-liter pitcher (which
now contains six liters).

5. Fill the three-liter pitcher from the river yet again.

6. Pour from the three-liter pitcher into the seven-liter pitcher until the latter is full.
This requires one liter, since the seven-liter pitcher had six liters of water after step 4.
This step leaves two liters in the three-liter pitcher.

This example is a relatively hard pitcher problem, since it requires six steps in the
solution. On the other hand, it doesn’t require pouring water back into the river, and
it doesn’t have any unnecessary pitchers. An actual IQ test has several such problems,
starting with really easy ones like this:

−

pour [3 7] 4

pour [2 5 10] 1

people

x y

256 Chapter 14 Example: Pitcher Problem Solver

?
Pour from river to 7
Pour from 7 to 3
Final quantities are 3 4
?
Pour from river to 5
Pour from 5 to 2
Pour from 2 to river
Pour from 5 to 2
Final quantities are 2 1 0

You are at the side of a river. You have a three-liter pitcher and
a seven-liter pitcher. The pitchers do not have markings to allow
measuring smaller quantities. You need four liters of water. How
can you measure four liters?

and progressing to harder ones like this:

You are at the side of a river. You have a two-liter pitcher, a five-liter
pitcher, and a ten-liter pitcher. The pitchers do not have markings
to allow measuring smaller quantities. You need one liter of water.
How can you measure one liter?

The goal of this project is a program that can solve these problems. The program
should take two inputs, a list of pitcher sizes and a number saying how many liters we
want. It will work like this:

How do solve these problems? Probably you try a variety of special-purpose
techniques. For example, you look at the sums and differences of the pitcher sizes to
see if you can match the goal that way. In the problem about measuring four liters with
a three-liter pitcher and a seven-liter pitcher, you probably recognized right away that
7 3 = 4. A more sophisticated approach is to look at the remainders when one pitcher
size is divided by another. In the last example, trying to measure one liter with pitchers
of two, five, and ten liters, you might notice that the remainder of 5/2 is 1. That means
that after removing some number of twos from five, you’re left with one.

Such techniques might or might not solve any given pitcher problem. Mathemati-
cians have studied ways to solve such problems in general. To a mathematician, a pitcher
problem is equivalent to an algebraic equation in which the variables are required to take
on integer (whole number) values. For example, the problem at the beginning of this
chapter corresponds to the equation

3 + 7 = 2

−

−

x y

x
y

Diophantine

x y

Chapter 14 Example: Pitcher Problem Solver 257

In this equation, represents the number of times the three-liter pitcher is filled and
represents the number of times the seven-liter pitcher is filled. A positive value means
that the pitcher is filled from the river, while a negative value means that it’s filled from
another pitcher.

An equation with two variables like this one can have infinitely many solutions, but
not all the solutions will have integer values. One integer-valued solution is = 3 and

= 1. This solution represents filling the three-liter pitcher three times from the river
(for a total of nine liters) and filling the seven-liter pitcher once from the three-liter
pitcher. Since the seven-liter pitcher is bigger than the three-liter pitcher, it has to be
filled in stages. Do you see how this analysis corresponds to the sequence of steps I gave
earlier?

An equation with integer-valued variables is called a equation. In general,
a Diophantine equation will have infinitely many solutions, but they won’t all be practical
as solutions to the original problem. For example, another solution to the equation we’ve
been considering is = 4 and = 2. This solution tells us to fill the seven-liter pitcher
from the river twice, and the three-liter pitcher from the seven-liter pitcher four times.
Here’s how that works out as a sequence of steps:

1. Fill the seven-liter pitcher from the river.

2. Fill the three-liter pitcher from the seven-liter pitcher. (This leaves four liters in the
seven-liter pitcher.)

3. Empty the three-liter pitcher into the river.

4. Fill the three-liter pitcher from the seven-liter pitcher. (This leaves one liter in the
seven-liter pitcher.)

5. Empty the three-liter pitcher into the river.

6. Pour the contents of the seven-liter pitcher (one liter) into the three-liter pitcher.

7. Fill the seven-liter pitcher from the river (for the second and last time).

8. Fill the three-liter pitcher (which already had one liter in it) from the seven-liter
pitcher. (This leaves five liters in the seven-liter pitcher.)

9. Empty the three-liter pitcher into the river.

10. Fill the three-liter pitcher from the seven-liter pitcher. This leaves the desired two
liters in the seven-liter pitcher.

This solution works, but it’s more complicated than the one I used in the first place.

y

x

(–2, 1)

(3, –1)
2x+5y=1

−
−

x y

x y x x
y x y

258 Chapter 14 Example: Pitcher Problem Solver

One way to solve Diophantine equations is graphically. For example, consider the
problem about measuring one liter of water with pitcher capacities two, five, and ten
liters. It turns out that the ten-liter pitcher is not actually needed, so let’s forget it for
now and consider the simpler but equivalent problem of using just the two-liter and the
five-liter pitchers. This problem gives rise to the equation

2 + 5 = 1

For the moment, never mind that we are looking for integer solutions. Just graph the
equation as you ordinarily would. The graph will be a straight line; probably the easiest
way to draw the graph is to find the -intercept (when = 0, 2 = 1 so = 1/2) and the
-intercept (when = 0, = 1/5).

Once you’ve drawn the graph, you can look for places where the line crosses the grid
points of the graph paper. In this case, two such points of intersection are (2, 1) and
(3, 1). The first of these points represents the solution shown earlier, in which the
five-liter pitcher is filled from the river and then used as a source of water to fill the
two-liter pitcher twice. The second integer solution represents the method of filling the
two-liter pitcher from the river three times, then pouring the water from the two-liter
pitcher to the five-liter pitcher each time. (On the third such pouring, the five-liter
pitcher fills up after only one liter is poured, leaving one liter in the two-liter pitcher.)

What about the original version of this problem, in which there were three pitchers?

− −

[3 4]

Tree Search

What Is
Mathematics?

x y z

tree.

Tree Search 259

* You can find a computational algorithm to solve (or show that there are no solutions to)
any linear Diophantine equation with two variables on page 50 of Courant and Robbins,

(Oxford University Press, 1941).

In this case, we have a Diophantine equation with three variables:

2 + 5 + 10 = 1

The graph of this equation is a plane in a three-dimensional coordinate system. An
example of a solution point that uses all three pitchers is (2, 1, 1). How would you
interpret this as a series of pouring steps?

By the way, not all pitcher problems have solutions. For example, how could you
measure one liter with a two-liter pitcher and a ten-liter pitcher? The answer is that you
can’t; since both pitchers hold an even number of liters, any amount of water measurable
with them will also be even.*

My program does not solve pitcher problems by manipulating Diophantine equations.
Instead, it simply tries every possible sequence of pouring steps until one of the pitchers
contains the desired amount of water. This method is not feasible for a human being,
because the number of possible sequences is generally quite large. Computers are better
than people at doing large numbers of calculations quickly; people have the almost
magical ability to notice the one relevant pattern in a problem without trying all the
possibilities. (Some researchers attribute this human ability to “parallel processing”—the
fact that the human brain can carry on several independent trains of thought all at once.
They are beginning to build computers designed for parallel processing, and hope that
these machines will be able to perform more like people than traditional computers.)

The possible pouring steps for a pitcher problem form a The root of the tree
is the situation in which all the pitchers are empty. Connected to the root are as many
branches as there are pitchers; each branch leads to a node in which one of the pitchers
has been filled from the river. Each of those nodes has several branches connected to it,
corresponding to the several possible pouring steps. Here is the beginning of the tree
for the case of a three-liter pitcher and a seven-liter pitcher. Each node is represented in
the diagram by a list of numbers indicating the current contents of the three-liter pitcher
and the seven-liter pitcher; for example, the list means that the three-liter pitcher
is full and the seven-liter pitcher contains four liters.

[0 0]

[3 0] [0 7]

[0 3] [3 7] [3 4] [3 7]

[3 3] [0 4] [3 7]

[3 1][0 6]

7→
7

R
→

R

[0 0]

[0 0] [0 0] [0 0] [3 0] [0 0] [0 0] [0 7] [0 0] [0 0]

[3 0] [0 0] [3 0] [3 0] [3 0] [3 0] [3 7] [0 3] [0 0]

R
→

R

7→
7

R
→

7
R

→
7

3→
7

3→
7

7→
3

7→
3

3→
3

3→
3

R
→

3
R

→
3

7→
R

7→
R

3→
R

3→
R

260 Chapter 14 Example: Pitcher Problem Solver

Actually, I have simplified this tree by showing only the meaningful pouring steps. The
program must consider, and of course reject, things like the sequence

1. Fill the three-liter pitcher from the river.

2. Empty the three-liter pitcher into the river.

and individual meaningless steps like pouring from a pitcher into itself, pouring from an
empty pitcher, and pouring into a full pitcher. For a two-pitcher problem there are three
possible sources of water (the two pitchers and the river) and three possible destinations,
for a total of nine possible pouring steps. Here is the top of the full tree:

At each level of the tree, the number of nodes is multiplied by nine. If we’re trying
to measure two liters of water, a six-step problem, the level of the tree at which the
solution is found will have 531,441 nodes! You can see that efficiency will be an important
consideration in this program.

children

process
print process

Depth-first and Breadth-first Searching

to depth.first :node
process :node
foreach (children :node) "depth.first
end

searching

depth-first search breadth-first search.

Depth-first and Breadth-first Searching 261

In some projects, a tree is represented within the program by a Logo list. That’s not
going to be the case in this project. The tree is not explicitly represented in the program
at all, although the program will maintain a list of the particular nodes of the tree that
are under consideration at a given moment. The entire tree can’t be represented as a
list because it’s infinitely deep! In this project, the tree diagram is just something that
should be in your mind as a model of what the program is doing: it’s through
the tree, looking for a node that includes the goal quantity as one of its numbers.

Many programming problems can be represented as searches through trees. For example,
a chess-playing program has to search through a tree of moves. The root of the tree is
the initial board position; the second level of the tree contains the possible first moves by
white; the third level contains the possible responses by black to each possible move by
white; and so on.

There are two general techniques for searching a tree. These techniques are called
and In the first technique, the program explores all

of the “descendents” of a given node before looking at the “siblings” of that node. In
the chess example, a depth-first search would mean that the program would explore
all the possible outcomes (continuing to the end of the game) of a particular opening
move, then go on to do the same for another opening move. In breadth-first search, the
program examines all the nodes at a given level of the tree, then goes on to generate and
examine the nodes at the next level. Which technique is more appropriate will depend
on the nature of the problem.

In a programming language like Logo, with recursive procedures and local variables,
it turns out that depth-first search leads to a simpler program structure. Suppose that
we are given an operation called that takes a node as input and gives us as its
output a list of all the children (one level down) of that node. Suppose we also are given
a command called that takes a node as input and does whatever the program
needs to do for each node of the tree. (You can just use in place of if
you want to see what’s in the tree.) Here is how to do a depth-first search:

[TNT 9827]

[T 689827]

[TM 89827]

[TNU 9827]

[TN 89827]

[TNV 9827]

[TO 89827]

[U 689827]

[UM 89827] [UN 89827] [UO 89827]

[VNT 9827]

[V 689827]

[VM 89827]

[VNU 9827]

[VN 89827]

[VNV 9827]

[VO 89827]

[8689827]

show children [tnt 9827]

depth.first.

children
children

262 Chapter 14 Example: Pitcher Problem Solver

to children :node
if emptyp last :node [output []]
output map [child (first :node) ? (butfirst last :node)] ~

letters first last :node
end

to letters :digit
output item :digit [[] abc def ghi jkl mno prs tuv wxy]
end

to child :letters :this :digits
output list (word :letters :this) :digits
end

?
[[tntw 827] [tntx 827] [tnty 827]]

In this program, the structure of the tree is reflected in the structure of recursive
invocations of

It might be worthwhile to consider a specific example of how this program works.
One of the suggested activities in Chapter 11 was to write a program that takes a telephone
number as input and prints out all possible spellings of that number as letters. (Each
digit can represent any of three letters. To keep things simple, I’m going to ignore the
problem of the digits zero and one, which don’t represent any letters on telephone dials
in the United States.) Here is a partial picture of the tree for a particular telephone
number. Each node contains some letters and some digits. (In the program, a node will
be represented as a Logo list with two members, a word of letters and a word of digits.)
The root node is all digits; the “leaf” nodes will be all letters.

The operation must output a list of three nodes, selecting each of the
three possible letters for the first remaining digit. If the input to is a leaf node
(one with all letters), it must output the empty list to indicate that there are no children
for that node.

☞

process

process

queue,

Depth-first and Breadth-first Searching 263

to spell :number
depth.first list " :number
end

to process :node
if emptyp last :node [print :node]
end

spell 8689827

to process :node
print :node
end

to breadth.first :root
breadth.descend (list :root)
end

to breadth.descend :queue
if emptyp :queue [stop]
process first :queue
breadth.descend sentence (butfirst :queue) ~

(children first :queue)
end

The top-level procedure has to turn a number into a root node and invoke a depth-first
search:

What about the command? The program wants to print only leaf nodes:

Try this program. To get the tree illustrated above, use the instruction

Then try again, but investigate the order in which the program searches the nodes of the
tree by using a different version of :

This will let you see the order in which the program encounters the nodes of the tree.

Writing a breadth-first search is a little more complicated because the program must
explicitly arrange to process all the nodes of a given level before processing those at the
next level. It keeps track of the nodes waiting to be processed in a a list in which
new nodes are added at the right and the next node to be processed is taken from the
left. Here is the program:

Data Representation

children process

spell breadth.first
depth.first process

process

entire

shortest

state.

pourings.

264 Chapter 14 Example: Pitcher Problem Solver

This breadth-first search program uses the same and subprocedures
as the depth-first version. You can try a breadth-first listing of telephone number spellings
simply by changing the top-level procedure to invoke instead
of . What you’ll find is that (with the version of that only prints
leaf nodes) the two versions produce the same results, but the depth-first program trickles
the spellings out one by one, while the breadth-first version prints nothing for a long
time and then spits out all the spellings at once. If you use the version of that
prints all the nodes, you can see why.

The telephone number speller is an unusual example of a tree-search program for
two reasons. First, the tree is finite; we know in advance that it extends seven levels
below the root node, because a telephone number has seven digits. Second, the goal of
the program requires searching the tree. It’s more common that the program is
looking for a solution that’s “good enough” in some sense, and when a solution is found,
the program stops looking. For example, in the pitcher problem program, once we find
a sequence of steps to measure the desired amount of water, we don’t care if there is also
a second way to do it.

For the pitcher problem solver, I decided that a breadth-first search is appropriate.
The main reason is that I wanted to present the possible solution. To do that, first
I see if any one-step sequences solve the problem, then I see if any two-step sequences
solve it, and so on. This is a breadth-first order.

At first, I thought that I would represent each node of the tree as a list of numbers
representing the contents of the pitchers, as in the diagram I showed earlier. I called this
list of quantities a This information is enough to be able to generate the children
of a node. Later, though, I realized that when I find a winning solution (one that has
the goal quantity as one of the quantities in the state list) I want to be able to print not
only the final quantities but also the sequence of pouring steps used to get there. In
a depth-first search, this information is implicitly contained in the local variables of the
procedure invocations leading to the winning solution. In a breadth-first search, however,
the program doesn’t keep track of the sequence of events leading to a given node. I had
to remember this information explicitly.

The solution I chose was to have an extra member in the list representing a state,
namely a list of A pouring is a list of two numbers representing the source and
the destination of the water being poured. Zero represents the river; numbers greater

pour [3 7] 4

Abstract Data Types

fput

[0 2]
[2 1]

state

:state

:path

state.

path

Abstract Data Types 265

pour [2 5 10] 1

?
Pour from river to 7
Pour from 7 to 3
Final quantities are 3 4

[[[2 1] [0 2]] 3 4]

[3 4]

[[[2 1] [0 2]] 3 4]

than zero are pitcher numbers. (A pitcher number is not the same as the size of the
pitcher. If you enter the instruction

then the two-liter pitcher is pitcher number 1, the five-liter is number 2, and the ten-liter
is number 3.) The list of pourings is the first member of the expanded state list; pourings
are added to that list at the front, with . For example, in the interaction

the extended state information for the final solution state is

In this list, the sublist represents pouring water from the river into pitcher number
2, which is the seven-liter pitcher. The sublist represents pouring water from
pitcher number 2 into pitcher number 1.

Up to this point I’ve continued to call this expanded data structure a That’s what I
did in the program, also, until I found that certain procedures needed the new version,
while other procedures dealt with what I had originally considered a state, with only the
final quantities included in the list. As a result, my program had local variables named

in several procedures, some of which contained the old kind of state, and some
the new kind. I thought this might be confusing, so I did what I should have done in
the first place: I invented a new name for the expanded data structure. It’s now called a

; when you read the program you can confidently assume that represents a
list like

while represents a list like

abstract

266 Chapter 14 Example: Pitcher Problem Solver

first
fput oldpath

:from :to

newstate
fput

first fput
fput make.path

fput first

make.path

make "newpath fput (fput (list :from :to) first :oldpath) ~
(newstate butfirst :oldpath :from :to)

to make.path :moves :state
output fput :moves :state
end

to path.moves :path
output first :path
end

to path.state :path
output butfirst :path
end

make "newpath make.path (fput (list :from :to) path.moves :oldpath) ~
(newstate (path.state :oldpath) :from :to)

The trouble with using a list of lists of lists in a program is that it can become very
complicated to keep track of all the uses of selectors like and constructors like

. For example, suppose the value of the variable is a path, and we decide
to pour water from pitcher number to pitcher number . We now want to
construct a new path, which will include a new state (computed from the old state and the
two pitcher numbers) and a new list of moves, with the new move added to the existing
ones. We’d end up saying

assuming that we have a procedure that computes the new state. This
instruction is hard to read! The two invocations of have quite different purposes.
One adds a new move to a list of moves, while the other connects a list of moves to a state
in order to form a path. We can clarify instructions like this one if we make up synonyms
for procedures like and to be used in particular contexts. For example, we
make a new path using , but we’ll call it when we’re using it for that
purpose. Just as is a constructor, and a selector, for lists, we can invent
constructors and selectors for data types (ones that we make up, rather than ones
built into Logo) such as paths:

That unreadable instruction shown earlier would now be written this way:

At first glance this may not seem like much of an improvement, since the new names are
longer and less familiar than the old ones. But we can now read the instruction and see
that it calls a constructor with two inputs, one that seems to have to do with

☞

Sentence as a Combiner

Finding the Children of a Node

move

sentences

stack,

Finding the Children of a Node 267

sentence
Sentence

sentence
append Sentence

fput

first
fput

lput sentence
children

children

Pour breadth.first

to breadth.descend :queue
if emptyp :queue [stop]
process first :queue
breadth.descend sentence (butfirst :queue) (children first :queue)
end

moves, and the other that seems to have to do with states. If we remember that a path
has two parts, a list of moves and a state, this makes sense.

Invent a constructor and selectors for a data type.

The general breadth-first search program I showed earlier contains this procedure:

The most common use of is in generating English sentences. In that use, the
input and output lists are or flat lists. You’re supposed to think, “
takes two words or sentences as inputs; its output is a sentence containing all the words
of the inputs.” In this program, we’re using in a different way, more like what
is called in Lisp. Here you’re supposed to think, “ takes two lists as
inputs; its output is a list containing the members of the inputs.” Those members could
be words or lists, but in this case they’ll be lists, namely paths.

Recursive procedures that manipulate non-flat lists generally use as the
combiner. That wouldn’t work here for two reasons. First, the queue structure that we
need to implement breadth-first search requires that we add new entries at the opposite
end of the list from where we look for the next node to process. If we use to select
a node and to add new candidate nodes, then instead of a queue we’d be using a

in which the newest entries are processed first instead of the oldest ones first. That
would give us a depth-first tree search algorithm. We could solve that problem by using

as the combiner, but the second reason for choosing is that we don’t
generate new entries one at a time. Instead, gives us several children to add
to the queue at once. That means we must append the list output by to the
list that represents the nodes already queued.

is going to work essentially by invoking on a root node containing
zeros for all the current quantities. But in this case we want to pick a single node that

operation

268 Chapter 14 Example: Pitcher Problem Solver

breadth.first

winnerp true

breadth.first

pour

All.empty

Pour

breadth.first children

to breadth.first :root
output breadth.descend (list :root)
end

to breadth.descend :queue
if emptyp :queue [output []]
if winnerp first :queue [output first :queue]
output breadth.descend sentence (butfirst :queue) ~

(children first :queue)
end

to winnerp :path
output memberp :goal path.state :path
end

to pour :sizes :goal
win breadth.first make.path [] all.empty :sizes
end

to all.empty :list
output map [0] :list
end

satisfies the conditions of the problem, so we must modify to make it
an that outputs the first such node:

The predicate will output if its input is a node that satisfies the problem
conditions:

If runs out of nodes without finding a solution, it returns an empty list
to indicate failure.

Here is a simplified version of :

is an operation that outputs a state in which all of the values are zeros. The
number of zeros in the list is equal to the number of members in its input, which is
the number of pitchers. combines this initial state with an empty list of moves to
produce the first path.

To allow to work, we must have an operation called
that outputs a list of the children of a node. Starting from a particular state, what are the
possible outcomes of a single pouring? As I mentioned earlier, the source of a pouring
can be the river or any of the pitchers, and the destination can also be the river or any

2
n n n

n

n

Finding the Children of a Node 269

pitchers

child
child

children children1
:from :to

children1 sentence
map.se map

children sentence
children1

children1
child child

to children :path
output map.se [children1 :path ?] :pitchers
end

to children1 :path :from
output map.se [child :path :from ?] :pitchers
end

to child :path :from :to
output (list make.path (fput (list :from :to) path.moves :path)

(newstate (path.state :path) :from :to))
end

to children1 :path :from ;; simplified
output map [child :path :from ?] :pitchers
end

to child :path :from :to ;; simplified
output make.path (fput (list :from :to) path.moves :path) ~

(newstate (path.state :path) :from :to)
end

of the pitchers. If there are pitchers, then there are + 1 sources, + 1 destinations,
and therefore (+ 1) possible pourings. Here is how the program structure reflects this.
I’m assuming that we’ve created (elsewhere in the program) a variable called
whose value is a list of all the integers from zero to .

The version of presented here is simpler than the one in the actual project, but
the other procedures are the real versions. We’ll see later how is expanded. The
immediately important point is to see how and ensure that every
possible source () and destination () from zero to the number of pitchers are
used.

You should be wondering, at this point, why uses as a
combiner. (That’s what it means to use rather than .) It makes sense
for to combine using because, as I discussed earlier, the things
it’s combining are lists of nodes, the outputs from invocations of . But

is not combining lists of nodes; it’s combining the outputs from invocations
of . Each invocation of computes a single child node. It would be more
straightforward to write the program this way:

Computing a New State

270 Chapter 14 Example: Pitcher Problem Solver

if equalp :from :to [output []]

local "pitchers
make "pitchers fput 0 (map [#] :sizes)

list child
sentence

sentence children1
child

child
sentence

child

child sentence children1

pitchers pour

map
map

#

child

to child :path :from :to

output (list make.path (fput (list :from :to) path.moves :path)
(newstate (path.state :path) :from :to))

end

to pour :sizes :goal

win breadth.first make.path [] all.empty :sizes
end

This also eliminates the use of in , needed in the other version to turn a
single node into a singleton (one-member) list of nodes, which is what needs
to function properly as a combiner.

The reason for the use of in is that we are later going to
modify so that sometimes it rejects a possible new node for efficiency reasons.
For example, it makes no sense to have nodes for pourings in which the source and
the destination are the same. When it wants to reject a node, will output the
empty list. Using as the combiner, this empty list simply doesn’t affect the
accumulated list of new nodes. Here is a version of modified to exclude pourings
to and from the same place:

With this version of , the use of in may seem more sensible
to you.

To create the variable we modify the top-level :

Here we are taking advantage of a feature of that I haven’t mentioned earlier. The
number sign () can be used in a template to represent the position in the input,
rather than the value, of a member of the input data list. That is, is replaced by 1 for
the first member, 2 for the second, and so on. In this example, these position numbers
are all we care about; the template does not contain the usual question mark to refer to
the values of the data.

The job of is to produce a new child node, that is to say, a new path. Its inputs are
an old path and the source and destination of a new pouring. The new path consists of

Child

Computing a New State 271

fput (list :from :to) path.moves :path

to newstate :state :from :to
if riverp :to [output replace :state :from 0]
if riverp :from [output replace :state :to (size :to)]
if (water :from) < (room :to) ~

[output replace2 :state ~
:from 0 ~
:to ((water :from)+(water :to))]

output replace2 :state ~
:from ((water :from)-(room :to)) ~
:to (size :to)

end

to replace :list :index :value
if equalp :index 1 [output fput :value butfirst :list]
output fput first :list (replace butfirst :list :index-1 :value)
end

a new state and a new list of pourings. The latter is easy; it’s just the old list of pourings
with the new one inserted. computes that part itself, with the expression

The new state is harder to compute. There are four cases.

1. If the destination is the river, then the thing to do is to empty the source pitcher.

2. If the source is the river, then the thing to do is to fill the destination pitcher to its
capacity.

3. If source and destination are pitchers and the destination pitcher has enough empty
space to hold the contents of the source pitcher, then the thing to do is to add the
entire contents of the source pitcher to the destination pitcher, setting the contents
of the source pitcher to zero.

4. If both are pitchers but there is not enough room in the destination to hold the
contents of the source, then the thing to do is fill the destination to its capacity and
subtract that much water from the source.

Here is the procedure to carry out these computations:

Each instruction of this procedure straightforwardly embodies one of the four numbered
possibilities.

Helper procedures are used to compute a new list of amounts of water, replacing
either one or two old values from the previous list:

More Data Abstraction

show replace [a b c d e] 4 "x

two

272 Chapter 14 Example: Pitcher Problem Solver

Replace

Replace2

newstate
Newstate replace

replace

:from

newstate riverp
room

to replace2 :list :index1 :value1 :index2 :value2
if equalp :index1 1 ~

[output fput :value1 replace butfirst :list :index2-1 :value2]
if equalp :index2 1 ~

[output fput :value2 replace butfirst :list :index1-1 :value1]
output fput first :list ~

replace2 butfirst :list :index1-1 :value1 :index2-1 :value2
end

?
[a b c x e]

if riverp :to [output replace :state :from 0]

takes as inputs a list, a number representing a position in the list, and a
value. The output is a copy of the first input, but with the member selected by the second
input replaced with the third input. Here’s an example:

has a similar purpose, but its output has members changed from their
values in the input list.

Remember that has as one of its inputs a state, that is, a list of numbers
representing quantities of water. uses to change the amount of
water in one of the pitchers. The second input to is the pitcher number, and
the third is the new contents of that pitcher. For example, if the destination is the river
then we want to empty the source pitcher. This case is handled by the instruction

If the destination is the river, the output state is the same as the input state except that
the pitcher whose number is has its contents replaced by zero. The other cases
are handled similarly, except that two replacements are necessary if both source and
destination are pitchers.

The instructions in use some procedures I haven’t written yet, such as
to test whether a source or destination is the river, and to find the amount of empty
space in a pitcher. If we think of a pitcher as an abstract data type, then these can be
considered selectors for that type. Here they are:

Printing the Results

Printing the Results 273

newstate

breadth.first pour win
Win

win reverse

To underscore the importance of data abstraction, here is what would
look like without these selectors. (I actually wrote it this way at first, but I think you’ll
agree that it’s unreadable.)

When finds a winning path, the top-level procedure invokes
with that path as its input. ’s job is to print the results. Since the list of moves is
kept in reverse order, uses the Logo primitive operation to ensure that the
moves are shown in chronological order.

to riverp :pitcher
output equalp :pitcher 0
end

to size :pitcher
output item :pitcher :sizes
end

to water :pitcher
output item :pitcher :state
end

to room :pitcher
output (size :pitcher)-(water :pitcher)
end

to newstate :state :from :to
if equalp :to 0 [output replace :state :from 0]
if equalp :from 0 [output replace :state :to (item :to :sizes)]
if ((item :from :state) < ((item :to :sizes)-(item :to :state))) ~

[output replace2 :state ~
:from 0 ~
:to ((item :from :state)+(item :to :state))]

output replace2 :state ~
:from ((item :from :state)-

((item :to :sizes)-(item :to :state))) ~
:to (item :to :sizes)

end

pour

newstate
room

room

Efficiency: What Really Matters?

274 Chapter 14 Example: Pitcher Problem Solver

to win :path
if emptyp :path [print [Can’t do it!] stop]
foreach (reverse path.moves :path) "win1
print sentence [Final quantities are] (path.state :path)
end

to win1 :move
print (sentence [Pour from] (printform first :move)

[to] (printform last :move))
end

to printform :pitcher
if riverp :pitcher [output "river]
output size :pitcher
end

pour [3 7] 2

(item :to :sizes)-(item :to :state)

The program as described so far would run extremely slowly. The rest of the
commentary in this chapter will be on ways to improve its efficiency. The fundamental
problem is one I mentioned earlier: the number of nodes in the tree grows enormously
as the depth increases. In a problem with two pitchers, the root level has one node, the
next level nine nodes, the third level 81, the fourth level 729, the fifth level 6561, and the
sixth level 59049. A six-step problem like

would strain the memory capacity of many computers as well as taking forever to run!

When you’re trying to make a program more efficient, the easiest improvements
to figure out are not usually the ones that really help. The easy things to see are
details about the computation within some procedure. For example, the
procedure described earlier calls the procedure twice to compute the amount of
room available in the destination pitcher. Each call to computes the quantity

This expression represents the amount of empty space in the destination pitcher. Perhaps
it would be faster to compute this number only once, and store it in a variable? I haven’t
bothered trying to decide, because the effect is likely to be small either way. Improving
the speed of computing each new node is much less important than cutting down the

Avoiding Meaningless Pourings

child

child

state water Water
state

if

number

much

slow down

Avoiding Meaningless Pourings 275

to child :path :from :to

if equalp :from :to [output []]

output (list make.path (fput list :from :to path.moves :path)
(newstate :state :from :to))

end

local "state

make "state path.state :path
if not riverp :from ~

[if equalp (water :from) 0 [output []]]
if not riverp :to ~

[if equalp (water :to) (size :to) [output []]]

of nodes we compute. The reason is that eliminating one node also eliminates all
its descendants, so that the effect grows as the program moves to lower levels of the tree.

The best efficiency improvement is likely to be a complete rethinking of the
algorithm. For example, I’ve mentioned that a numerical algorithm exists for solving
two-variable linear Diophantine equations. This algorithm would be a faster way to
solve two-pitcher problems than even the best tree search program. I haven’t used that
method because I wanted a simple program that would work for any number of pitchers,
but if I really had to solve such problems in practice, I’d use the Diophantine equation
method wherever possible.

We have already modified to avoid one kind of meaningless pouring, namely
ones in which the source is the same as the destination. Two other avoidable kinds of
meaningless pourings are ones from an empty source and ones to a full destination. In
either case, the quantity of water poured will be zero, so the state will not change. Here
is a modified version of that avoids these cases:

The local variable is set up because the procedure needs it. (relies
on Logo’s dynamic scope to give it access to the variable provided by its caller.)

The important changes are the two new instructions. The first avoids pouring
from an empty pitcher; the second avoids pouring into a full one. In both cases, the test
makes sense only for actual pitchers; the river does not have a size or a current contents.

To underscore what I said earlier about what’s important in trying to improve the
efficiency of a program, notice that these added tests the process of computing
each new node, and yet the overall effect is beneficial because the number of nodes is
dramatically reduced.

[3 3]

pour child

Eliminating Duplicate States

sequences

276 Chapter 14 Example: Pitcher Problem Solver

local [oldstates pitchers]
make "oldstates (list all.empty :sizes)

Pour from river to 6
Pour from 6 to 3

Pour from river to 3
Pour from 3 to 6
Pour from river to 3

to pour :sizes :goal

make "pitchers fput 0 (map [#] :sizes)
win breadth.first make.path [] all.empty :sizes
end

It’s relatively easy to find individual pourings that are absurd. A harder problem is to
avoid of pourings, each reasonable in itself, that add up to a state we’ve already
seen. The most blatant examples are like the one I mentioned a while back about filling
a pitcher from the river and then immediately emptying it into the river again. But there
are less blatant cases that are also worth finding. For example, suppose the problem
includes a three-liter pitcher and a six-liter pitcher. The sequence

leads to the same state () as the sequence

The latter isn’t an absurd sequence of pourings, but it’s silly to pursue any of its children
because they will have the same states as the children of the first sequence, which is one
step shorter. Any solution that could be found among the descendents of the second
sequence will be found one cycle earlier among the descendents of the first.

To avoid pursuing these duplicate states, the program keeps a list of all the states
found so far. This strategy requires changes to and to .

Stopping the Program Early

states paths

removed
add

Stopping the Program Early 277

pour

child

children
child

breadth.first

throw

won false true

local [state newstate]

make "newstate (newstate :state :from :to)
if memberp :newstate :oldstates [output []]
make "oldstates fput :newstate :oldstates

:newstate

to child :path :from :to

if equalp :from :to [output []]
make "state path.state :path
if not riverp :from ~

[if equalp (water :from) 0 [output []]]
if not riverp :to ~

[if equalp (water :to) (size :to) [output []]]

output (list make.path (fput list :from :to path.moves :path))
end

The change in is simply to initialize the list of already-seen states to include
the state in which all pitchers are empty. There are two important new instructions in

. The first rejects a new node if its state is already in the list; the second adds a new
state to the list. Notice that it is duplicate we look for, not duplicate ; it’s in the
nature of a tree-search program that there can never be duplicate paths.

The breadth-first search mechanism we’re using detects a winning path as it’s
from the front of the queue. If we could detect the winner as we’re about to it to the
queue, we could avoid the need to compute all of the queue entries that come after it:
children of nodes that are at the same level as the winning node, but to its left.

It’s not easy to do this elegantly, though, because we add new nodes to the queue
several at a time, using the procedure to compute them. What we need is a
way to let , which constructs the winning node, prevent the computation of any
more children, and notify that a winner has been found.

The most elegant way to do this in Berkeley Logo uses a primitive called that
we won’t meet until the second volume of this series. Instead, in this chapter I’ll use
a less elegant technique, but one that works in any Logo implementation. I’ll create a
variable named whose value is initially but becomes as soon as a winner
is found. Here are the necessary modifications:

☞

winnerp

Further Explorations

278 Chapter 14 Example: Pitcher Problem Solver

won

make "won "false

if :won [output last :queue]

if :won [output []]

if memberp :goal :newstate [make "won "true]

The procedure is no longer used; we are now checking a state, rather than a
path, for the goal amount.

Is it possible to eliminate more pieces of the tree by more sophisticated analysis
of the problem? For example, in all of the specific problems I’ve presented, the best
solution never includes pouring from pitcher A to pitcher B and then later pouring from
B to A. Is this true in general? If so, many possible pourings could be rejected with an
instruction like

to pour :sizes :goal
local [oldstates pitchers]
make "oldstates (list all.empty :sizes)
make "pitchers fput 0 (map [#] :sizes)

win breadth.first make.path [] all.empty :sizes
end

to breadth.descend :queue
if emptyp :queue [output []]

op breadth.descend sentence (butfirst :queue) ~
(children first :queue)

end

to child :path :from :to
local [state newstate]

if equalp :from :to [output []]
make "state path.state :path
if not riverp :from ~

[if equalp (water :from) 0 [output []]]
if not riverp :to

[if equalp (water :to) (size :to) [output []]]
make "newstate (newstate :state :from :to)
if memberp :newstate :oldstates [output []]
make "oldstates fput :newstate :oldstates

output (list make.path (fput list :from :to path.moves :path) :newstate)
end

☞

☞

☞

child

Program Listing

Program Listing 279

in .

Do some research into Diophantine equations and the techniques used to solve them
computationally. See if you can devise a general method for solving pitcher problems
with any number of pitchers, based on Diophantine equations.

Think about writing a program that would mimic the way people actually approach
these problems. The program would, for example, compute the differences and
remainders of pairs of pitcher sizes, looking for the goal quantity.

What other types of puzzles can be considered as tree searching problems?

if memberp list :to :from path.moves :path [output []]

;; Initialization

to pour :sizes :goal
local [oldstates pitchers won]
make "oldstates (list all.empty :sizes)
make "pitchers fput 0 (map [#] :sizes)
make "won "false
win breadth.first make.path [] all.empty :sizes
end

to all.empty :list
output map [0] :list
end

;; Tree search

to breadth.first :root
op breadth.descend (list :root)
end

to breadth.descend :queue
if emptyp :queue [output []]
if :won [output last :queue]
op breadth.descend sentence (butfirst :queue) ~

(children first :queue)
end

280 Chapter 14 Example: Pitcher Problem Solver

;; Generate children

to children :path
output map.se [children1 :path ?] :pitchers
end

to children1 :path :from
output map.se [child :path :from ?] :pitchers
end

to child :path :from :to
local [state newstate]
if :won [output []]
if equalp :from :to [output []]
make "state path.state :path
if not riverp :from ~

[if equalp (water :from) 0 [output []]]
if not riverp :to ~

[if equalp (water :to) (size :to) [output []]]
make "newstate (newstate :state :from :to)
if memberp :newstate :oldstates [output []]
make "oldstates fput :newstate :oldstates
if memberp :goal :newstate [make "won "true]
output (list make.path (fput list :from :to path.moves :path) :newstate)
end

to newstate :state :from :to
if riverp :to [output replace :state :from 0]
if riverp :from [output replace :state :to (size :to)]
if (water :from) < (room :to) ~

[output replace2 :state ~
:from 0 ~
:to ((water :from)+(water :to))]

output replace2 :state ~
:from ((water :from)-(room :to)) ~
:to (size :to)

end

;; Printing the result

to win :path
if emptyp :path [print [Can’t do it!] stop]
foreach (reverse path.moves :path) "win1
print sentence [Final quantities are] (path.state :path)
end

Program Listing 281

to win1 :move
print (sentence [Pour from] (printform first :move)

[to] (printform last :move))
end

to printform :pitcher
if riverp :pitcher [output "river]
output size :pitcher
end

;; Path data abstraction

to make.path :moves :state
output fput :moves :state
end

to path.moves :path
output first :path
end

to path.state :path
output butfirst :path
end

;; Pitcher data abstraction

to riverp :pitcher
output equalp :pitcher 0
end

to size :pitcher
output item :pitcher :sizes
end

to water :pitcher
output item :pitcher :state
end

to room :pitcher
output (size :pitcher)-(water :pitcher)
end

282 Chapter 14 Example: Pitcher Problem Solver

;; List processing utilities

to replace :list :index :value
if equalp :index 1 [output fput :value butfirst :list]
output fput first :list (replace butfirst :list :index-1 :value)
end

to replace2 :list :index1 :value1 :index2 :value2
if equalp :index1 1 ~

[output fput :value1 replace butfirst :list :index2-1 :value2]
if equalp :index2 1 ~

[output fput :value2 replace butfirst :list :index1-1 :value1]
output fput first :list ~

replace2 butfirst :list :index1-1 :value1 :index2-1 :value2
end

