
In each set, how do the ones on the left differ from the ones on the right?

(* me *) *

match
equal?

Problem Description

16 Example: Pattern Matcher

pattern matcher

pattern.

249

(load "match.scm")

> (match ’(* me *) ’(love me do))
#T

> (match ’(* me *) ’(please please me))
#T

> (match ’(* me *) ’(in my life))
#F

It’s time for another extended example in which we use the Scheme tools we’ve been
learning to accomplish something practical. We’ll start by describing how the program
will work before we talk about how to implement it.

You can load our program into Scheme by typing

A is a commonly used procedure whose job is to compare a sentence to a
range of possibilities. An example may make this clear:

The first argument, , is a In the pattern, each asterisk () means “any
number of words, including no words at all.” So the entire pattern matches any sentence
that contains the word “me” anywhere within it. You can think of as a more
general form of in the sense that it compares two sentences and tells us whether
they’re the same, but with a broader meaning of “the same.”

?
!
&
*

match

match #t #f

*start
Match

end

special characters

name

placeholder.

250 Part IV Recursion

> (match ’(*start me *end) ’(love me do))
(START LOVE ! END DO !)

> (match ’(*start me *end) ’(please please me))
(START PLEASE PLEASE ! END !)

> (match ’(mean mr mustard) ’(mean mr mustard))
()

> (match ’(*start me *end) ’(in my life))
FAILED

Our pattern matcher will accept patterns more complicated than this first example.
There are four that indicate unspecified parts of a pattern, depending
on the number of words that should be allowed:

At most one word.
Exactly one word.
At least one word.
Any number of words.

These characters are meant to be somewhat mnemonic. The question mark means
“maybe there’s a word.” The exclamation point means “precisely one word!” (And it’s
vertical, just like the digit 1, sort of.) The ampersand, which ordinarily means “and,”
indicates that we’re matching a word and maybe more. The asterisk doesn’t have any
mnemonic value, but it’s what everyone uses for a general matching indicator anyway.

We can give a to the collection of words that match an unspecified part of
a pattern by including in the pattern a word that starts with one of the four special
characters and continues with the name. If the match succeeds, will return a
sentence containing these names and the corresponding values from the sentence:

In these examples, you see that doesn’t really return or ; the earlier set
of examples showed a simplified picture. In the first of the new examples, the special
pattern word is allowed to match any number of words, as indicated by the
asterisk. In this case it turned out to match the single word “love.” returns a
result that tells us which words of the sentence match the named special words in the
pattern. (We’ll call one of these special pattern words a) The exclamation
points in the returned value are needed to separate one match from another. (In the
second example, the name was matched by an empty set of words.) In the third

match failed

match

Chapter 16 Example: Pattern Matcher 251

Implementation: When Are Two Sentences Equal?

* Why not return the sentence if successful or otherwise? That would be fine in most versions
of Scheme, but as we mentioned earlier, the empty sentence is the same as the false value
in some dialects. In those Schemes, a successfully matched pattern with no named placeholders,
for which the program should return an empty sentence, would be indistinguishable from an
unmatched pattern.

> (match ’(!twice !other !twice) ’(cry baby cry))
(TWICE CRY ! OTHER BABY !)

> (match ’(!twice !other !twice) ’(please please me))
FAILED

> (match ’(*front *back) ’(your mother should know))

(FRONT YOUR MOTHER SHOULD KNOW ! BACK !)
(FRONT YOUR MOTHER SHOULD ! BACK KNOW !)
(FRONT YOUR MOTHER ! BACK SHOULD KNOW !)
(FRONT YOUR ! BACK MOTHER SHOULD KNOW !)
(FRONT ! BACK YOUR MOTHER SHOULD KNOW !)

#f
() #f

example, the match was successful, but since there were no placeholders the returned
sentence was empty. If the match is unsuccessful, returns the word .*

If the same placeholder name appears more than once in the pattern, then it must
be matched by the same word(s) in the sentence each time:

Some patterns might be matchable in more than one way. For example, the
invocation

might return any of five different correct answers:

We arbitrarily decide that in such cases the first placeholder should match as many words
as possible, so in this case will actually return the first of these answers.

Before continuing, you might want to look at the first batch of exercises at the end
of this chapter, which are about using the pattern matcher. (The rest of the exercises are
about the implementation, which we’ll discuss next.)

Our approach to implementation will be to start with something we already know how

252 Part IV Recursion

equal?

sent-equal?

match?

When Are Two Sentences Nearly Equal?

((equal? (first pattern) ’!)
(match? (bf pattern) (bf sent)))

(define (sent-equal? sent1 sent2)
(cond ((empty? sent1)

(empty? sent2))
((empty? sent2) #f)
((equal? (first sent1) (first sent2))
(sent-equal? (bf sent1) (bf sent2)))
(else #f)))

(define (match? pattern sent) ;; first version: ! only
(cond ((empty? pattern)

(empty? sent))
((empty? sent) #f)

((equal? (first pattern) (first sent))
(match? (bf pattern) (bf sent)))
(else #f)))

to write: a predicate that tests whether two sentences are exactly equal. We will add
capabilities one at a time until we reach our goal.

Suppose that Scheme’s primitive function worked only for words and not
for sentences. We could write an equality tester for sentences, like this:

Two sentences are equal if each word in the first sentence is equal to the corresponding
word in the second. They’re unequal if one sentence runs out of words before the other.

Why are we choosing to accept Scheme’s primitive word comparison but rewrite the
sentence comparison? In our pattern matcher, a placeholder in the pattern corresponds
to a group of words in the sentence. There is no kind of placeholder that matches only
part of a word. (It would be possible to implement such placeholders, but we’ve chosen
not to.) Therefore, we will never need to ask whether a word is “almost equal” to another
word.

Pattern matching is just a more general form of this procedure. Let’s
write a very simple pattern matcher that knows only about the “!” special character and
doesn’t let us name the words that match the exclamation points in the pattern. We’ll
call this one with a question mark because it returns just true or false.

Matching with Alternatives

any

before

Chapter 16 Example: Pattern Matcher 253

sent-equal? cond

first pattern first
sent

*

! sent-equal?

?

cond sent
sent (?)

butfirst
all-question-marks? match?

((equal? (first pattern) ’?)
(if (empty? sent)

(match? (bf pattern) ’())
(or (match? (bf pattern) (bf sent))

(match? (bf pattern) sent))))

(define (match? pattern sent) ;; second version: ! and ?
(cond ((empty? pattern)

(empty? sent))

((empty? sent) #f)
((equal? (first pattern) ’!)
(match? (bf pattern) (bf sent)))
((equal? (first pattern) (first sent))
(match? (bf pattern) (bf sent)))
(else #f)))

This program is exactly the same as , except for the highlighted
clause. We are still comparing each word of the pattern with the corresponding word
of the sentence, but now an exclamation mark in the pattern matches word in the
sentence. (If of is an exclamation mark, we don’t even look at
of .)

Our strategy in the next several sections will be to expand the pattern matcher by
implementing the remaining special characters, then finally adding the ability to name
the placeholders. For now, when we say something like “the placeholder,” we mean the
placeholder consisting of the asterisk alone. Later, after we add named placeholders, the
same procedures will implement any placeholder that begins with an asterisk.

The matching is not much harder than , because it’s still the case that
one word of the pattern must match one word of the sentence. When we introduce the

option, the structure of the program must be more complicated, because a question
mark in the pattern might or might not be paired up with a word in the sentence. In
other words, the pattern and the sentence might match without being the same length.

Note that the new clause comes the check to see if is empty. That’s
because might be empty and a pattern of would still match it. But if the
sentence is empty, we know that the question mark doesn’t match a word, so we just have
to make sure that the of the pattern contains nothing but question marks.
(We don’t have a predicate named ; instead, we use
recursively to make this test.)

entire

254 Part IV Recursion

or
match?

!
butfirst

match?
butfirst

> (match? ’(? please me) ’(please please me))
#T

> (match? ’(? please me) ’(please me))
#T

In general, a question mark in the pattern has to match either one word or zero
words in the sentence. How do we decide? Our rule is that each placeholder should
match as many words as possible, so we prefer to match one word if we can. But allowing
the question mark to match a word might prevent the rest of the pattern from matching
the rest of the sentence.

Compare these two examples:

In the first case, the first thing in the pattern is a question mark and the first thing
in the sentence is “please,” and they match. That leaves “please me” in the pattern to
match “please me” in the sentence.

In the second case, we again have a question mark as the first thing in the pattern
and “please” as the first thing in the sentence. But this time, we had better not use up
the “please” in the sentence, because that will only leave “me” to match “please me.” In
this case the question mark has to match no words.

To you, these examples probably look obvious. That’s because you’re a human
being, and you can take in the entire pattern and the entire sentence all at once. Scheme
isn’t as smart as you are; it has to compare words one pair at a time. To Scheme, the
processing of both examples begins with question mark as the first word of the pattern
and “please” as the first word of the sentence. The pattern matcher has to consider both
cases.

How does the procedure consider both cases? Look at the invocation of by
the procedure. There are two alternatives; if either turns out true, the match
succeeds. One is that we try to match the question mark with the first word of the
sentence just as we matched in our earlier example—by making a recursive call on the

s of the pattern and sentence. If that returns true, then the question mark
matches the first word.

The second alternative that can make the match succeed is a recursive call to
on the of the pattern and the sentence; this corresponds to matching

Backtracking

?

match?

match?

Chapter 16 Example: Pattern Matcher 255

Try matching with .

It works!

Try matching with .
It doesn’t work.
This time, match with nothing.

> (trace match?)
> (match? ’(? please me) ’(please please me))

#T

> (match? ’(? please me) ’(please me))

#T

or* Actually, since is a special form, Scheme avoids the need to try the second alternative if the
first one succeeds.

(match? (? please me) (please please me))
| (match? (please me) (please me)) ? please
| | (match? (me) (me))
| | | (match? () ())
| | | #t
| | #t
| #t
#t

(match? (? please me) (please me))
| (match? (please me) (me)) ? please
| #f
| (match? (please me) (please me)) ?
| | (match? (me) (me))
| | | (match? () ())
| | | #t
| | #t
| #t
#t

the against nothing.*

Let’s trace so that you can see how these two cases are handled differently
by the program.

The program structure that allows for two alternative routes to success has more profound
implications than you may think at first.

When sees a question mark in the pattern, it has to decide whether or not
to “use up” a word of the sentence by matching it with the question mark. You might
wonder, “How does the question mark decide whether to take a word?” The answer is
that the decision isn’t made “by the question mark”; there’s nothing about the particular

keep

butfirst

keep

match?

Match?

match?

match?

can

tentative

backtracking.

four

256 Part IV Recursion

(recursive-call (bf sent))
(recursive-call (bf sent))

(cond ((empty? sent) ’())
((some-test? (first sent))
(se (first sent)))
(else))

word that the question mark might match that helps with the decision! Instead, the
decision depends on matching what comes to the right of the question mark.

Compare this situation with the recursive pattern. There, too, the procedure
makes a decision about the first word of a sentence, and each alternative leads to a
recursive call for the :

The difference is that in the pattern the choice between alternatives be made
just by looking at the immediate situation—the single word that might or might not be
chosen; the decision doesn’t depend on anything in the rest of the problem. As a result,
the choice has already been made before any recursive call happens. Therefore, only
one of the recursive calls is actually made, to make choices about the remaining words in
the sentence.

In , by contrast, any particular invocation can’t make its choice until it knows
the result of a recursive invocation. The result from the recursive call determines the
choice made by the caller.

Here’s a model that might help you think about this kind of recursion.
sees a question mark in the pattern. It makes a decision that this question mark
should match the first word of the sentence, and it uses a recursive invocation to see
whether that decision allows the rest of the problem to be solved. If so, the tentative
choice was correct. If not, tries an alternative decision that the question mark
doesn’t match a word. This alternative is still tentative; another recursive call is needed
to see if the rest of the pattern can succeed. If not, the overall match fails.

This structure is called

What if there are two question marks in the pattern? Then there are ways to
match the overall pattern. Both question marks can match a word, or only the first
question mark, or only the second, or neither. A pattern with several placeholders
leads to even more alternatives. A pattern with three question marks will have eight
alternatives. (All three match words, the first two do but the third doesn’t, and so on.)
A pattern with 10 question marks will have 1024 alternatives. How can try all
these alternatives? The procedure seems to make only one two-way choice; how can it
accomplish a four-way or many-way decision?

match?

match?

match?

a x

bar

foo

not

Chapter 16 Example: Pattern Matcher 257

(match? ’(a b ? ? ? ?) ’(x y z w p q))

> (match? ’(? ? foo) ’(bar foo))

#T

(match? (? ? foo) (bar foo))
| (match? (? foo) (foo))
| | (match? (foo) ())
| | #f
| | (match? (foo) (foo))
| | | (match? () ())
| | | #t
| | #t
| #t
#t

The secret is the same as the usual secret of recursion: Most of the work is done
in recursive calls. We take a leap of faith that recursive invocations will take care of
the decisions concerning question marks later in the pattern. Think about it using the
backtracking model. Let’s suppose there are 10 question marks in the pattern. When

encounters the leftmost question mark, it makes a tentative decision to match
the question mark with a word of the sentence. To test whether this choice can work,

invokes itself recursively on a pattern with nine question marks. By the leap
of faith, the recursive invocation will examine 512 ways to match question marks with
words—half of the total number. If one of these 512 works, we’re finished. If not, the
original invocation changes its tentative choice, deciding instead to match
its question mark (the leftmost one) with a word of the sentence. Another recursive call
is made based on that decision, and that recursive call checks out the remaining 512
possibilities.

By the way, the program doesn’t always have to try all of the different combinations of
question marks matching or not matching words separately. For example, if the problem
is

then the very first comparison discovers that is different from , so none of the 16
possible arrangements about question marks matching or not matching words will make
a difference.

Here are some traced examples involving patterns with two question marks, to show
how the result of backtracking depends on the individual problem.

In this first example, the first question mark tries to match the word , but it can’t tell
whether or not that match will succeed until the recursive call returns. In the recursive
call, the second question mark tries to match the word , and fails. Then the second

258 Part IV Recursion

foo
(? foo bar) (bar)

foo

> (match? ’(? ? foo bar) ’(foo bar))

#T

(match? (? ? foo bar) (foo bar))
| (match? (? foo bar) (bar))
| | (match? (foo bar) ())
| | #f
| | (match? (foo bar) (bar))
| | #f
| #f
| (match? (? foo bar) (foo bar))
| | (match? (foo bar) (bar))
| | #f
| | (match? (foo bar) (foo bar))
| | | (match? (bar) (bar))
| | | | (match? () ())
| | | | #t
| | | #t
| | #t
| #t
#t

question mark tries again, this time matching nothing, and succeeds. Therefore, the first
question mark can report success; it never has to try a recursive call in which it doesn’t
match a word.

In our second example, each question mark will have to try both alternatives,
matching and then not matching a word, before the overall match succeeds.

The first question mark tries to match the word in the sentence, leaving the pattern
to match . The second question mark will try both matching and

not matching a word, but neither succeeds. Therefore, the first question mark tries
again, this time not matching a word. The second question mark first tries matching

, and when that fails, tries not matching anything. This last attempt is successful.

In the previous example, every question mark’s first attempt failed. The following
example illustrates the opposite case, in which every question mark’s first attempt
succeeds.

foo bar

*

!

?
*

?

Matching Several Words

Chapter 16 Example: Pattern Matcher 259

> (match? ’(? ? baz) ’(foo bar baz))

#t

> (match? ’(? ? foo) ’())

#f

(match? (? ? baz) (foo bar baz))
| (match? (? baz) (bar baz))
| | (match? (baz) (baz))
| | | (match? () ())
| | | #t
| | #t
| #t
#t

(match? (? ? foo) ())
| (match? (? foo) ())
| | (match? (foo) ())
| | #f
| #f
#f

The first question mark matches ; the second matches .

If the sentence is shorter than the pattern, we may end up trying to match a pattern
against an empty sentence. This is much easier than the general problem, because there
aren’t two alternatives; a question mark has no word in the sentence to match.

Each question mark knows right away that it had better not try to match a word, so we
never have to backtrack.

The next placeholder we’ll implement is . The order in which we’re implementing
these placeholders was chosen so that each new version increases the variability in the
number of words a placeholder can match. The placeholder was very easy because it
always matches exactly one word; it’s hardly different at all from a non-placeholder in
the pattern. Implementing was more complicated because there were two alternatives
to consider. But for , we might match any number of words, up to the entire rest of the
sentence.

Our strategy will be a generalization of the strategy: Start with a “greedy” match,
and then, if a recursive call tells us that the remaining part of the sentence can’t match
the rest of the pattern, try a less greedy match.

260 Part IV Recursion

((equal? (first pattern) ’*)
(*-longest-match (bf pattern) sent))

? * ?

or *

* #f

match? *-longest-match

*-lm-helper
*

Sent-matched
* Sent-unmatched

(define (match? pattern sent) ;; third version: !, ?, and *
(cond ((empty? pattern)

(empty? sent))
((equal? (first pattern) ’?)
(if (empty? sent)

(match? (bf pattern) ’())
(or (match? (bf pattern) (bf sent))

(match? (bf pattern) sent))))

((empty? sent) #f)
((equal? (first pattern) ’!)
(match? (bf pattern) (bf sent)))
((equal? (first pattern) (first sent))
(match? (bf pattern) (bf sent)))
(else #f)))

(define (*-longest-match pattern-rest sent)
(*-lm-helper pattern-rest sent ’()))

(define (*-lm-helper pattern-rest sent-matched sent-unmatched)
(cond ((match? pattern-rest sent-unmatched) #t)

((empty? sent-matched) #f)
(else (*-lm-helper pattern-rest

(bl sent-matched)
(se (last sent-matched) sent-unmatched)))))

The difference between and is that allows only two possible match lengths, zero
and one. Therefore, these two cases can be checked with two explicit subexpressions of
an expression. In the more general case of , any length is possible, so we can’t check
every possibility separately. Instead, as in any problem of unknown size, we use recursion.
First we try the longest possible match; if that fails because the rest of the pattern can’t
be matched, a recursive call tries the next-longest match. If we get all the way down to an
empty match for the and still can’t match the rest of the pattern, then we return .

If an asterisk is found in the pattern, invokes , which carries
out this backtracking approach.

The real work is done by , which has three arguments. The first
argument is the still-to-be-matched part of the pattern, following the placeholder
that we’re trying to match now. is the part of the sentence that
we’re considering as a candidate to match the placeholder. is

Combining the Placeholders

Chapter 16 Example: Pattern Matcher 261

> (trace match? *-longest-match *-lm-helper)

> (match? ’(* days night) ’(a hard days night))

#t

sent-matched
pattern-rest

*-longest-match
sent-matched sent-matched

sent-unmatched
*-longest-match *-lm-helper

*-lm-helper sent-matched
sent-unmatched

*

& *
&-longest-match

*-longest-match
sent-matched #f

(match? (* days night) (a hard days night))
| (*-longest-match (days night) (a hard days night))
| | (*-lm-helper (days night) (a hard days night) ())
| | | (match? (days night) ())
| | | #f
| | | (*-lm-helper (days night) (a hard days) (night))
| | | | (match? (days night) (night))
| | | | #f
| | | | (*-lm-helper (days night) (a hard) (days night))
| | | | | (match? (days night) (days night))
| | | | | | (match? (night) (night))
| | | | | | | (match? () ())
| | | | | | | #t
| | | | | | #t
| | | | | #t
| | | | #t
| | | #t
| | #t
| #t
#t

the remainder of the sentence, following the words in ; it must match
.

Since we’re trying to find the longest possible match, chooses
the entire sentence as the first attempt for . Since is
using up the entire sentence, the initial value of is empty. The only
job of is to invoke with these initial arguments. On
each recursive invocation, shortens by one word and
accordingly lengthens .

Here’s an example in which the placeholder tries to match four words, then three
words, and finally succeeds with two words:

We have one remaining placeholder, , which is much like except that it fails unless it
can match at least one word. We could, therefore, write a that would
be identical to except for the base case of its helper procedure. If

is empty, the result is even if it would be possible to match the rest of

262 Part IV Recursion

cond

*-longest-match &-longest-match
*

&
?

!

*
&
?
!

*-longest-match &-longest-match

longest-match *-longest-match

(define (&-longest-match pattern-rest sent)
(&-lm-helper pattern-rest sent ’()))

(define (&-lm-helper pattern-rest sent-matched sent-unmatched)
(cond ((empty? sent-matched) #f)

((match? pattern-rest sent-unmatched) #t)
(else (&-lm-helper pattern-rest

(bl sent-matched)
(se (last sent-matched) sent-unmatched)))))

the pattern against the rest of the sentence. (All we have to do is exchange the first two
clauses of the .)

When two procedures are so similar, that’s a clue that perhaps they could be combined
into one. We could look at the bodies of these two procedures to find a way to
combine them textually. But instead, let’s step back and think about the meanings of the
placeholders.

The reason that the procedures and are
so similar is that the two placeholders have almost identical meanings. means “match
as many words as possible”; means “match as many words as possible, but at least one.”
Once we’re thinking in these terms, it’s plausible to think of as meaning “match as
many words as possible, but at most one.” In fact, although this is a stretch, we can also
describe similarly: “Match as many words as possible, but at least one, and at most one.”

Placeholder Minimum size Maximum size

0 no limit
1 no limit
0 1
1 1

We’ll take advantage of this newly understood similarity to simplify the program by using
a single algorithm for all placeholders.

How do we generalize and to handle all
four cases? There are two kinds of generalization involved. We’ll write a procedure

that will have the same arguments as , plus two
others, one for for the minimum size of the matched text and one for the maximum.

start

Chapter 16 Example: Pattern Matcher 263

(define (longest-match pattern-rest sent min max-one?) ;; first version
(cond ((empty? sent)

(and (= min 0) (match? pattern-rest sent)))
(max-one?
(lm-helper pattern-rest (se (first sent)) (bf sent) min))
(else (lm-helper pattern-rest sent ’() min))))

min
Longest-match min

lm-helper

*
& longest-match max-one?

#t ? !

longest-match * &
max-one?

longest-match
longest-match #t

sent-matched sent-unmatched
lm-helper Sent-matched

sent-unmatched

*-longest-match

sent-matched sent-unmatched
sent-matched

sent-unmatched
longest-match sent-matched

sent-unmatched

? !

sent-matched
sent-matched sent-unmatched

We’ll specify the minimum size with a formal parameter . (The corresponding
argument will always be 0 or 1.) will pass the value of down to

, which will use it to reject potential matches that are too short.

Unfortunately, we can’t use a number to specify the maximum size, because for and
there is no maximum. Instead, has a formal parameter

whose value is only for and .

Our earlier, special-case versions of were written for and ,
the placeholders for which will be false. For those placeholders, the new

will be just like the earlier versions. Our next task is to generalize
so that it can handle the cases.

Think about the meaning of the and parameters
in the procedures. means “the longest part of the sentence
that this placeholder is still allowed to match,” while contains whatever
portion of the sentence has already been disqualified from being matched by the
placeholder.

Consider the behavior of when an asterisk is at the begin-
ning of a pattern that we’re trying to match against a seven-word sentence. Initially,

is the entire seven-word sentence, and is empty.
Then, supposing that doesn’t work, is a six-word sentence, while

contains the remaining word. This continues as long as no match
succeeds until, near the end of ’s job, is a one-word
sentence and contains six words. At this point, the longest possible
match for the asterisk is a single word.

This situation is where we want to in the case of the and placeholders. So
when we’re trying to match one of these placeholders, our initialization procedure won’t
use the entire sentence as the initial value of ; rather, the initial value
of will be a one-word sentence, and will contain the
rest of the sentence.

Naming the Matched Text

which

264 Part IV Recursion

match? longest-match Match?
match-special

longest-match min max-one?

((special? (first pattern))
(match-special (first pattern) (bf pattern) sent))

Now we can rewrite to use . will delegate
the handling of all placeholders to a subprocedure that will invoke

with the correct values for and according to the table.

So far we’ve worked out how to match the four kinds of placeholders and return a true or
false value indicating whether a match is possible. Our program is almost finished; all we
need to make it useful is the facility that will let us find out words in the sentence
matched each placeholder in the pattern.

(define (lm-helper pattern-rest sent-matched sent-unmatched min)
(cond ((< (length sent-matched) min) #f)

((match? pattern-rest sent-unmatched) #t)
((empty? sent-matched) #f)
(else (lm-helper pattern-rest

(bl sent-matched)
(se (last sent-matched) sent-unmatched)
min))))

(define (match? pattern sent) ;; fourth version
(cond ((empty? pattern)

(empty? sent))

((empty? sent) #f)
((equal? (first pattern) (first sent))
(match? (bf pattern) (bf sent)))
(else #f)))

(define (special? wd) ;; first version
(member? wd ’(* & ? !)))

(define (match-special placeholder pattern-rest sent) ;; first version
(cond ((equal? placeholder ’?)

(longest-match pattern-rest sent 0 #t))
((equal? placeholder ’!)
(longest-match pattern-rest sent 1 #t))
((equal? placeholder ’*)
(longest-match pattern-rest sent 0 #f))
((equal? placeholder ’&)
(longest-match pattern-rest sent 1 #f))))

database

database program,

Chapter 16 Example: Pattern Matcher 265

known-values

known-values

match-using-known-values
known-values

match-using-known-values

!twice

pattern sent known-values

(!twice !other !twice) (cry baby cry) ()

(!other !twice) (baby cry) (twice cry !)

(!twice) (cry) (twice cry ! other baby !)

() () (twice cry ! other baby !)

(define (match pattern sent)
(match-using-known-values pattern sent ’()))

(define (match-using-known-values pattern sent known-values)
)

(match ’(!twice !other !twice) ’(cry baby cry))

* The word has two possible meanings in computer science, a broad meaning and a
narrow one. The broad meaning, which we’re using here, is a repository of information to which
the program periodically adds new items for later retrieval. The narrow meaning is a collection
of information that’s manipulated by a which provides facilities for adding new
information, modifying existing entries, selecting entries that match some specified criterion, and
so on. We’ll see a database program near the end of the book.

We don’t have to change the overall structure of the program in order to make
this work. But most of the procedures in the pattern matcher will have to be given
an additional argument, the database of placeholder names and values that have been
matched so far.* The formal parameter will hold this database. Its
value will be a sentence containing placeholder names followed by the corresponding
words and an exclamation point to separate the entries, as in the examples earlier in the
chapter. When we begin the search for a match, we use an empty sentence as the initial

:

. . .

As matches the beginning of a pattern with the be-
ginning of a sentence, it invokes itself recursively with an expanded
containing each newly matched placeholder. For example, in evaluating

the program will call four times:

In the first invocation, we try to match against some part of the sentence.

•

•

•

The Final Version

266 Part IV Recursion

(define (match pattern sent)
(match-using-known-values pattern sent ’()))

! cry

twice cry

!other baby

!twice twice

cry

match-using-known-values

match-using-known-values
match?
match-special

longest-match lm-helper

Since matches exactly one word, the only possibility is to match the word . The
recursive invocation, therefore, is made with the first words of the pattern and sentence
removed, but with the match between and added to the database.

Similarly, the second invocation matches with and causes a third
invocation with shortened pattern and sentence but a longer database.

The third invocation is a little different because the pattern contains the placeholder
, but the name is already in the database. Therefore, this placeholder

can’t match whatever word happens to be available; it must match the same word that
it matched before. (Our program will have to check for this situation.) Luckily, the
sentence does indeed contain the word at this position.

The final invocation reaches the base case of the recursion, because the pattern is
empty. The value that returns is the database in this
invocation.

We’re now ready to show you the final version of the program. The program structure
is much like what you’ve seen before; the main difference is the database of placeholder
names and values. The program must add entries to this database and must look for
database entries that were added earlier. Here are the three most important procedures
and how they are changed from the earlier version to implement this capability:

, essentially the same as what was formerly named
except for bookkeeping details.

, similar to the old version, except that it must recognize the case
of a placeholder whose name has already been seen. In this case, the placeholder
can match only the same words that it matched before.

and , also similar to the old versions, except that
they have the additional job of adding to the database the name and value of any
placeholder that they match.

Here are the modified procedures. Compare them to the previous versions.

Chapter 16 Example: Pattern Matcher 267

(define (match-using-known-values pattern sent known-values)
(cond ((empty? pattern)

(if (empty? sent) known-values ’failed))
((special? (first pattern))
(let ((placeholder (first pattern)))
(match-special (first placeholder)

(bf placeholder)
(bf pattern)
sent
known-values)))

((empty? sent) ’failed)
((equal? (first pattern) (first sent))
(match-using-known-values (bf pattern) (bf sent) known-values))
(else ’failed)))

(define (match-special howmany name pattern-rest sent known-values)
(let ((old-value (lookup name known-values)))
(cond ((not (equal? old-value ’no-value))

(if (length-ok? old-value howmany)
(already-known-match

old-value pattern-rest sent known-values)
’failed))

((equal? howmany ’?)
(longest-match name pattern-rest sent 0 #t known-values))
((equal? howmany ’!)
(longest-match name pattern-rest sent 1 #t known-values))
((equal? howmany ’*)
(longest-match name pattern-rest sent 0 #f known-values))
((equal? howmany ’&)
(longest-match name pattern-rest sent 1 #f known-values)))))

(define (longest-match name pattern-rest sent min max-one? known-values)
(cond ((empty? sent)

(if (= min 0)
(match-using-known-values pattern-rest

sent
(add name ’() known-values))

’failed))
(max-one?
(lm-helper name pattern-rest (se (first sent))

(bf sent) min known-values))
(else (lm-helper name pattern-rest

sent ’() min known-values))))

268 Part IV Recursion

match-special

match-special

longest-match

sent
pattern

sent
howmany

*stuff
!stuff

length-ok?
already-known-match

(define (lm-helper name pattern-rest
sent-matched sent-unmatched min known-values)

(if (< (length sent-matched) min)
’failed
(let ((tentative-result (match-using-known-values

pattern-rest
sent-unmatched
(add name sent-matched known-values))))

(cond ((not (equal? tentative-result ’failed)) tentative-result)
((empty? sent-matched) ’failed)
(else (lm-helper name

pattern-rest
(bl sent-matched)
(se (last sent-matched) sent-unmatched)
min
known-values))))))

(*stuff and !stuff)

We haven’t listed all of the minor procedures that these procedures invoke. A
complete listing is at the end of the chapter, but we hope that you have enough
confidence about the overall program structure to be able to assume these small details
will work. In the next few paragraphs we discuss some of the ways in which the procedures
shown here differ from the earlier versions.

In the invocation of we found it convenient to split the placeholder
into its first character, the one that tells how many words can be matched, and the butfirst,
which is the name of the placeholder.

What happens if finds that the name is already in the database? In
this situation, we don’t have to try multiple possibilities for the number of words to match
(the usual job of); the placeholder must match exactly the words that
it matched before. In this situation, three things must be true in order for the match to
succeed: (1) The first words of the argument must match the old value stored in
the database. (2) The partial that remains after this placeholder must match
the rest of the . (3) The old value must be consistent with the number of words
permitted by the part of the placeholder. For example, if the pattern is

and the database says that the placeholder was matched by three words from
the sentence, then the second placeholder can’t possibly be matched because it
accepts only one word. This third condition is actually checked first, by , and
if we pass that hurdle, the other two conditions are checked by .

Abstract Data Types

Chapter 16 Example: Pattern Matcher 269

longest-match add

match-using-known-values

lookup add

The only significant change to is that it invokes to compute an
expanded database with the newly found match added, and it uses the resulting database
as an argument to .

As you know, a database of known values is represented in this program as a sentence
in which the entries are separated by exclamation points. Where is this representation
accomplished in the program you’ve seen? There’s nothing like

.

anywhere in the procedures we’ve shown. Instead, the program makes reference to the
database of known values through two procedure calls:

Only the procedures and manipulate the database of known values:

(sentence old-known-values name value ’!)

(lookup name known-values) ; in match-special
(add name matched known-values) ; in longest-match

(define (lookup name known-values)
(cond ((empty? known-values) ’no-value)

((equal? (first known-values) name)
(get-value (bf known-values)))
(else (lookup name (skip-value known-values)))))

(define (get-value stuff)
(if (equal? (first stuff) ’!)

’()
(se (first stuff) (get-value (bf stuff)))))

(define (skip-value stuff)
(if (equal? (first stuff) ’!)

(bf stuff)
(skip-value (bf stuff))))

(define (add name value known-values)
(if (empty? name)

known-values
(se known-values name value ’!)))

Known-ValuesBacktracking and

abstract data types.

primitive
compound

270 Part IV Recursion

longest-match
longest-match lookup add

add
lookup

match-using-known-values

These procedures are full of small details. For example, it’s a little tricky to extract
the part of a sentence from a name to the next exclamation point. It’s convenient that
we could write the more important procedures, such as , without filling
them with these details. As far as knows, and could be
Scheme primitive procedures. In effect we’ve created a new data type, with as its
constructor and as its selector.

Types such as these, that are invented by a programmer and aren’t part of the Scheme
language itself, are called Creating an abstract data type means drawing
a barrier between an idea about some kind of information we want to model in a program
and the particular mechanism that we use to represent the information. In this case, the
information is a collection of name-value associations, and the particular mechanism is a
sentence with exclamation points and so on. The pattern matcher doesn’t think of the
database as a sentence. For example, it would be silly to translate the database into Pig
Latin or find its acronym.

Just as we distinguish the procedures that Scheme knows all along from
the procedures that the Scheme programmer defines, we could use the names
“primitive data type” for types such as numbers and Booleans that are built into Scheme
and “compound data type” for ones that the programmer invents by defining selectors
and constructors. But “compound data type” is a bit of a pun, because it also suggests
a data type built out of smaller pieces, just as a compound expression is built of smaller
expressions. Perhaps that’s why the name “abstract data type” has become generally
accepted. It’s connected to the idea of abstraction that we introduced earlier, because in
order to create an abstract data type, we must specify the selectors and constructors and
give names to those patterns of computation.

What happens to the database in cases that require backtracking, where a particular
recursive call might be “on the wrong track”? Let’s trace
and see what happens. (We’ll use the little-people model to discuss this example, and so
we’re annotating each invocation in the trace with the name of its little person.)

Chapter 16 Example: Pattern Matcher 271

Martha
Mercutio

Masayuki

Mohammad
Mae
Merlin

> (trace match-using-known-values)
> (match ’(*start me *end) ’(love me do))

(START LOVE ! END DO !)

known-values
*start

known-values
match-special

longest-match lm-helper

known-values

start love me do

start

end do
start love

(match-using-known-values (*start me *end) (love me do) ())
| (match-using-known-values (me *end) () (start love me do !))
| failed
| (match-using-known-values (me *end) (do) (start love me !))
| failed
| (match-using-known-values (me *end) (me do) (start love !))
| | (match-using-known-values (*end) (do) (start love !))
| | | (match-using-known-values () () (start love ! end do !))
| | | (start love ! end do !)
| | (start love ! end do !)
| (start love ! end do !)
(start love ! end do !)

Martha, the first little person shown, has an empty . She makes
three attempts to match with parts of the sentence. In each case, a little person
is hired with the provisional match in his or her . (Actually, Martha does
not directly hire Mercutio and the others. Martha hires a little person,
who in turn hires a specialist, who hires an specialist, who
hires Mercutio. But that added complexity isn’t important for the point we’re focusing
on right now, namely, how backtracking can work. Pretend Martha hires Mercutio.)

If you don’t use the little-people model, but instead think about the program as if
there were just one variable, then the backtracking can indeed be very
mysterious. Once a provisional match is added to the database, how is it ever removed?
The answer is that it doesn’t work that way. There isn’t a “the” database. Instead, each
little person has a separate database. If an attempted match fails, the little person who
reports the failure just stops working. For example, Martha hires Mercutio to attempt
a match in which the name has the value . Mercutio is unable to
complete the match, and reports failure. It is Martha, not Mercutio, who then hires
Masayuki to try another value for . Martha’s database hasn’t changed, so Martha
gives Masayuki a database that reflects the new trial value but not the old one.

Not every hiring of a little person starts from an empty database. When a match
is partially successful, the continuation of the same attempt must benefit from the work
that’s already been done. So, for example, when Mohammad hires Mae, and when
Mae hires Merlin, each of them passes on an extended database, not an empty one.
Specifically, Mae gives Merlin the new match of the name with the value , but also
the match of with that she was given by Mohammad.

So as you can see, we don’t have to do anything special to keep track of our database
when we backtrack; the structure of the recursion takes care of everything for free.

! ?

butfirst

*

did

or

272 Part IV Recursion

How We Wrote It

Complete Program Listing

(define (match? pattern sent)
(cond ((empty? pattern) (empty? sent))

((empty? sent)
(and (equal? (first pattern) ’*) (match? (bf pattern) sent)))
((equal? (first pattern) ’*)
(or (match? pattern (bf sent))

(match? (bf pattern) sent)))
(else (and (equal? (first pattern) (first sent))

(match? (bf pattern) (bf sent))))))

(define (match pattern sent)
(match-using-known-values pattern sent ’()))

For explanatory purposes we’ve chosen to present the pieces of this program in a
different order from the one in which we actually wrote them. We implement the
easy placeholders (and) before the harder ones. But our program had provision for
a database of names from the beginning.

There is no “right” way to approach a programming problem. Our particular
approach was determined partly by our past experience. Each of us had written similar
programs before, and we had preconceived ideas about the easy and hard parts. You
might well start at a different point. For example, here is an elegant small program we’d
both been shown by friends:

What’s appealing about this is the funny symmetry of taking the of the pattern
of the sentence. That’s not something you’d naturally think of, probably, but once

you’ve worked out how it can work, it affects your preconceptions when you set out to
write a pattern matcher yourself.

Based on that inspiration, we might well have started with the hard cases (such
as), with the idea that once they’re in place, the easy cases won’t change the program
structure much.

Chapter 16 Example: Pattern Matcher 273

(define (match-using-known-values pattern sent known-values)
(cond ((empty? pattern)

(if (empty? sent) known-values ’failed))
((special? (first pattern))
(let ((placeholder (first pattern)))
(match-special (first placeholder)

(bf placeholder)
(bf pattern)
sent
known-values)))

((empty? sent) ’failed)
((equal? (first pattern) (first sent))
(match-using-known-values (bf pattern) (bf sent) known-values))
(else ’failed)))

(define (special? wd)
(member? (first wd) ’(* & ? !)))

(define (match-special howmany name pattern-rest sent known-values)
(let ((old-value (lookup name known-values)))
(cond ((not (equal? old-value ’no-value))

(if (length-ok? old-value howmany)
(already-known-match

old-value pattern-rest sent known-values)
’failed))

((equal? howmany ’?)
(longest-match name pattern-rest sent 0 #t known-values))
((equal? howmany ’!)
(longest-match name pattern-rest sent 1 #t known-values))
((equal? howmany ’*)
(longest-match name pattern-rest sent 0 #f known-values))
((equal? howmany ’&)
(longest-match name pattern-rest sent 1 #f known-values)))))

(define (length-ok? value howmany)
(cond ((empty? value) (member? howmany ’(? *)))

((not (empty? (bf value))) (member? howmany ’(* &)))
(else #t)))

(define (already-known-match value pattern-rest sent known-values)
(let ((unmatched (chop-leading-substring value sent)))
(if (not (equal? unmatched ’failed))

(match-using-known-values pattern-rest unmatched known-values)
’failed)))

274 Part IV Recursion

(define (chop-leading-substring value sent)
(cond ((empty? value) sent)

((empty? sent) ’failed)
((equal? (first value) (first sent))
(chop-leading-substring (bf value) (bf sent)))
(else ’failed)))

(define (longest-match name pattern-rest sent min max-one? known-values)
(cond ((empty? sent)

(if (= min 0)
(match-using-known-values pattern-rest

sent
(add name ’() known-values))

’failed))
(max-one?
(lm-helper name pattern-rest (se (first sent))

(bf sent) min known-values))
(else (lm-helper name pattern-rest

sent ’() min known-values))))

(define (lm-helper name pattern-rest
sent-matched sent-unmatched min known-values)

(if (< (length sent-matched) min)
’failed
(let ((tentative-result (match-using-known-values

pattern-rest
sent-unmatched
(add name sent-matched known-values))))

(cond ((not (equal? tentative-result ’failed)) tentative-result)
((empty? sent-matched) ’failed)
(else (lm-helper name

pattern-rest
(bl sent-matched)
(se (last sent-matched) sent-unmatched)
min
known-values))))))

;;; Known values database abstract data type

(define (lookup name known-values)
(cond ((empty? known-values) ’no-value)

((equal? (first known-values) name)
(get-value (bf known-values)))
(else (lookup name (skip-value known-values)))))

C

(a b a b)

a b a

16.1

16.2

16.3

16.4

16.5

16.6

16.7

Exercises about Using the Pattern Matcher

all

Chapter 16 Example: Pattern Matcher 275

(define (get-value stuff)
(if (equal? (first stuff) ’!)

’()
(se (first stuff) (get-value (bf stuff)))))

(define (skip-value stuff)
(if (equal? (first stuff) ’!)

(bf stuff)
(skip-value (bf stuff))))

(define (add name value known-values)
(if (empty? name)

known-values
(se known-values name value ’!)))

(*x *y *y *x)

(*x *y &y &x)

(*x *y *y *x)

Design and test a pattern that matches any sentence containing the word three
times (not necessarily next to each other).

Design and test a pattern that matches a sentence consisting of two copies of a
smaller sentence, such as .

Design and test a pattern that matches any sentence of no more than three words.

Design and test a pattern that matches any sentence of at least three words.

Show sentences of length 2, 3, and 4 that match the pattern

For each length, if no sentence can match the pattern, explain why not.

Show sentences of length 2, 3, and 4 that match the pattern

For each length, if no sentence can match the pattern, explain why not.

List the sentences of length 6 or less, starting with , that match the pattern

276 Part IV Recursion

Exercises about Implementation

16.8

16.9

16.10

16.11

16.12

16.13

16.14

16.15

longest-match

cond match-using-known-values

*

match-using-known-values

lookup
no-value

match
lookup (the beatles)

get-value skip-value

((empty? pattern) known-values)

(match ’(from me to you) ’(from me to you))
(match ’(*x *y *x) ’(a b c a b))
(match ’(*x *y *z) ’(a b c a b))
(match ’(*x hey *y bulldog *z) ’(a hey b bulldog c))
(match ’(*x a b c d e f) ’(a b c d e f))
(match ’(a b c d e f *x) ’(a b c d e f))

Explain how handles an empty sentence.

Suppose the first clause in were

Give an example of a pattern and sentence for which the modified program would give a
different result from the original.

What happens if the sentence argument—not the pattern—contains the word
somewhere?

For each of the following examples, how many
little people are required?

In general, what can you say about the characteristics that make a pattern easy or hard to
match?

Show a pattern with the following two properties: (1) It has at least two
placeholders. (2) When you match it against any sentence, every invocation of
returns .

Show a pattern and a sentence that can be used as arguments to so that
returns at some point during the match.

Our program can still match patterns with unnamed placeholders. How would
it affect the operation of the program if these unnamed placeholders were added to the
database? What part of the program keeps them from being added?

Why don’t and check for an empty argument as the
base case?

cond length-ok?

*15x *x

+

+ !

Chapter 16 Example: Pattern Matcher 277

16.16

16.17

16.18

16.19

16.20

16.21

16.22

((and (empty? value) (member? howmany ’(? *))) #t)

(match ’(?x is *y !x) ’(! is an exclamation point !))

> (match ’(*3front *back) ’(your mother should know))
(FRONT YOUR MOTHER SHOULD ! BACK KNOW !)

> (match ’(*front +middle *back) ’(four score and 7 years ago))
(FRONT FOUR SCORE AND ! MIDDLE 7 ! BACK YEARS AGO !)

Why didn’t we write the first clause in as the following?

Where in the program is the initial empty database of known values established?

For the case of matching a placeholder name that’s already been matched in
this pattern, we said on page 268 that three conditions must be checked. For each of
the three, give a pattern and sentence that the program would incorrectly match if the
condition were not checked.

What will the following example do?

Can you suggest a way to fix this problem?

Modify the pattern matcher so that a placeholder of the form is like
except that it can be matched only by exactly 15 words.

Modify the pattern matcher so that a placeholder (with or without a name
attached) matches only a number:

The placeholder is otherwise like —it must match exactly one word.

Does your favorite text editor or word processor have a search command that
allows you to search for patterns rather than only specific strings of characters? Look into
this and compare your editor’s capabilities with that of our pattern matcher.

