
4 Predicates

True or False

pattern

instructions

question.

yes-or-no questions.

predicate.

61

Print
first

true false

listp
listp true false

Wordp
wordp true false

listp

Emptyp
emptyp true

false

By introducing variables in Chapter 3, we made it possible for a procedure to operate on
different data each time you invoke it. But the of what the procedure does with
the data remains constant. We can get even more variety out of our procedures if we can
vary the that the procedure executes. We need a way to say, “Sometimes do
this; other times do that.”

One helpful metaphor is this: When you invoke a command, you’re giving the computer
an order. “Now hear this! such-and-such!” But when you invoke an operation,
you’re asking the computer a “What is the member of such-and-such?”

In real life we single out as a special category For example, these
special questions form the basis of the game Twenty Questions. The corresponding
category in Logo is the A predicate is an operation whose output is always either
the word or the word .

For example, (pronounced “list-pea”) is a predicate that takes one input.
The input can be any datum. The output from is if the input is a list,
if the input is a word.

is another predicate that takes one input. The input can be any datum. The
output from is if the input is a word, if the input is a list. (This is the
opposite of the output from .)

is also a predicate with one input. The input can be any datum. The output
from is if the input is either the empty word or the empty list; if the input
is anything else, the output is .

62 Chapter 4 Predicates

p

Numberp
numberp true false

Equalp equalp
true

?
true
?
false
?
true
?
false

?
true
?
false
?
true
?
false
?
true

p list? listp
p

* Many versions of Logo use a question mark at the end of names of predicates, instead of a
. For example, you may see instead of . Berkeley Logo accepts either form, but I

prefer the version.

print wordp "hello

print wordp [hello]

print emptyp []

print emptyp 0

print equalp 3 3.0

print equalp "hello [hello]

print equalp "hello first [hello]

print equalp " []

print equalp [] butfirst [hello]

You’ll have noticed by now that predicates tend to have names ending in the letter .
This is not quite a universal rule, but almost. It’s a good idea to follow the same
convention in naming your own predicates.*

As I’m describing primitive predicates, you might want to try them out on the
computer. You can do experiments like this:

Of course, most of the time you won’t actually want to print the output from a predicate.
You’ll see in a few moments how we can use a predicate to control the instructions carried
out in a procedure.

But first here are a few more primitive predicates. takes one input, which
can be any datum. The output from is if the input is a number,
otherwise.

takes two inputs, each of which can be any datum. The output from
is if the two inputs are identical or if they’re both numbers and they’re numerically
equal. That is, 3 and 3.0 are numerically equal even though they’re not identical words.
A list is never equal to a word.

infix

same

True or False 63

= equalp

f

Memberp

memberp

?
true
?
false

?
f

?
true

?
true
?
f

?
true
?
false
?
true
?
true
?
false

print "hello = first [hello]

print 2 = 3

print first [hello] = "hello

print first [hello] = "hello

print (first [hello]) = "hello

print first ([hello] = "hello)

print memberp "rain [the rain in Spain]

print memberp [the rain] [the rain in Spain]

print memberp [the rain] [[the rain] in Spain]

print memberp "e "please

print memberp "e "plain

The equal sign () can be used as an equivalent of :

As I mentioned in Chapter 2, if you use infix operations you have to be careful about
what is grouped with what. It varies between versions of Logo. Here is an example I tried
in Berkeley Logo:

Among current commercial implementations, Object Logo and Microworlds give the
same answer . But here is the example in Logowriter:

You can avoid confusion by using parentheses. The following instructions work reliably
in any Logo:

is a predicate with two inputs. If the second input is a list, then the first can
be any datum. If the second input is a word, then the first must be a one-character word.
The output from is true if the first input is a member of the second input.

64 Chapter 4 Predicates

Defining Your Own Predicates

Conditional Evaluation

print vowelp "e

print vowelp "g

print oddp 5

print oddp 8

if equalp 2 1+1 [print "Yup.]

if equalp 3 2 [print "Nope.]

Lessp greaterp
lessp true
greaterp

false lessp greaterp
false lessp < greaterp >

if
ifelse ifelse if

If true
false

true if
false if

to vowelp :letter
output memberp :letter [a e i o u]
end

?
true
?
false

to oddp :number
output equalp (remainder :number 2) 1
end

?
true
?
false

?
Yup.
?
?

and are predicates that take two inputs. Both inputs must be
numbers. The output from is if the first input is numerically less than
the second; the output from is true if the first is greater than the second.
Otherwise the output is . (In particular, both and output

if the two inputs are equal.) The infix forms for () and ()
are also allowed.

Here are two examples of how you can create new predicates:

The main use of predicates is to compute inputs to the primitive procedures and
. We’ll get to in a while, but first we’ll explore .

is a command with two inputs. The first input must be either the word or
the word . The second input must be a list containing Logo instructions. If the
first input is , the effect of is to evaluate the instructions in the second input. If
the first input is , has no effect.

☞

Conditional Evaluation 65

talk

George Washington

talk

John Paul Jones

if
converse

Talk
name

:name talk
:name talk

if

if

Here is an example of how can be used in a procedure. This is an extension of the
example in Chapter 3:

asks you to type your name and reads what you type into a list, which is remembered
in the variable named . Your first and last names are printed as in the earlier
version. If the list contains more than two members, however, also prints
the second member as your middle name. If contains only two members,
assumes that you don’t have a middle name.

Write a procedure of your own that asks a question and uses to find out something
about the response.

You can use to help in writing more interesting predicates.

to talk
local "name
print [Please type your full name.]
make "name readlist
print sentence [Your first name is] first :name
if (count :name) > 2 ~

[print sentence [Your middle name is] first bf :name]
print sentence [Your last name is] last :name
end

?
Please type your full name.

Your first name is George
Your last name is Washington
?
Please type your full name.

Your first name is John
Your middle name is Paul
Your last name is Jones

to about.computersp :sentence
if memberp "computer :sentence [output "true]
if memberp "computers :sentence [output "true]
if memberp "programming :sentence [output "true]
output "false
end

☞

☞

two

66 Chapter 4 Predicates

?
true
?
false
?

?
Yup.
?
Nope.
?

if

Choosing Between Alternatives

* In some versions of Logo, the name is used both for the two-input command discussed
earlier and for the three-input one presented here.

output
output

about.computersp computer
if output

true

past.tensep true
ed saw went

integerp true

If

ifelse
Ifelse

ifelse

Ifelse true
false

true if
false

print about.computersp [This book is about programming]

print about.computersp [I like ice cream]

ifelse 4 = 2+2 [print "Yup.] [print "Nope.]

ifelse 4 = 3+5 [print "Yup.] [print "Nope.]

This procedure illustrates something I didn’t explain before about : An
command finishes the evaluation of the procedure in which it occurs. For

example, in , if the input sentence contains the word ,
the first evaluates the instruction that is its second input. The procedure
immediately outputs the word . The remaining instructions are not evaluated at all.

Write , which takes a word as input and outputs if the word
ends in or if it’s one of a list of exceptions, like and .

Write , which takes any Logo datum as input and outputs if and
only if the datum is an integer (a number without a fraction part). Hint: a number with
a fraction part will contain a decimal point.

gives the choice between carrying out some instructions and doing nothing at all.
More generally, we may want to carry out either of sets of instructions, depending
on the output from a predicate. The primitive procedure meets this need.*

is an unusual primitive because it can be used either as a command or as an
operation. We’ll start with examples in which is used as a command.

requires three inputs. The first input must be either the word or the
word . The second and third inputs must be lists containing Logo instructions. If
the first input is , the effect of is to evaluate the instructions in the second input.
If the first input is , the effect is to evaluate the instructions in the third input.

☞

☞

ifelse

color
10h red

black

Choosing Between Alternatives 67

groupie

Frank Sinatra

groupie

Ray Davies

converse

Chris White

converse

Ms. Grace Slick

converse

J. Paul Getty

converse

Sigmund Freud, M.D.

Here is an example of a procedure using :

Write an operation that takes as input a word representing a card, such as
for the ten of hearts. Its output should be the word if the card is a heart or a

diamond, or if it’s a spade or a club.

Write a conversational program that asks the user’s name and figures out how to
address him or her. For example:

to groupie
local "name
print [Hi, who are you?]
make "name readlist
ifelse :name = [Ray Davies] ~

[print [May I have your autograph?]] ~
[print sentence "Hi, first :name]

end

?
Hi, who are you?

Hi, Frank
?
Hi, who are you?

May I have your autograph?

?
Hi, what’s your name?

Pleased to meet you, Chris.

?
Hi, what’s your name?

Pleased to meet you, Ms. Slick.

?
Hi, what’s your name?

Pleased to meet you, Paul.

?
Hi, what’s your name?

Pleased to meet you, Dr. Freud.

68 Chapter 4 Predicates

converse

Mr. Lon Chaney, Jr.

Conditional Evaluation Another Way

ifelse groupie
print

if
ifelse

Test true
false test

test

Iftrue ift
iftrue

test
true iftrue test

Iffalse iff
iffalse

test false

Iftrue iffalse test

?
Hi, what’s your name?

Pleased to meet you, Mr. Chaney.

to better.groupie
local "name
print [Hi, who are you?]
make "name readlist
test equalp :name [Ray Davies]
iftrue [print [Wow, can I have your autograph?]]
iftrue [print [And can I borrow a thousand dollars?]]
iffalse [print sentence [Oh, hello,] first :name]
end

What should the program say if it meets Queen Elizabeth II?

The use of in the example above makes for a rather long instruction
line. If you wanted to do several instructions in each case, rather than just one ,
the line would become impossible to read. Logo provides another mechanism that is
equivalent to the command but may be easier to read.

is a command that takes one input. The input must be either the word
or the word . The effect of is just to remember what its input was in a special
place. You can think of this place as a variable without a name. This special variable is
automatically local to the procedure from which is invoked.

(abbreviation) is a command with one input. The input must be a list
of Logo instructions. The effect of is to evaluate the instructions in its input only
if the unnamed variable set by the most recent command in the same procedure is

. It is an error to use without first using .

(abbreviation) is a command with one input, which must be an
instruction list. The effect of is to evaluate the instructions only if the
remembered result of the most recent command is .

and can be invoked as many times as you like after a . This
allows you to break up a long sequence of conditionally evaluated instructions into several
instruction lines:

→

→
→

About Those Brackets

Logical Connectives

if [equalp 2 3] [print "really??] ; (wrong!)

you

Before

before
itself

both and either or

Logical Connectives 69

if
ifelse

if
true false if
equalp 2 3

equalp false print
if

if

equalp 2 3 false
[print "really??] [print "really??]

And true
false and true true false

false And

I hope that the problem I’m about to mention won’t even have occurred to you because
you are so familiar with the idea of evaluation that you understood right away. But you’ll
probably have to explain it to someone else, so I thought I’d bring it up here:

Some people get confused about why the second input to (and the second and
third inputs to) is surrounded by brackets but the first isn’t. That is, they wonder,
why don’t we say

They have this problem because someone lazily told them to put brackets around
the conditionally evaluated instructions without ever explaining about brackets and
quotation.

I trust aren’t confused that way. You understand that, as usual, Logo evaluates
the inputs to a procedure before invoking the procedure. The first input to has to
be either the word or the word . invoking , Logo has to evaluate
an expression like to compute the input. (In this case, the result output
by will be .) But if the instruction weren’t quoted, Logo would
evaluate it, too, invoking . That’s not what we want. We want the instruction
list to be the second input, so that can decide whether or not to carry out the
instructions in the list. So, as usual, we use brackets to tell Logo to quote the list.

actual argument expression actual argument value

Sometimes the condition under which you want to evaluate an instruction is complicated.
You want to do it if this that are true, or if this that is true. Logo provides
operations for this purpose.

is a predicate with two inputs. Each input must be either the word or the
word . The output from is if both inputs are ; the output is
if either input is . (can take more than two inputs if the entire expression is

Ifelse as an Operation

logical connectives
logical

70 Chapter 4 Predicates

print sentence "It’s ifelse 2=3 ["correct] ["incorrect]

print ifelse emptyp [] [sum 2 3] [product 6 7]

and true
true

Or true
false or true true

false false or true
true false false

Not true
false not true

false false true

true
false

ifelse

ifelse
true false

ifelse
true

false

to fullp :datum
output not emptyp :datum
end

to realwordp :datum
output and wordp :datum not numberp :datum
end

to digitp :datum
output and numberp :datum equalp count :datum 1
end

?
It’s incorrect
?
5

enclosed in parentheses. In that case the output from will be only if all of its
inputs are .)

is a predicate with two inputs. Each input must be either the word or the
word . The output from is if either input is (or both inputs are).
The output is if both inputs are . (Extra-input outputs if any of
its inputs are , if all inputs are .)

is a predicate with one input. The input must be either the word or the
word . The output from is the opposite of its input: if the input is

, or if the input is .

These three procedures are called because they connect logical
expressions together into bigger ones. (A expression is one whose value is
or .) They can be useful in defining new predicates:

So far, we have applied the idea of conditional evaluation only to complete instructions.
It is also possible to choose between two expressions to evaluate, by using as an
operation.

When used as an operation, requires three inputs. The first input must be
either the word or the word . The second and third inputs must be lists
containing Logo expressions. The output from is the result of evaluating the
second input, if the first input is , or the result of evaluating the third input, if the
first input is .

Expression Lists and Plumbing Diagrams

ifelse

If ifelse

ifelse

ifelse

ifelse

ifelse ifelse
false ifelse

Ifelse

ifelse

absolute value

instruction lists expression lists

Expression Lists and Plumbing Diagrams 71

to abs :number
output ifelse :number<0 [-:number] [:number]
end

ifelse "false ["stupid "list] [print 23]

ifelse last [true false] list ""stupid ""list list bf "sprint 23

Here is one of the classic examples of a procedure in which is used as an
operation. This procedure is an operation that takes a number as its input; it outputs the

of the number:

and require or as inputs. This requirement is part
of their semantics, not part of the syntax of an instruction. Just as the arithmetic operators
require numbers as inputs (semantics), but those numeric values can be provided either
as explicit numbers in the instruction or as the result of an arbitrarily complicated
subexpression (syntax), the procedures that require instruction or expression lists as
input don’t interpret those inputs until after Logo has set up the plumbing for the
instructions that invoke them.

What does that mean? Consider the instruction

Even though the second input to —that is, the first of the two literal lists—makes
no sense as an instruction list, this instruction will work correctly without printing an
error message. The Logo interpreter knows that accepts three inputs, and it
sees that the three input expressions provided are a literal (quoted) word and two literal
lists. It sets up the plumbing without paying any attention to the semantics of ;
in particular, Logo doesn’t care whether the given inputs are meaningful for use with

. Then, once starts running, it examines its first input value. Since that
input is the word , the procedure ignores its second input completely and
executes the instruction in its third input.

The use of quotation marks and square brackets to indicate literal inputs is part of
the plumbing syntax, not part of the procedure semantics. Don’t say, “ requires
one predicate input and two inputs in square brackets.” The instruction

has a very different plumbing diagram (syntax) from that of the earlier example, but
provides exactly the same input values to .

PRINT PRINT

[first "hello]FIRST

hello

print first "hello print [first "hello]

☞

Stopping a Procedure

new

72 Chapter 4 Predicates

print

first

print
ifelse print

emptyp

ifelse
zot3 ifelse

true false
emptyp ifelse

emptyp
emptyp ifelse

print ifelse emptyp :a [emptyp :b] [emptyp :c]

to music.quiz
print [Who is the greatest musician of all time?]
if equalp readlist [John Lennon] [print [That’s right!] stop]
print [No, silly, it’s John Lennon.]
end

Consider these two instructions:

Since the effect of is easy to observe, it’s not hard to see the relationship among
the instructions, the plumbing diagrams, and the effects when these instructions are run.
Why are brackets used around the expression in one case but not in the other?
Because in one case the expression is how we tell Logo to set up the plumbing diagram,
while in the second case we are giving as input a literal list that just happens to
look like an expression. When the context is something like instead of ,
the syntactic situation is really quite similar, but may be harder to see. Consider this
instruction:

Why do we put brackets around two expressions but not around another similar-
looking one? Draw a plumbing diagram for this instruction, paying no attention to
your mental model of the meaning of the procedure, treating it as if it were the
nonsense procedure . You will see that the first input to is an expression
whose value will be the word or the word , because Logo will carry out that
first computation before invoking . The remaining two inputs, however,
are literal lists that happen to contain the word but do not involve an invocation
of in the plumbing diagram. Once is actually invoked, precisely one of
those two list inputs will be interpreted as a Logo expression, for which a plumbing
diagram is (in effect) drawn by Logo. The other input list is ignored.

I’d like to examine more closely one of the examples from the first chapter:

2

all

ax bx c

Stopping a Procedure 73

if :discriminant < 0 [print [No solution.] stop]

stop

Stop
stop stop

stop
stop

output

output stop

music.quiz stop
print

ifelse
stop

if Stop

ifelse equalp readlist [John Lennon] ~
[print [That’s right!]] ~
[print [No, silly, it’s John Lennon.]]

to quadratic :a :b :c
local "discriminant
make "discriminant (:b * :b)-(4 * :a * :c)

make "discriminant sqrt :discriminant
local "x1
local "x2
make "x1 (-:b + :discriminant)/(2 * :a)
make "x2 (-:b - :discriminant)/(2 * :a)
print (sentence [x =] :x1 [or] :x2)
end

You now know about almost all of the primitive procedures used in this example. The
only one we haven’t discussed is the command in the second instruction line.

is a command that takes no inputs. It is only allowed inside a procedure; you
can’t type to a top-level prompt. The effect of is to finish the evaluation of
the procedure in which it is used. Later instructions in the same procedure are skipped.

Notice that does not stop active procedures. If procedure A invokes
procedure B, and there is a command in procedure B, then procedure A continues
after the point where it invoked B.

Recall that the command also stops the procedure that invokes it. The
difference is that if you’re writing an operation, which should have an output, you use

; if you’re writing a command, which doesn’t have an output, you use .

In , the effect of the is that if you get the right answer, the final
instruction isn’t evaluated. The same effect could have been written this way:

The alternative form uses the three-input command. One advantage of
using is precisely that it allows the use of shorter lines. But in this example, where
there is only one instruction after the , it doesn’t matter much. is really useful
when you want to stop only in an unusual situation and otherwise you have a lot of work
still to do:

This procedure applies the quadratic formula to solve the equation

+ + = 0

☞

Improving the Quiz Program

anywhere within

list

74 Chapter 4 Predicates

stop

stop
stop

stop

music.quiz

qa music.quiz
Quiz qa

quiz qa

Qa
Lennon John Lennon

:answer Lennon Lennon John
Lennon the Lennon Sisters qa

to qa :question :answer
print :question
if equalp readlist :answer [print [That’s right!] stop]
print sentence [Sorry, it’s] :answer
end

to quiz
qa [Who is the best musician of all time?] [John Lennon]
qa [Who wrote "Compulsory Miseducation"?] [Paul Goodman]
qa [What color was George Washington’s white horse?] [white]
qa [how much is 2+2?] [5]
end

qa [Who is the best musician of all time?] ~
[[John Lennon] [Lennon] [the Beatles]]

The only interesting thing about this example for our present purpose is the fact that
sometimes there is no solution. In that case the procedure s as soon as it finds out.

Don’t forget that you need only if you want to stop a procedure before its last
instruction line. A common mistake made by beginners who’ve just learned about
is to use it in every procedure. If you look back at the examples so far you’ll see that
many procedures get along fine without invoking .

When I first introduced the example in Chapter 1, we hadn’t discussed
things like user procedures with inputs. We are now in a position to generalize the quiz
program:

Procedure is our old friend , with variable inputs instead of a fixed
question and answer. uses several times to ask different questions.

Here are a couple of suggestions for further improvements you should be able to
make to and :

1. is very fussy about getting one particular answer to a question. If you answer
instead of , it’ll tell you you’re wrong. There are a couple of ways

you might fix this. One is to look for a single-word answer what the user
types. So if is the word , the program will accept “ ,” “

,” or “ .” The second approach would be for to take a
of possible answers as its second input:

Reporting Success to a Superprocedure

operation,

Reporting Success to a Superprocedure 75

Qa

quiz score quiz qa

qa quiz

true
ask.once

ask.thrice ask.thrice
ask.once ask.once

repeat
Repeat

repeat

make "score :score+1

to ask.thrice :question :answer
repeat 3 [if ask.once :question :answer [stop]]
print sentence [The answer is] :answer
end

to ask.once :question :answer
print :question
if equalp readlist :answer [print [Right!] output "true]
print [Sorry, that’s wrong.]
output "false
end

then has to use a different predicate, to see if what the user types is any of the answers
in the list.

2. By giving a local variable named , you could have and
cooperate to keep track of how many questions the user gets right. At the end the score
could be printed. (This is an opportunity to think about the stylistic virtues and vices of
letting a subprocedure modify a variable that belongs to its superprocedure. If you say

inside , doesn’t that make somewhat mysterious to read? For an alternative, read
the next section.)

Suppose we want the quiz program to give the user three tries before revealing the right
answer. There are several ways this could be programmed. Here is a way that uses the
tools you already know about.

The general idea is that the procedure that asks the question is written as an
not as a command. To be exact, it’s a predicate; it outputs if the user

gets the right answer. This asking procedure, , is invoked as a subprocedure
of , which is in charge of allowing three tries. invokes

up to three times, but stops if reports success.

You’ve seen in the first chapter, but you haven’t been formally introduced.
is a command with two inputs. The first input must be a non-negative whole

number. The second input must be a list of Logo instructions. The effect of is

☞

calculating printing

also

76 Chapter 4 Predicates

ask.once
true false

true false

second

second
prsecond

second
or

o

prsecond

quiz qa
quiz ask.thrice

to prsecond :datum
print first butfirst :datum
end

prsecond [something or other]

print second [something or other]

print first second [something or other]

to evaluate its second input, the instruction list, the number of times given as the first
input.

The programming style used in this example is a little controversial. In general,
it’s considered a good idea not to mix effect and output in one procedure. But in this
example, has an effect (it prints the question, reads an answer, and comments
on its correctness) and also an output (or).

I think the general rule I’ve just cited is a good rule, but there are exceptions to it.
Using an output of or to report the success or failure of some process is
one of the situations that I consider acceptable style. The real point of the rule, I think,
is to separate something from it. For example, it’s a mistake to write
procedures like this one:

A more powerful technique is to write the operation from Chapter 2; instead of

you can then say

It may not be obvious from this example why I call more powerful than
. But remember that an operation can be combined with other operations,

as in the plumbing diagrams we used earlier. For example, the operation can
extract the word from the list as shown here. But you can use it as part of a more
complex instruction to extract the letter :

If you’d written the command to solve the first problem, you’d have to start
all over again to solve this new one. (Of course, both of these examples must seem pretty
silly; why bother extracting a word or a letter from this list? But I’m trying to use examples
that are simple enough not to obscure this issue with the kinds of complications we’ll see
in more interesting programs.)

If you made the improvements to and that I suggested earlier, you might
like to see if they can fit easily with a new version of using .

