
print 17

boldface

print 17

?
17

2 Procedures

Procedures and Instructions

lightface

print
print

print let input
if while

procedures
evaluation.

you

procedure,

statement types

11

Logo is one of the most powerful programming languages around. In order to take
advantage of that power, you must understand Logo’s central ideas: and

It is with these ideas that our exploration of Logo programming begins.

In response to Logo’s question-mark prompt, type this instruction:

Logo will respond to this instruction by printing the number 17 and then printing
another question mark, to indicate that it’s ready for another instruction:

(Remember, the things in are the ones should type; what’s in
is what the computer prints.)

This instruction doesn’t do much, but it’s important to understand how it’s put
together. The word is the name of a which is a piece of a computer
program that has a particular specialized task. The procedure named , for
example, has the task of printing things on your screen.

If you have previously used some other programming language, you may be accus-
tomed to the idea of different making up the repertoire of the language.
For example, BASIC has a statement, a statement, an statement, etc.
Pascal has an assignment statement, an statement, a statement, etc. Each kind

Technical Terms

print

print

Print 17

Print

syntax,
everything

primitive

exactly

flexibility

inputs.

instruction procedure

command operation,

instruction

exactly

procedure

12 Chapter 2 Procedures

of statement has its own that is, its own special punctuation and organization.
Logo is very different. It does not have different kinds of instructions; in Logo
is done by the use of procedures. If Logo is your first programming language, you don’t
have to worry about this. But for people with previous experience in another language,
it’s a common source of misunderstanding.

When you first start up Logo, it “knows” about 200 procedures. These initial
procedures are called procedures. Your task as a Logo programmer is to add
to Logo’s repertoire by defining new procedures of your own. You do this by putting
together procedures that already exist. We’ll see how this is done later in this chapter.

The procedure , although it has a specific task, doesn’t always do the
same thing; it can print anything you want, not always the number 17. (You’ve seen
several examples in Chapter 1.) This may seem like an obvious point, but later you will
see that the of procedures is an important part of what makes them so powerful.
To control this flexibility, we need a way to tell a procedure exactly what we want it to
do. Therefore, each procedure can accept a particular number of An input is a
piece of information. It can be a number, as in the example we’re examining, but there
are many other kinds of information that Logo procedures can handle. The procedure
named requires one input. Other procedures will require different numbers of
inputs; some don’t require any.

In ordinary conversation, words such as and have pretty much the
same meaning—they refer to any process, recipe, or method for carrying out some task.
That’s not the situation when we’re talking about computer programming. Each of these
words has a specific technical meaning, and it’s very important for you to keep them
straight in your head while you’re reading this chapter. (Soon we’ll start using more
words, such as and which also have similar meanings in ordinary use
but very different meanings for us.)

An is what you type to Logo to tell it to do something. is
an example of an instruction. We’re about to see some more complicated instructions,
made up of more pieces. An instruction has to contain enough information to specify

what you want Logo to do. To make an analogy with instructing human beings,
“Read Chapter 2 of this book” is an instruction, but “read” isn’t one, because it doesn’t
tell you what to read.

A is like a recipe or a technique for carrying out a certain kind of task.
is the name of a procedure just as “lemon meringue pie” is the name of a recipe.

print sum 2 3

Evaluation

invoke

those

evaluated

output input

output printing.

Evaluation 13

print

sum 2 3
print sum 2 3

print
sum

sum Sum

print sum
sum print

sum
print print

(The recipe itself, as distinct from its name, is a bunch of instructions, such as “Preheat
the oven to 325 degrees.”) A procedure contains information about how to do something,
but the procedure doesn’t take action itself, just as a recipe in a book can’t bake a pie by
itself. Someone has to carry out the recipe. In the Logo world something has to
a procedure. To “invoke” a procedure means to carry it out, to do what the procedure
says. Procedures are invoked by instructions. The instruction you gave just now invoked
the procedure named .

If an instruction is made up of names of procedures, and if the procedures invoked
by the instruction are made up of more instructions, why doesn’t the computer get
caught in a vicious circle, always finding more detailed procedures to invoke and never
actually doing anything? This question is a lot like the one about dictionaries: When you
look up the definition of a word, all you find is more words. How do you know what

words mean? For words in the dictionary this turns out to be a very profound and
difficult question. For Logo programming the answer is much simpler. In the end, your
instructions and the procedures they invoke must be defined in terms of the primitive
procedures. Those procedures are not made up of Logo instructions. They’re the things
that Logo just knows how to do in the first place.

Now try this instruction:

If everything is going according to plan, Logo didn’t print the words “ ”; it printed
the number 5. The input to was the expression , but Logo
the input before passing it to the procedure. This means that Logo invoked the
necessary procedures (in this case,) to compute the value of the expression (5).

In this instruction the word is also the name of a procedure. requires two
inputs. In this case we gave it the numbers 2 and 3 as inputs. Just as the task of procedure

is to print something, the task of procedure is to add two numbers. It is the
result of this addition, the from , that becomes the to .

Don’t confuse with In Logo the word “output” is one of those
technical terms I mentioned before. It refers to a value that one procedure computes
and hands on to another procedure that needs an input. In this example outputs the
number 5 to , but doesn’t output anything to another procedure. When

print sum 4 product 10 2

output input

14 Chapter 2 Procedures

print

print
print

sum
sum print

sum sum
sum

sum

sum
product

sum

product
print sum

print sum

product

product

product

product
product

sum
sum sum

sum print print

prints the 5, that’s the end of the story. There are no more procedures waiting
for inputs.

See if you can figure out what this instruction will do before you try it:

Here are the steps Logo takes to evaluate the instruction:

1. The first thing in the instruction is the name of the procedure . Logo knows
that requires one input, so it continues reading the instruction line.

2. The next thing Logo finds is the word . This, too, is the name of a procedure.
This tells Logo that the from will be the to .

3. Logo knows that takes two inputs, so can’t be invoked until Logo finds
’s inputs.

4. The next thing in the instruction is the number 4, so that must be the first input to
. This input, too, must be evaluated. Fortunately, a number simply evaluates to

itself, so the value of this input is 4.

5. Logo still needs to find the second input to . The next thing in the instruction
is the word . This is, again, the name of a procedure. Logo must carry out
that procedure to evaluate ’s second input.

6. Logo knows that requires two inputs. It must now look for the first of those
inputs. (Meanwhile, and are both “on hold” waiting for their inputs to
be evaluated. is waiting for its single input; , which has found one input,
is waiting for its second.) The next thing on the line is the number 10. This number
evaluates to itself, so the first input to is 10.

7. Logo still needs another input for , so it continues reading the instruction.
The next thing it finds is the number 2. This number evaluates to itself, so the
second input to has the value 2.

8. Logo is now ready to invoke the procedure , with inputs 10 and 2. The
output from is 10 times 2, or 20.

9. This output, 20, is the value of the second input to . Logo is now ready to invoke
, with inputs 4 and 20. The output from is 24.

10. The output from , 24, is the input to . Logo is now ready to invoke ,
which prints 24. (You were only waiting for this moment to arise.)

SUMPRINT

SUM

PRINT

PRODUCT

210

4

SUM

PRINT

PRODUCT

210

4

24

20

Print
Sum

composition of
functions.

Evaluation 15

That’s a lot of talking about a pretty simple instruction! I promise not to do it
again in quite so much detail. It’s important, though, to be able to call upon your
understanding of these details to figure out more complicated situations later. Using
the output from one procedure as an input to another procedure is called

Some people find it helpful to look at a pictorial form of this analysis. We can
represent each procedure as a kind of tank, with input hoppers on top and perhaps an
output pipe at the bottom. (This organization makes sense because gravity will pull the
information downward.) For example:

has one input, which is represented by the hopper above the tank. It doesn’t have
an output, so there is no pipe coming out the bottom. has two inputs, shown at the
top, and an output, shown at the bottom.

We can put these parts together to form a kind of “plumbing diagram” of the
instruction:

In that diagram the output pipes from one procedure are connected to the input hoppers
of another. Every pipe must be connected to something. The inputs that are explicitly
given as numbers in the instruction are shown with arrows pointing into the hoppers.

You can annotate the diagram by indicating the actual information that flows through
each pipe. Here’s how that would look for this instruction:

☞

Error Messages

print

print remainder product 4 5

figure out

kind

particular

16 Chapter 2 Procedures

print

?
Not enough inputs to print

?
Not enough inputs to remainder

print sum product

plus add sum
remainder

remainder

Print sum product

print

print

remainder
print product

By the way, I’ve introduced the procedures , , and so casually
that you might think it’s a law of nature that every programming language must have
procedures with these names. Actually the details of Logo’s repertoire of primitive
procedures are quite arbitrary. It would be hard to avoid having a way to add numbers,
but it might have been named or instead of . For some primitives there
are additional arbitrary details; for noncommutative operations such as ,
for example, the rule about which input comes first was an arbitrary choice for Logo’s
designers. (Experiment with and see if you can describe it well enough
that someone else can use it without needing to experiment.) I am making a point of the
arbitrary nature of these details because people who are learning to program sometimes
think they’re doing badly if they don’t how a primitive procedure works in
advance. But these rules aren’t things you work out; they’re things someone has to tell
you, like the capital of Kansas.

We’ve observed that Logo knows in advance how many inputs a particular procedure
needs. (needs one; and each need two.) What if you give a
procedure the wrong number of inputs? Try this:

(That is, the word as an instruction all by itself, with no input.) You should see
something like this:

This gentle complaint from Logo tells you two things. First, it indicates the general
of thing that went wrong (not enough inputs to some procedure). Second, it names the

procedure that complained (). In this case it was pretty obvious which
procedure was involved, since we only used one procedure. But try this:

In this case Logo’s message is helpful in pinpointing the fact that it was , not
or , that lacked an input.

print 2 3

print 2 print 3

Commands and Operations

print 2
3

Sum product

Print

sum 3 2

?
2
You don’t say what to do with 3

?
2
3

operation

command not effect

expression

Commands and Operations 17

The reason I’m beating this error message to death is that one of the most common
mistakes made by beginning programmers is to ignore what an error message says. Some
people get very upset at seeing this kind of message and just give up without trying to
figure out the problem. Other people make the opposite mistake, breezing past the
message without taking advantage of the detailed help it offers. Some smart people at
M.I.T. put a lot of effort into designing Logo’s error messages, so please pay attention to
them.

What if you give a procedure too many inputs? Try this:

(The exact text of the message, by the way, may be slightly different in some versions of
Logo.) What happened here is that Logo carried out the instruction , and then
found the extra number on the line. It would have been okay if we’d done something
with the 3:

It’s okay to have more than one instruction on the same line, as long as they are complete
instructions.

What’s a “complete instruction”? Before I can answer that question, you have to
understand that in Logo there are two kinds of procedures: commands and operations.

An is a procedure that computes a value and outputs it. and
are operations, for example.

A is a procedure that does output a value but instead has some
such as printing something on the screen, moving a turtle, or making a sound. ,
then, is a command. Some commands have effects that are not apparent on the outside
but instead change something inside the computer that might become important later
in the program.

A complete instruction consists of the name of a command, followed by as many
expressions as necessary to provide its inputs. An is something like

Words and Lists

?
I don’t know how to Hello

?
Hello

?
5

print Hello

print "Hello

print sum "2 "3

17

sum 3 2 sum
3 2

Hello

Hello
print sum

hello

print sum hello
"

carefully!

quote to prevent it from being evaluated.
the thing evaluates to itself after

before

18 Chapter 2 Procedures

or . Operations are used to construct expressions. More formally, an expression is
one of two things: either an explicitly provided value such as a number, or else the name
of an operation, followed by as many expressions as necessary to provide its inputs. For
example, the expression consists of the operation name followed by two
expressions, the number and the number . Numbers are the only values we’ve seen
how to provide explicitly, but that’s about to change.

So far, our examples have been about numbers and arithmetic. Many people think that
computers just do arithmetic, but actually it’s much more interesting to use computers
with other kinds of information. You’ve seen examples of text processing in Chapter 1,
but this time we’re going to do it

Suppose you want Logo to print the word . You might try this:

Logo interpreted the word as the name of a procedure, just as in the examples
with earlier. The error message means that there is no procedure named

in Logo’s repertoire.

When Logo is evaluating instructions, it always interprets unadorned words such as
or or as names of procedures. In order to convince Logo to treat a

word simply as itself, you must type a quotation mark () in front of it:

Here is why the quotation mark is used for this purpose in Logo: In computer science,
to something means (Another way to say the same
thing is that or that its value evaluation is the same as what
it is evaluation.) For example, we have already seen that in Logo, numbers are
automatically quoted. (It doesn’t hurt to use the quotation mark with numbers, however.

Logo is perfectly happy to add the quote-marked numbers.)

cherry vanilla

mango

[[cherry vanilla] mango [root beer swirl]]

[cherry vanilla] [root beer swirl]

root beer swirl

How

mango

print [How are you?]?
How are you?

[[cherry vanilla] mango [root beer swirl]]

word character string

list.

members.

tree diagram:

Words and Lists 19

(People who have programmed in some other language should note that quotation
marks are not used in pairs in Logo. This is not just an arbitrary syntactic foible; it reflects
the fact that a Logo is a different idea from what would be called a
in other languages. I urge you not only to program in Logo but even to think in Logo
terminology.)

What if you want to print more than one word? You can combine several words to
form a The easiest way to do this is to enclose the words in square brackets, which
tells Logo to quote the list. That is, a list in brackets evaluates to the list itself:

(If square brackets quote a list, what does it mean to evaluate a list? Well, every instruction
line you type to Logo is actually a list, which is evaluated by invoking the procedures it
names. Most of the time you don’t have to remember that an instruction is a list, but that
fact will become very useful later on.)

The list in the example above contains three In this example each member
is a word. For example, the first member is the word . But the members of a list
aren’t required to be words; they can also be lists. The fact that a list can have another
list as a member makes lists very flexible as a way of grouping information. For example,
the list

contains three members. The first and third members are themselves lists, while the
second member is the word . A list like this can be represented using a

cherry vanilla

mango

root beer swirl

[How are you?]

How to Describe a Procedure

* Later we’ll use a third kind of datum, called an “array.”

leaves

delimit quote

part of

datum.
sentence flat list.

20 Chapter 2 Procedures

This diagram has the name “tree” because it resembles an upside-down tree, with a trunk
at the top and branches extending downward. Often a tree diagram is drawn with only
the labeled—the words that make up the smallest sublists:

Keep in mind that the square brackets in Logo serve two purposes at once: they
a list—that is, they show where the list begins and ends—and they also the

list, so that Logo’s evaluator interprets the list as representing itself and not as requesting
the invocation of procedures. The brackets surround the list; they are not the list.
(Similarly, the quotation mark that indicates a quoted word is not part of the word.)

Words and lists are the two kinds of information that Logo can process. (Numbers
are a special case of words.) The name I’ll use for “either a word or a list” is a * A
list of words, such as , is called a or a (It’s called “flat”
because the tree diagram only has one level, not counting the “root” at the top.) The
name “sentence” is meant to suggest that flat lists are often, although not always, used
to represent English sentences. A sentence is a special kind of list, just as a number is a
special kind of word. We’ll see other kinds of lists later.

My high school U.S. history teacher was very fussy about what he considered the proper
way to color in outline maps. He would make us do them over if we used colors or
shading techniques he didn’t like. We humored him because he was a very good teacher
in other ways; for example, he gave us original historical documents to read instead of
boring textbooks.

I hope you will humor me when I tell you that there is a right way and a wrong way
to talk about procedures. If I were teaching you in person, I’d be very understanding

?
H
?
How

Manipulating Words and Lists

print first "Hello

print first [How are you?]

Sum

Sum
sum

print
print

First
first

Butfirst
butfirst

programs,
descriptions.

type

output? effect?

characters,

members

Manipulating Words and Lists 21

about mistakes in your but I’d hit you over the head (gently, of course) if you
were sloppy about your

Here is an example of the wrong way: “ adds up two numbers.” It’s not that this
description isn’t true but that it’s inadequate. It leaves out too much.

Here is an example of the right way: “ is an operation. It has two inputs. Both
inputs must be numbers. The output from is a number, the result of adding the two
inputs.”

Here are the ingredients in the right way:

1. Command or operation?

2. How many inputs?

3. What of datum must each input be?

4. If the procedure is an operation, what is its If a command, what is its

Another example: “The command has one input. The input can be any
datum. The effect of is to print the input datum on the screen.”

Logo provides several primitive operations for taking data apart and putting data
together. Words come apart into such as letters or digits or punctuation marks.
(A character is not a third kind of datum. It’s just a word that happens to be one character
long.) Lists come apart into whatever data are the of the list. A sentence, which
is a list of words, comes apart into words.

is an operation that takes one input. The input can be any nonempty datum.
(In a moment you’ll see what an empty datum is.) The output from is the first
member of the input if the input is a list, or the first character if the input is a word. Try
these examples:

is also an operation that takes one input. The input can be any nonempty
datum. The output from is a list containing all but the first member of the

?
ello
?
are you?

?

?

?

?

?

abbreviations

22 Chapter 2 Procedures

print butfirst "Hello

print butfirst [How are you?]

print butfirst "A

print butfirst [Hello]

print " print []

first butfirst

butfirst

first butfirst

[Hello] "Hello

first butfirst

last butlast

bf butfirst Pr
print first

input if the input is a list, or a word containing all but the first character of the input if
it’s a word:

Notice that the of a list can be a word, but the of any datum is
always another datum of the same type. Also notice what happens when you take the

of a datum with only one thing in it:

In each case Logo printed a blank line. In the first case that blank line represents an
empty word, a word with no characters in it. The second blank line represents an empty
list, a list with no members. You can indicate the empty word in an instruction by using
a quotation mark with a space (or the RETURN key to end the instruction) after it. To
indicate an empty list, use brackets with nothing inside them:

Do you understand why it doesn’t make sense to use the empty word or the empty list as
input to or ? Try it and see what happens.

You should also notice that the list is not the same as the word .
They look the same when you print them, but they act differently when you take their

or .

There are also primitive operations and . I’m sure you’ll have no
trouble guessing what they do. Try them out, then practice describing them properly.

This is probably a good place to mention that there are for some Logo
primitive procedures. For example, is an abbreviation for . is an
abbreviation for . There isn’t any abbreviation for .

selectors. constructors.

members
members

Manipulating Words and Lists 23

item

First last butfirst butlast item

Sentence

sentence

sentence

sentence
sentence

sentence
Sentence

?
s
?
Day

?
hello goodbye
?
this is a test
?
this is one too
?
list of words

?
[list 1a] [list 1b] [list 2a] [list 2b]
?
flat list [not flat] [list]

print item 3 "Yesterday

print item 2 [Good Day Sunshine]

print sentence "hello "goodbye

print sentence [this is] [a test]

print sentence "this [is one too]

print sentence [] [list of words]

print sentence [[list 1a] [list 1b]] [[list 2a] [list 2b]]

print sentence [flat list] [[not flat] [list]]

If you want to extract a piece of a word or list that isn’t at the beginning or end, you
can use the more general operation with two inputs: a positive integer to indicate
which member to select, and a word or list. For example:

, , , , and are taking-apart operations, or
Logo also provides putting-together operations, or

is a constructor. It takes two inputs, which can be any data at all. Its
output is always a list.

Describing the output from is a little tricky because the same procedure
serves two different purposes. The first purpose is the one suggested by its name:
constructing sentences. If you use only words and sentences (flat lists) as inputs, then
the output from is a sentence concatenating (stringing together) the words
contained in the inputs. Here are some examples:

On the other hand, can also be used to append two lists (flat or not). With
lists as inputs, the output from is a list in which the of the first input
and the of the second input are concatenated:

In the second example the output is a list with four members: two words and two lists.

Using a word as input to is equivalent to using a list with that word as its
single member. is the only primitive operation that treats words the same as

24 Chapter 2 Procedures

first butfirst
hello [hello]

list
sentence

Word
word

sum
product

(print word word last "awful first butfirst "computer
first [go to the store, please.])

?
[this is] [a test]
?
this [is one too]
?
[] [list of words]

?
hellogoodbye
?
nowhere
?
word doesn’t like [is a test] as input

~

print list [this is] [a test]

print list "this [is one too]

print list [] [list of words]

print word "hello "goodbye

print word "now "here

print word "this [is a test]

single-word lists; you’ve seen from the earlier examples that and treat
the word and the list differently.

Another constructor for lists is . Its inputs can be any data; its output is a list
whose members are the inputs—not the members of the inputs, as for .

is an operation that takes two inputs. Both inputs must be words. (They may
be the empty word.) The output from is a word formed by concatenating the
characters in the input words:

Selectors and constructors can be composed, in the same way we composed and
earlier. See if you can work out what this example will do before you try it with

the computer:*

* The tilde () at the end of the first line is the notation used by Berkeley Logo to indicate that
this and the following line should be understood as a single, long instruction line. It’s somewhat
analogous to the way a hyphen (-) is used in English text when a single word must be split between
two lines. Berkeley Logo will also continue an instruction to the next line if a line ends inside
parentheses or brackets, so another way to indicate a long instruction line is to enclose the entire
instruction in parentheses, like this:

Other Logo dialects have other rules for line continuation. (In some dialects everything you type
is automatically taken as one big line, so you don’t have to think about this.) In the book, I’ll
indent continuation lines, as above, to make it quite clear that they are meant to be part of the
same instruction as the line above. But Logo doesn’t pay attention to the indentation.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Manipulating Words and Lists 25

print word word last "awful first butfirst "computer ~
first [go to the store, please.]

print word

word word

word last

last awful

last l
word

word first

first butfirst

butfirst computer

butfirst omputer first

first o
word

word lo
word

word first

first [go to the store, please.]

first go
word

word logo print

print logo

Here is how I’d analyze it.

The input to is the output from .

The first input to is the output from .

The first input to (the second) is the output from .

The input to is the quoted word .

The output from is the word , which becomes the first input to the second
.

The second input to the second is the output from .

The input to is the output from .

The input to is the quoted word .

The output from is the word , which becomes the input to .

The output from is the word , which becomes the second input to the second
.

The output from the second is the word , which becomes the first input to the
first .

The second input to (the first) is the output from (the second) .

The input to is the sentence .

The output from is the word , which becomes the second input to the first
.

The output from is the word , which becomes the input to .

Finally, prints the word .

And here is the plumbing diagram:

[go to the store, please.]

BUTFIRST

WORD

PRINT

FIRST

LAST FIRST

WORD

computer

awful

☞

Count
count

26 Chapter 2 Procedures

print word sum 2 3 product 2 3

print sum word 2 3 product 2 3

print sentence sum 2 3 word 2 3

print butlast "tricky
print butlast [tricky]
print se bl "farm bl bl bl "output
print first butfirst "hello
print first butfirst [abc def ghi]
(print word bl "hard word bl bl first [very hard]

last first [extremely hard])

?
56
?
29
?
5 23

If you made it through that, you should find it easy to predict what these instructions
will do:

Remember that numbers are words, so you can combine arithmetic operations with
these word and list operations:

is an operation that takes one input. The input can be any datum. The
output from is a number, indicating the length of the input. If the input is a word,
the output is the number of characters in the word. If the input is a list, the output is the
number of members in the list.

and

and 27

Print Show

hi print

first

first first

show

Print Show

?
5
?
1
?
0
?
0
?
57
?
12

?
aardvark
?
aardvark

?
aardvark
?
a

print count "hello

print count [hello]

print count "

print count []

print word count "hello count "goodbye

print sum count "hello count "goodbye

print [aardvark]

print "aardvark

print first [aardvark]

print first "aardvark

Because lists are often used to represent English sentences in conversational programs
like the procedure of Chapter 1, prints only the members of a list, without
enclosing brackets. This behavior could be confusing if a list contains only one member:

There is no visible difference between a word and a one-word list. But the two values are
actually quite different, as we can see if we use them as inputs to :

The of a sentence is its first word, even if it has only one word, but the of
a word is its first letter.

To help distinguish words from lists, Logo has another printing command called
that displays brackets around lists:

print
show

Order of Evaluation

before

28 Chapter 2 Procedures

show [aardvark]

show "aardvark

show sentence [this is] [an example]

show list [this is] [an example]

?
[aardvark]
?
aardvark
?
[this is an example]
?
[[this is] [an example]]

print first butfirst butfirst [print the third word]

butfirst [print the third word]

butfirst [the third word]

first [third word]

print "third

Use if your program wants to carry on a conversation with the user in English.
Use if you are using lists to represent some structure other than a sentence.

You may hear people say something like this: “Logo evaluates from right to left.” What
they mean is that in an instruction such as

Logo first evaluates

and next evaluates

and then

and finally

In other words, the procedures named toward the right end of the instruction line must
be invoked Logo can know the appropriate input values for the procedures farther
to the left.

This right-to-left idea can be a useful way of helping you understand evaluation
in Logo. But you should realize that it’s not quite true. It only works out that way

☞

print 2+3

print sum 2 3

Special Forms of Evaluation

word sum

first butfirst
print

2+3*4 2+(3*4)
2*3+4 (2*3)+4

finish

starts
part of

infix arithmetic prefix arithmetic

Special Forms of Evaluation 29

if the instruction line contains only one instruction and each procedure used in that
instruction takes only one input. If you look back at one of the examples in which
two-input procedures such as or are used, you’ll see that Logo really does read
the instruction line from left to right. And if there are two instructions on the same line,
the one on the left is evaluated first.

The reason for the seeming right-to-left evaluation is that Logo can’t evaluating
a procedure invocation until it has collected and evaluated the inputs to the procedure.
But Logo evaluating an instruction line by looking at the first word on the line. In
the example just above, the evaluation of and is the evaluation
of .

So far, the evaluation process has been very uniform. Logo looks at the first word of an
instruction and interprets that word as the name of a procedure. Logo knows how many
inputs each procedure requires. It then evaluates as many expressions as necessary to
assign values to those inputs. The expressions are evaluated the same way: Logo looks at
the first word. . . and so on.

Although this evaluation process is perfectly general, Logo also provides a couple
of special forms of evaluation to make certain things easier to type. (The computer
science terminology for such a special case is a “kludge.” The letter “u” in this word is
pronounced as in “rude,” not as in “sludge.”)

One special case is that Logo provides as well as the
we’ve used so far. That is, you can say

instead of

When you use infix operations, the usual rules of precedence apply: multiplications
and divisions are done before additions and subtractions unless you use parentheses.
In other words, (the asterisk represents multiplication) means , while

means . You should take note that this issue of precedence doesn’t arise
when prefix operations are used.

For example, look at these expressions:

f x

30 Chapter 2 Procedures

Writing Your Own Procedures

2+3*4

Sum product word list sentence print

(f x)

print sum 2 3 4

print (sum 2 3 4)

show (list "one)

show (list)

sum 2 product 3 4
product sum 2 3 4
sum product 2 3 4
product 2 sum 3 4

?
5
You don’t say what to do with 4
?
9
?
[one]
?
[]

print word (word (last "awful) (first butfirst "computer)) ~
(first [go to the store, please.])

to hello

Each of these indicates precisely what order of operations is desired. The first, for
example, is equivalent to . Try converting the others to infix form. Which ones
require parentheses?

The second special form of evaluation is that certain primitive procedures can be
given extra inputs, or fewer inputs than usual, by using parentheses around the procedure
name and all its inputs. Here are some examples:

, , , , , and can be used with any number of
inputs.

By the way, it is always permitted to enclose a procedure name and its inputs (the
correct number of them!) in parentheses, even when it’s not necessary, to make the
instruction more readable. One of the earlier illustrations, for example, might be easier
to read in this form:

Notice that Logo’s placement of parentheses is different from the function notation used
in algebra. In algebra you say (). In Logo you would express the same idea as .

With these tools, you are ready to begin writing new procedures. Type this:

does not evaluate

immediate

To

Hello to
to hello

to to

hello

end
hello

teach it how

Writing Your Own Procedures 31

to hello

print "Hello
print [This is Logo speaking.]
print [What’s new?]
end

hello

print Hello

?
>

>
>
>
>
?

?
Hello
This is Logo speaking.
What’s new?

end print

end
print

hello end

* Why can’t we simply think of as the name of a procedure, just as is? This is a
minor point, but one that you can use to test your understanding of what’s going on while you
are defining a procedure. When you see the greater-than prompt, Logo the lines
you type. It simply remembers those lines as part of the procedure you’re defining. If were a
procedure, it wouldn’t be evaluated right away, just as those instructions aren’t evaluated
right away. It, too, would be remembered as part of the definition of . Instead, typing
has an effect: It ends the procedure definition and returns to the question-mark prompt
that allows interactive evaluation.

is a command, but it’s a very special one. It’s the only one that does not evaluate its
inputs. Remember earlier when we said

and Logo complained that it didn’t know how to ? Well, doesn’t make that
kind of complaint. Instead it prepares to have you . (That’s why

is called !) What you should see on the screen is something like this:

Instead of a question mark, Logo has printed a greater-than symbol as the prompt.
This special prompt warns you that whatever instructions you type won’t be carried out
immediately, as usual. Instead Logo remembers what you type as part of the procedure
named . Continue like this:

The word isn’t the name of a procedure. It’s a special signal to Logo that you’re
finished defining the procedure .*

Now you can try out your new procedure:

☞

po "hello

po
po

to po
hello

to

end

pops
pots

hello
print butfirst

Last
Last

?
to hello
print "Hello
print [This is Logo speaking.]
print [What’s new?]
end
?

does

title line.
instruction lines.

end line.

just like

32 Chapter 2 Procedures

You can also examine the procedure itself by asking Logo to print it out. The command
(for Print Out) takes one input, a word or a list. The input is either the name of a

procedure (if a word) or a list of names of procedures. The effect of is to print out
the definition(s) of the procedure(s) named by the input. Here is an example:

Unlike , but like all other Logo procedures, evaluate its input. That’s why the
word must be quoted in this example.

In a procedure definition the line starting is called the The lines
containing instructions are, naturally, called We won’t have many
occasions to talk about the line containing only the word , but just in case, we’ll call
it the

The command (for Print Out ProcedureS) takes no inputs. Its effect is to print
out the definitions of all the procedures you’ve defined. The command (for Print
Out TitleS) also takes no inputs and prints out only the title lines of all the procedures
you’ve defined.

Some writers and teachers reserve the word “procedure” to refer only to ones you
write yourself, such as . They use the word “primitive” as a noun, to mean things
like and . They say things like “Logo instructions are made up of
procedures and primitives.” This is a big mistake. The procedures you write are
the procedures Logo happens to know about in the first place. It’s just that somebody
else wrote the primitive procedures. But you use your own procedures in exactly the same
way that you use primitive procedures: you type the name of the procedure and Logo
evaluates that name by invoking the procedure. It’s okay to say “ is a primitive” as
an abbreviation for “ is a primitive procedure,” as long as you know what you’re
talking about.

Try defining more procedures. You’ll find that you don’t have quite enough tools
yet to make your procedures very interesting; the main problem is that yours don’t take
inputs, so they do exactly the same thing every time you use them. We’ll solve that
problem in the next chapter.

edit

edit

to to

to

to

print item [john paul george ringo] 2

Editing Your Procedures

Syntax and Semantics

editor,

syntax

semantics,

Syntax and Semantics 33

As you may remember from earlier experiences, Logo includes an a program that
allows you to make corrections to a procedure you’ve defined. You can also use the editor
to write procedure definitions in the first place. The editor works slightly differently in
each version of Logo, so you should consult the manuals for your own computer (or
Appendix A, for Berkeley Logo) to review the details.

By the way, when you’re learning about the command, don’t forget that it
can accept a list of procedure names as input, not only a single word. By listing several
procedures in the input to , you can have them all visible at once while you’re
editing, and you can copy instructions from one to another. This is a powerful capability
of the Logo editor, which beginners often neglect.

Once you’ve gotten familiar with the Logo editor, you’ll probably find yourself
wanting to use it all the time, and you’ll rarely choose to define a procedure by invoking

directly. (Don’t get confused about that last sentence; of course you type when
you’re using the editor, but you don’t type it as a command to the Logo interpreter in
response to a question mark prompt.) The editor makes it much easier to correct typing
mistakes. Nevertheless, if you need to define a short procedure in the middle of doing
something else, you may occasionally find it simpler to use rather than wait for an
editor to start up.

Except for the special case of , all Logo instructions follow the same rules about the
meaning of punctuation and about which subexpression provides an input to which
procedure call. These are called rules. The rules pay no attention to what any
particular procedure means, or what inputs might or might not be sensible for that
procedure; those aspects of a program are called its which is a fancy word for
“meaning.” You might say that Logo’s plumber, the part of Logo that hooks up the
plumbing diagrams, doesn’t know anything about semantics. So, for example, if you
make a mistake like

and get a Logo error message, you might feel that it’s obvious what you meant—and it
would be, to another person—and so Logo should have figured it out and done the right
thing. But computers aren’t as smart as people, and so you can rely only on Logo’s syntax
rules, not on the semantics of your program, to help Logo make sense of what you write.

WORD

PRINT

SUM

42

es

SUM

PRINT

WORD

42

es

word sum

sum 24 es

print word sum 2 4 "es?
6es

print sum word 2 4 "es

before

semantic

34 Chapter 2 Procedures

To illustrate the difference between syntax and semantics, we’ll start by examining
the following Logo instruction:

Here’s its plumbing diagram:

The connections in a plumbing diagram depend only on the numbers of inputs
and outputs for each procedure used. Logo “connects the plumbing” invoking
any of the procedures named in the instruction. The plumbing is connected regardless
of whether the specified inputs actually make sense to the procedures in question. For
example, suppose we make a slight change to the instruction given just now:

The only change is that and have been interchanged. Since these are both
two-input operations, the shape of the plumbing diagram is unchanged.

The plumbing connections are syntactically fine, so Logo can work out which expression
provides the input to which procedure call. However, when Logo gets around to invoking
the procedure with inputs and , an error message will result because the
second input isn’t a number. This is a error.

WORD

PRINT

SUM

es2

?

print word sum 2 "es

Parentheses and Plumbing Diagrams

syntactic

Parentheses and Plumbing Diagrams 35

es word
sum

print
word word print

word sum sum
word sum

word
sum

word

not enough inputs

you don’t say what to do with
too much inside ()’s

By contrast, the following instruction shows a error, in which Logo is unable
to figure out a plumbing diagram in which all the pieces connect up.

The question mark in the diagram indicates a missing input. In this example, the pro-
grammer intended the word to be the second input to ; from the programmer’s
point of view, it is a number, the desired second input to , that’s “really” missing.
But Logo doesn’t know about the programmer’s intentions, and Logo’s plumber follows
uniform rules in deciding which input goes with which procedure call.

The rule is that Logo starts by looking for an input to . The first thing it finds
is , so the output from is hooked up to the input for . Now Logo is
looking for two inputs to . The next thing it finds is , so the output from is
hooked up to the first input for . Now Logo is looking for two inputs to , and
the syntax rules say that Logo must find those two inputs before it can continue with the
still-pending task of finding a second input for . Logo’s plumber isn’t smart enough
to say, “Hey, here’s a non-number as input to , and I happen to remember that we
still need another input for , so that must be what the programmer meant.”

There are really only two kinds of plumbing errors. In the one shown here, too few
expressions are included in the instruction, so that the message
results. The other error is that too many expressions appear inside the instruction.
This may result in the message something, or, if the
extra expressions are within parentheses, by .

Parentheses can be used in a Logo instruction for three reasons: for readability, to
show the precedence of infix operators, or to include a nonstandard number of inputs
for certain primitives. In all three cases, the syntax rule is that everything inside the

PRINT

WORD

a b c

PRINT

WORD

a b c

print

word

within

f x

36 Chapter 2 Procedures

print (word "a "b "c)

print word ("a "b "c) ; (wrong)

parentheses must form one single complete expression. In plumbing diagram terms,
this means that the stuff inside the parentheses must correspond to a subdiagram with
no inputs and with exactly one output (unless an entire instruction is parenthesized, in
which case the diagram will have no outputs):

The dotted rectangle indicates the subdiagram corresponding to the expression inside
the parentheses. That rectangle has no inputs; there are three inputs the rectangle,
but in each case the source of the input and the recipient of the input are both inside.
There is no recipient inside the rectangle that needs a source from outside. The rectangle
has one output; the entire expression within the rectangle provides the input to .

The mathematical function notation () used in algebra often tempts beginning
Logo programmers to write the above example as

but by thinking about the plumbing diagram we can see that that would not put one
single expression inside the parentheses:

The part of the instruction inside the parentheses is trying to provide three outputs,
not just one. This violates the rules. Also, since the word isn’t inside the
parentheses, that procedure follows its ordinary rules and expects only two inputs.

RINGO0 stu

GEORGE2

JOHN2

paul

☞

garply2
x

baz3x

Nonsense Plumbing Diagrams

Nonsense Plumbing Diagrams 37

john2 "paul george2 ringo0 "stu

baz3x 1 2 foo3x foo3x 4 5 6 (foo3x 7) 8
baz3x 1 [2 foo3x foo3x 4 5 6 (foo3x 7)] 8
if2 test3 [a b] [c d] [e f] [g h]
if2 try0 [foo3x 8 9]

To emphasize the point that the plumbing diagram depends only on the number of inputs
expected by each procedure, and not on the purpose or meaning of the procedure, we
can draw plumbing diagrams for nonsense instructions using unknown procedures. The
rule of this game is that each procedure name includes a number indicating how many
inputs it accepts. For example, is a procedure that requires two inputs. If a
procedure can accept extra inputs when used with parentheses, we put an after the
number; ordinarily takes three inputs, but can be given any number of inputs by
using parentheses around the subexpression that invokes it.

We don’t have to know what any of these procedures do. The only information we need
is that some words in the instruction are quoted, while others are names of procedures
that take a known number of inputs. This is a syntactically correct instruction because
each procedure has been given exactly as many inputs as it requires.

Try these:

