
A row of boxes

foo

23 Vectors

The Indy 500

remembers

state.

405

> (foo 3)
ERROR: FOO HAS NO VALUE

> (define (foo x)
(word x x))

> (foo 3)
33

So far all the programs we’ve written in this book have had no memory of the past history
of the computation. We invoke a function with certain arguments, and we get back a
value that depends only on those arguments. Compare this with the operation of Scheme
itself:

Scheme that you have defined , so its response to the very same
expression is different the second time. Scheme maintains a record of certain results of
its past interaction with you; in particular, Scheme remembers the global variables that
you have defined. This record is called its

Most of the programs that people use routinely are full of state; your text editor, for
example, remembers all the characters in your file. In this chapter you will learn how to
write programs with state.

The Indianapolis 500 is an annual 500-mile automobile race, famous among people
who like that sort of thing. It’s held at the Indianapolis Motor Speedway, a racetrack
in Indianapolis, Indiana. (Indiana is better known as the home of Dan Friedman, the

1
2

Vectors

lap

(lap 64)
Lap

lap
vector.

406 Part VI Sequential Programming

> (lap 87)
1

> (lap 64)
1

> (lap 17)
1

> (lap 64)
2

> (lap 64)
3

> (define v (make-vector 5))

coauthor of some good books about Scheme.) The racetrack is 2 miles long, so, as you
might imagine, the racers have to complete 200 laps in order to finish the race. This
means that someone has to keep track of how many laps each car has completed so far.

Let’s write a program to help this person keep count. Each car has a number, and
the count person will invoke the procedure with that number as argument every
time a car completes a lap. The procedure will return the number of laps that that car
has completed altogether:

(Car 64 managed to complete three laps before the other cars completed two because
the others had flat tires.) Note that we typed the expression three times and
got three different answers. isn’t a function! A function has to return the same
answer whenever it’s invoked with the same arguments.

The point of this chapter is to show how procedures like can be written. To
accomplish this, we’re going to use a data structure called a (You may have seen
something similar in other programming languages under the name “array.”)

A vector is, in effect, a row of boxes into which values can be put. Each vector has a
fixed number of boxes; when you create a vector, you have to say how many boxes you
want. Once a vector is created, there are two things you can do with it: You can put a
new value into a box (replacing any old value that might have been there), or you can
examine the value in a box. The boxes are numbered, starting with zero.

mutator

destructive.
index

Chapter 23 Vectors 407

make-vector

vector-set!

vector-set!
define vector-set!

vector-ref
Vector-ref list-ref

bread

> (vector-set! v 0 ’shoe)

> (vector-set! v 3 ’bread)

> (vector-set! v 2 ’(savoy truffle))

> (vector-ref v 3)
BREAD

> (vector-set! v 3 ’jewel)

> (vector-ref v 3)
JEWEL

> (vector-set! v 1 741)

* The Scheme standard says that the initial contents of the boxes is “unspecified.” That means
that the result depends on the particular version of Scheme you’re using. It’s a bad idea to try to
examine the contents of a box before putting something in it.

There are several details to note here. When we invoke we give it
one argument, the number of boxes we want the vector to have. (In this example, there
are five boxes, numbered 0 through 4. There is no box 5.) When we create the vector,
there is nothing in any of the boxes.*

We put things in boxes using the procedure. The exclamation point
in its name, indicates that this is a —a procedure that changes the value of some
previously created data structure. The exclamation point is pronounced “bang,” as in
“vector set bang.” (Scheme actually has several such mutators, including mutators for
lists, but this is the only one we’ll use in this book. A procedure that modifies its argument
is also called) The arguments to are the vector, the number of
the box (the), and the desired new value. Like , returns an
unspecified value.

We examine the contents of a box using , which takes two arguments,
the vector and an index. is similar to , except that it operates
on vectors instead of lists.

We can change the contents of a box that already has something in it.

The old value of box 3, , is no longer there. It’s been replaced by the new value.

#

lap

Using Vectors in Programs

408 Part VI Sequential Programming

(define *lap-vector* (make-vector 100 0))

* In some versions of Scheme, can take an optional argument specifying an
initial value to put in every box. In those versions, we could just say

without having to use the initialization procedure.

> (vector-set! v 4 #t)

> v
#(SHOE 741 (SAVOY TRUFFLE) JEWEL #T)

> (vector-ref ’#(a b c d) 2)
C

(define *lap-vector* (make-vector 100))

(define (initialize-lap-vector index)
(if (< index 0)

’done
(begin (vector-set! *lap-vector* index 0)

(initialize-lap-vector (- index 1)))))

> (initialize-lap-vector 99)
DONE

make-vector

Once the vector is completely full, we can print its value. Scheme prints vectors in a format
like that of lists, except that there is a number sign () before the open parenthesis. If
you ever have need for a constant vector (one that you’re not going to mutate), you can
quote it using the same notation:

To implement our procedure, we’ll keep its state information, the lap counts, in a
vector. We’ll use the car number as the index into the vector. It’s not enough to create
the vector; we have to make sure that each box has a zero as its initial value.

We’ve created a global variable whose value is the vector. We used a recursive procedure
to put a zero into each box of the vector.* Note that the vector is of length 100, but its
largest index is 99. Also, the base case of the recursion is that the index is less than zero,
not equal to zero as in many earlier examples. That’s because zero is a valid index.

lap

Lap

lap

lap

read

Chapter 23 Vectors 409

Non-Functional Procedures and State

* That’s what we mean by “non-functional,” not that it doesn’t work!

(define (lap car-number)
(vector-set! *lap-vector*

car-number
(+ (vector-ref *lap-vector* car-number) 1))

(vector-ref *lap-vector* car-number))

Now that we have the vector, we can write .

Remember that a procedure body can include more than one expression. When the
procedure is invoked, the expressions will be evaluated in order. The value returned by
the procedure is the value of the last expression (in this case, the second one).

has both a return value and a side effect. The job of the first expression is to
carry out that side effect, that is, to add 1 to the lap count for the specified car. The
second expression looks at the value we just put in a box to determine the return value.

We remarked earlier that isn’t a function because invoking it twice with the same
argument doesn’t return the same value both times.*

It’s not a coincidence that also violates functional programming by maintaining
state information. Any procedure whose return value is not a function of its arguments
(that is, whose return value is not always the same for any particular arguments) must
depend on knowledge of what has happened in the past. After all, computers don’t
pull results out of the air; if the result of a computation doesn’t depend entirely on the
arguments we give, then it must depend on some other information available to the
program.

Suppose somebody asks you, “Car 54 has just completed a lap; how many has it
completed in all?” You can’t answer that question with only the information in the
question itself; you have to remember earlier events in the race. By contrast, if someone
asks you, “What’s the plural of ‘book’?” what has happened in the past doesn’t matter at
all.

The connection between non-functional procedures and state also applies to non-
functional Scheme primitives. The procedure, for example, returns different
results when you invoke it repeatedly with the same argument because it remembers how

Shuffling a Deck

random
Random

random random

random

random

random

let
let let let

let
random Let

card-list

the result from the last time you invoked
it.

Every

between

410 Part VI Sequential Programming

far it’s gotten in the file. That’s why the argument is a port instead of a file name: A port
is an abstract data type that includes, among other things, this piece of state. (If you’re
reading from the keyboard, the state is in the person doing the typing.)

A more surprising example is the procedure that you met in Chapter 2.
isn’t a function because it doesn’t always return the same value when called with

the same argument. How does compute its result? Some versions of
compute a number that’s based on the current time (in tiny units like milliseconds so
you don’t get the same answer from two calls in quick succession). How does your
computer know the time? Every so often some procedure (or some hardware device)
adds 1 to a remembered value, the number of milliseconds since midnight. That’s state,
and relies on it.

The most commonly used algorithm for random numbers is a little trickier; each
time you invoke , the result is a function of

(The procedure is pretty complicated; typically the old number is multiplied by some
large, carefully chosen constant, and only the middle digits of the product are kept.)
Each time you invoke , the returned value is stashed away somehow so that the
next invocation can remember it. That’s state too.

Just because a procedure remembers something doesn’t necessarily make it stateful.
procedure remembers the arguments with which it was invoked, while it’s running.

Otherwise the arguments wouldn’t be able to affect the computation. A procedure
whose result depends only on its arguments (the ones used in the current invocation)
is functional. The procedure is non-functional if it depends on something outside of its
current arguments. It’s that sort of “long-term” memory that we consider to be state.

In particular, a procedure that uses isn’t stateful merely because the body of the
remembers the values of the variables created by the . Once returns a value,

the variables that it created no longer exist. You couldn’t use , for example, to carry
out the kind of remembering that needs. doesn’t remember a value
invocations, just during a single invocation.

One of the advantages of the vector data structure is that it allows elements to be
rearranged. As an example, we’ll create and shuffle a deck of cards.

We’ll start with a procedure that returns a list of all the cards, in standard
order:

Chapter 23 Vectors 411

card-list reduce append
map ((HA H2) (SA))

list->vector

vector->list ->

(define (card-list)
(every (lambda (suit) (every (lambda (rank) (word suit rank))

’(a 2 3 4 5 6 7 8 9 10 j q k)))
’(h s d c)))

(define (card-list)
(reduce append

(map (lambda (suit) (map (lambda (rank) (word suit rank))
’(a 2 3 4 5 6 7 8 9 10 j q k)))

’(h s d c))))

> (card-list)
(HA H2 H3 H4 H5 H6 H7 H8 H9 H10 HJ HQ HK
SA S2 S3 S4 S5 S6 S7 S8 S9 S10 SJ SQ SK
DA D2 D3 D4 D5 D6 D7 D8 D9 D10 DJ DQ DK
CA C2 C3 C4 C5 C6 C7 C8 C9 C10 CJ CQ CK)

list->vector
every card-list

card-sentence
every

list->vector

list->vector

sentence->vector

card-list

In writing , we need because the result from the outer
invocation of is a list of lists:*

Each time we want a new deck of cards, we start with this list of 52 cards, copy the list
into a vector, and shuffle that vector. We’ll use the Scheme primitive ,
which takes a list as argument and returns a vector of the same length, with the
boxes initialized to the corresponding elements of the list. (There is also a procedure

that does the reverse. The characters in these function names are

* We could get around this problem in a different way:

In this version, we’re taking advantage of the fact that our sentence data type was defined in a
way that prevents the creation of sublists. A sentence of cards is a good representation for the
deck. However, with this approach we are mixing up the list and sentence data types, because later
we’re going to invoke with this deck of cards as its argument. If we use sentence
tools such as to create the deck, then the procedure should really be called

.
What difference does it make? The version works fine, as long as sentences are imple-

mented as lists, so that can be applied to a sentence. But the point about abstract
data types such as sentences is to avoid making assumptions about their implementation. If for
some reason we decided to change the internal representation of sentences, then
could no longer be applied to a sentence. Strictly speaking, if we’re going to use this trick, we need
a separate conversion procedure .

Of course, if you don’t mind a little typing, you can avoid this whole issue by having a quoted
list of all 52 cards built into the definition of .

→

make-deck

412 Part VI Sequential Programming

(define (make-deck)
(shuffle! (list->vector (card-list)) 51))

(define (shuffle! deck index)
(if (< index 0)

deck
(begin (vector-swap! deck index (random (+ index 1)))

(shuffle! deck (- index 1)))))

(define (vector-swap! vector index1 index2)
(let ((temp (vector-ref vector index1)))
(vector-set! vector index1 (vector-ref vector index2))
(vector-set! vector index2 temp)))

> (make-deck)
#(C4 SA C7 DA S4 D9 SQ H4 C10 D5 H9 S10 D6
S9 CA C9 S2 H7 S5 H6 D7 HK S7 C3 C2 C6
HJ SK CQ CJ D4 SJ D8 S8 HA C5 DK D3 HQ
D10 H8 DJ C8 H2 H5 H3 CK S3 DQ S6 D2 H10)

> (make-deck)
#(CQ H7 D10 D5 S8 C7 H10 SQ H4 H3 D8 C9 S7
SK DK S6 DA D4 C6 HQ D6 S2 H5 CA H2 HJ
CK D7 H6 HA CJ C4 SJ HK SA C2 D2 S4 DQ
S5 C10 H9 D9 C5 D3 DJ C3 S9 S3 C8 S10 H8)

meant to look like an arrow (); this is a Scheme convention for functions that convert
information from one data type to another.)

Now, each time we call , we get a randomly shuffled vector of cards:

How does the shuffling algorithm work? Conceptually it’s not complicated, but there
are some implementation details that make the actual procedures a little tricky. The
general idea is this: We want all the cards shuffled into a random order. So we choose
any card at random, and make it the first card. We’re then left with a one-card-smaller
deck to shuffle, and we do that by recursion. (This algorithm is similar to selection sort
from Chapter 15, except that we select a random card each time instead of selecting the
smallest value.)

The details that complicate this algorithm have to do with the fact that we’re using a
vector, in which it’s easy to change the value in one particular position, but it’s not easy to
do what would otherwise be the most natural thing: If you had a handful of actual cards
and wanted to move one of them to the front, you’d slide the other cards over to make

More Vector Tools

end

Chapter 23 Vectors 413

cdr

index

0 index

vector list

vector-length

equal?

vector? #t

> (define beatles (vector ’john ’paul ’george ’pete))

> (vector-set! beatles 3 ’ringo)

> beatles
#(JOHN PAUL GEORGE RINGO)

> (vector-length beatles)
4

room. There’s no “sliding over” in a vector. Instead we use a trick; we happen to have
an empty slot, the one from which we removed the randomly chosen card, so instead of
moving several cards, we just move the one card that was originally at the front into that
slot. In other words, we exchange two cards, the randomly chosen one and the one that
used to be in front.

Second, there’s nothing comparable to to provide a one-card-smaller vector to
the recursive invocation. Instead, we must use the entire vector and also provide an
additional argument, a number that keeps track of how many cards remain to be
shuffled. It’s simplest if each recursive invocation is responsible for the range of cards
from position to position of the vector, and therefore the program actually
moves each randomly selected card to the of the remaining portion of the deck.

If you want to make a vector with only a few boxes, and you know in advance what values
you want in those boxes, you can use the constructor . Like , it takes any
number of arguments and returns a vector containing those arguments as elements:

The procedure takes a vector as argument and returns the number
of boxes in the vector.

The predicate , which we’ve used with words and lists, also accepts vectors
as arguments. Two vectors are equal if they are the same size and all their corresponding
elements are equal. (A list and a vector are never equal, even if their elements are equal.)

Finally, the predicate takes anything as argument and returns if and
only if its argument is a vector.

begin

car cdr

The Vector Pattern of Recursion

414 Part VI Sequential Programming

(define (initialize-lap-vector index)
(if (< index 0)

’done
(begin (vector-set! *lap-vector* index 0)

(initialize-lap-vector (- index 1)))))

(define (shuffle! deck index)
(if (< index 0)

deck
(begin (vector-swap! deck index (random (+ index 1)))

(shuffle! deck (- index 1)))))

(< index 0)

(define (list->vector lst)
(l->v-helper (make-vector (length lst)) lst 0))

(define (l->v-helper vec lst index)
(if (= index (vector-length vec))

vec
(begin (vector-set! vec index (car lst))

(l->v-helper vec (cdr lst) (+ index 1)))))

Here are two procedures that you’ve seen earlier in this chapter, which do something to
each element of a vector:

These procedures have a similar structure, like the similarities we found in other
recursive patterns. Both of these procedures take an index as an argument, and both
have

as their base case. Also, both have, as their recursive case, a in which the first
action does something to the vector element selected by the current index, and the
second action is a recursive call with the index decreased by one. These procedures are
initially called with the largest possible index value.

In some cases it’s more convenient to count the index upward from zero:

Since lists are naturally processed from left to right (using and), this program
must process the vector from left to right also.

Vectors versus Lists

Chapter 23 Vectors 415

(define (list-square numbers)
(if (null? numbers)

’()
(cons (square (car numbers))

(list-square (cdr numbers)))))

(define (vector-square numbers)
(vec-sq-helper (make-vector (vector-length numbers))

numbers
(- (vector-length numbers) 1)))

(define (vec-sq-helper new old index)
(if (< index 0)

new
(begin (vector-set! new index (square (vector-ref old index)))

(vec-sq-helper new old (- index 1)))))

Since we introduced vectors to provide mutability, you may have the impression that
mutability is the main difference between vectors and lists. Actually, lists are mutable too,
although the issues are more complicated; that’s why we haven’t used list mutation in this
book.

The most important difference between lists and vectors is that each kind of aggregate
lends itself to a different style of programming, because some operations are faster than
others in each. List programming is characterized by two operations: dividing a list
into its first element and all the rest, and sticking one new element onto the front of
a list. Vector programming is characterized by selecting elements in any order, from a
collection whose size is set permanently when the vector is created.

To make these rather vague descriptions more concrete, here are two procedures,
one of which squares every number in a list, and the other of which squares every number
in a vector:

In the list version, the intermediate stages of the algorithm deal with lists that are smaller
than the original argument. Each recursive invocation “strips off” one element of its
argument and “glues on” one extra element in its return value. In the vector version, the
returned vector is created, at full size, as the first step in the algorithm; its component
parts are filled in as the program proceeds.

This example can plausibly be done with either vectors or lists, so we’ve used it to
compare the two techniques. But some algorithms fit most naturally with one kind of

(= (count sent) 1)

(empty? (butfirst sent))

constant
time

416 Part VI Sequential Programming

cons car cdr null?
vector-ref vector-set! vector-length

list-ref

cdr

filter

* Where did this information come from? Just take our word for it. In later courses you’ll study
how vectors and lists are implemented, and then there will be reasons.

aggregate and would be awkward and slow using the other kind. The swapping of pairs
of elements in the shuffling algorithm would be much harder using lists, while mergesort
would be harder using vectors.

The best way to understand these differences in style is to know the operations that
are most efficient for each kind of aggregate. In each case, there are certain operations
that can be done in one small unit of time, regardless of the number of elements in
the aggregate, while other operations take more time for more elements. The

operations for lists are , , , and ; the ones for vectors are
, , and .* And if you reread the squaring

programs, you’ll find that these are precisely the operations they use.

We might have used in the list version, but we didn’t, and Scheme
programmers usually don’t, because we know that it would be slower. Similarly, we could
implement something like for vectors, but that would be slow, too, since it would
have to make a one-smaller vector and copy the elements one at a time. There are two
possible morals to this story, and they’re both true: First, programmers invent and learn
the algorithms that make sense for whatever data structure is available. Thus we have
well-known programming patterns, such as the pattern, appropriate for lists,
and different patterns appropriate for vectors. Second, programmers choose which data
structure to use depending on what algorithms they need. If you want to shuffle cards,
use a vector, but if you want to split the deck into a bunch of variable-size piles, lists might
be more appropriate. In general, vectors are good at selecting elements in arbitrary
order from a fixed-size collection; lists are good only at selecting elements strictly from
left to right, but they can vary in size.

In this book, despite what we’re saying here about efficiency, we’ve generally tried
to present algorithms in the way that’s easiest to understand, even when we know that
there’s a faster way. For example, we’ve shown several recursive procedures in which the
base case test was

If we were writing the program for practical use, rather than for a book, we would have
written

count

State, Sequence, and Effects

every

sequential programming
imperative programming

Chapter 23 Vectors 417

empty? butfirst
null? cdr count

count

vector-set!

(lap 1) (lap 2)

(lap 1) (lap 2)

* For words, it turns out, the version is faster, because words behave more like vectors
than like lists.

** to coin a phrase.

because we know that and are both constant time operations (because
for sentences they’re implemented as and), while takes a long time
for large sentences. But the version using makes the intent clearer.*

Effects, sequence, and state are three sides of the same coin.**

In Chapter 20 we explained the connection between effect (printing something on
the screen) and sequence: It matters what you print first. We also noted that there’s no
benefit to a sequence of expressions unless those expressions produce an effect, since
the values returned by all but the last expression are discarded.

In this chapter we’ve seen another connection. The way our vector programs
maintain state information is by carrying out effects, namely, invocations.
Actually, effect changes some kind of state; if not in Scheme’s memory, then on the
computer screen or in a file.

The final connection to be made is between state and sequence. Once a program
maintains state, it matters whether some computation is carried out before or after
another computation that changes the state. The example at the beginning of this
chapter in which an expression had different results before and after defining a variable
illustrates this point. As another example, if we evaluate 200 times and
200 times, the program’s determination of the winner of the race depends on whether
the last evaluation of comes before or after the last invocation of .

Because these three ideas are so closely connected, the names
(emphasizing sequence) and (emphasizing effect) are both used
to refer to a style of programming that uses all three. This style is in contrast with
functional programming, which, as you know, uses none of them.

Although functional and sequential programming are, in a sense, opposites, it’s
perfectly possible to use both styles within one program, as we pointed out in the tic-
tac-toe program of Chapter 20. We’ll show more such hybrid programs in the following
chapters.

. . .

⇒

⇒

Pitfalls

Exercises

two-desserts

two-desserts

vector make-vector

same

Do not solve any of the following exercises by converting a vector to a list, using list procedures, and
then converting the result back to a vector.

418 Part VI Sequential Programming

> (define dessert (vector ’chocolate ’sundae))
> (define two-desserts (list dessert dessert))
> (vector-set! (car two-desserts) 1 ’shake)
> two-desserts
(#(CHOCOLATE SHAKE) #(CHOCOLATE SHAKE))

(#(CHOCOLATE SHAKE) #(CHOCOLATE SUNDAE))

> (define two-desserts (list (vector ’chocolate ’sundae)
(vector ’chocolate ’sundae)))

> (vector-set! (car two-desserts) 1 ’shake)
> two-desserts
(#(CHOCOLATE SHAKE) #(CHOCOLATE SUNDAE))

Don’t forget that the first element of a vector is number zero, and there is no element
whose index number is equal to the length of the vector. (Although these points are
equally true for lists, it doesn’t often matter, because we rarely select the elements of a
list by number.) In particular, in a vector recursion, if zero is the base case, then there’s
probably still one element left to process.

Try the following experiment:

You might have expected that after asking to change one word in , the
result would be

However, because of the way we created , both of its elements are the
vector. If you think of a list as a collection of things, it’s strange to imagine the

very same thing in two different places, but that’s the situation. If you want to have
two separate vectors that happen to have the same values in their elements, but are
individually mutable, you’d have to say

Each invocation of or creates a new, independent vector.

Chapter 23 Vectors 419

23.1

23.2

23.3

23.4

23.5

23.6

23.7

sum-vector

vector-fill!

vector-fill!

vector-append append

vector->list

vector-map

vector-map!

vector-filter vector-filter!

> (sum-vector ’#(6 7 8))
21

> (define vec (vector ’one ’two ’three ’four))

> vec
#(one two three four)

> (vector-fill! vec ’yeah)

> vec
#(yeah yeah yeah yeah)

> (vector-append ’#(not a) ’#(second time))
#(not a second time)

Write a procedure that takes a vector full of numbers as its argument
and returns the sum of all the numbers:

Some versions of Scheme provide a procedure that takes a vector
and anything as its two arguments. It replaces every element of the vector with the second
argument, like this:

Write . (It doesn’t matter what value it returns.)

Write a function that works just like regular , but for
vectors:

Write .

Write a procedure that takes two arguments, a function and a vector,
and returns a new vector in which each box contains the result of applying the function
to the corresponding element of the argument vector.

Write a procedure that takes two arguments, a function and a
vector, and modifies the argument vector by replacing each element with the result of
applying the function to that element. Your procedure should return the same vector.

Could you write ? How about ? Explain the
issues involved.

23.8

23.9

23.10

23.11

420 Part VI Sequential Programming

lap

leader

order bill. Order
Bill

order *menu*

(define (leader)
(leader-helper 0 1))

(define (leader-helper leader index)
(cond ((= index 100) leader)

((> (lap index) (lap leader))
(leader-helper index (+ index 1)))
(else (leader-helper leader (+ index 1)))))

> (order 3 ’potstickers)

> (order 3 ’wor-won-ton)

> (order 5 ’egg-rolls)

> (order 3 ’shin-shin-special-prawns)

> (bill 3)
13.85

> (bill 5)
2.75

Modify the procedure to print “Car 34 wins!” when car 34 completes its 200th
lap. (A harder but more correct modification is to print the message only if no other car
has completed 200 laps.)

Write a procedure that says which car is in the lead right now.

Why doesn’t this solution to Exercise 23.9 work?

In some restaurants, the servers use computer terminals to keep track of what
each table has ordered. Every time you order more food, the server enters your order
into the computer. When you’re ready for the check, the computer prints your bill.

You’re going to write two procedures, and takes a table number
and an item as arguments and adds the cost of that item to that table’s bill. takes a
table number as its argument, returns the amount owed by that table, and resets the table
for the next customers. (Your procedure can examine a global variable
to find the price of each item.)

× ×

vector-swap!

23.12

23.13

23.14

23.15

matrix.

array

list

Chapter 23 Vectors 421

#(23 4 18 7 95 60)

#(4 23 18 7 95 60) ; exchange 4 with 23
#(4 7 18 23 95 60) ; exchange 7 with 23
#(4 7 18 23 95 60) ; exchange 18 with itself
#(4 7 18 23 95 60) ; exchange 23 with itself
#(4 7 18 23 60 95) ; exchange 60 with 95

(define (vector-swap! vector index1 index2)
(vector-set! vector index1 (vector-ref vector index2))
(vector-set! vector index2 (vector-ref vector index1)))

> (define m (make-matrix 3 5))

> (matrix-set! m 2 1 ’(her majesty))

> (matrix-ref m 2 1)
(HER MAJESTY)

Rewrite selection sort (from Chapter 15) to sort a vector. This can be done in a
way similar to the procedure for shuffling a deck: Find the smallest element of the vector
and exchange it (using) with the value in the first box. Then find the
smallest element not including the first box, and exchange that with the second box, and
so on. For example, suppose we have a vector of numbers:

Your program should transform the vector through these intermediate stages:

Why doesn’t this work?

Implement a two-dimensional version of vectors. (We’ll call one of these structures
a) The implementation will use a vector of vectors. For example, a three-by-five
matrix will be a three-element vector, in which each of the elements is a five-element
vector. Here’s how it should work:

Generalize Exercise 23.14 by implementing an structure that can have any
number of dimensions. Instead of taking two numbers as index arguments, as the matrix
procedures do, the array procedures will take one argument, a of numbers. The
number of numbers is the number of dimensions, and it will be constant for any particular
array. For example, here is a three-dimensional array (4 5 6):

23.16

422 Part VI Sequential Programming

sentence empty? first butfirst last butlast

> (define a1 (make-array ’(4 5 6)))

> (array-set! a1 ’(3 2 3) ’(the end))

> (sentence ’a ’b ’c)
#(A B C)

> (butfirst (sentence ’a ’b ’c))
#(B C)

(define (praise stuff)
(sentence stuff ’(is good)))

(define (praise stuff)
(sentence stuff ’rules!))

(define (item n sent)
(if (= n 1)

(first sent)
(item (- n 1) (butfirst sent))))

We want to reimplement sentences as vectors instead of lists.

(a) Write versions of , , , , , and that
use vectors. Your selectors need only work for sentences, not for words.

(You don’t have to make these procedures work on lists as well as vectors!)

(b) Does the following program still work with the new implementation of sentences? If
not, fix the program.

(c) Does the following program still work with the new implementation of sentences? If
not, fix the program.

(d) Does the following program still work with the new implementation of sentences?
If not, fix the program. If so, is there some optional rewriting that would improve its
performance?

(e) Does the following program still work with the new implementation of sentences?
If not, fix the program. If so, is there some optional rewriting that would improve its
performance?

Chapter 23 Vectors 423

(define (every fn sent)
(if (empty? sent)

sent
(sentence (fn (first sent))

(every fn (butfirst sent)))))

(f) In what ways does using vectors to implement sentences affect the speed of the
selectors and constructor? Why do you think we chose to use lists?

