
What’s the base case?

13 How Recursion Works

Little People and Recursion

believe in

itself.

invocations,

207

(if (= (count ’smile) 1)
(se ’smile)
(se ’smile (downup (bl ’smile)) ’smile)))

(+ 2 (+ 3 4))

downup3 downup2 downup2 downup1
downup

downup

(downup ’smile)
downup smile wd downup

The last two chapters were about how to write recursive procedures. This chapter is about
how to recursive procedures, and about understanding the process by which
Scheme carries them out.

The crowning achievement of the little-people model is explaining recursion. Remember
that every time you call a procedure, a little person is hired to compute the result. If you
want to know , there are two separate plus specialists involved.

When we used the combining method, it was probably clear that it’s okay for
to invoke , and for to invoke . But it probably

felt like magic when we combined these numbered procedures into a single
procedure that calls You may have thought, ”How can do all the different
tasks at once without getting confused?” The little-people model answers this question
by showing that tasks are done by procedure not by procedures. Each little
person handles one task, even though several little people are carrying out the same
procedure. The procedure is just a set of instructions; someone has to carry out the
instructions.

So what happens when we want to know ? We hire Donna, a
specialist, and she substitutes for in the body of , leaving her

with

he

is

208 Part IV Recursion

if = count bl

(downup ’smil)
downup

wd smil smil wd downup

(downup ’smi)
downup

smi wd

(downup ’sm)

downup s
s

wd

Count s sentence (s)

(se ’smile (downup ’smil) ’smile)

(if (= (count ’smil) 1)
(se ’smil)
(se ’smil (downup (bl ’smil)) ’smil)))

(se ’smil (downup ’smi) ’smil)

(se ’smi (downup ’sm) ’smi)

(se ’sm (downup ’s) ’sm)

(if (= (count ’s) 1)
(se ’s)
(se ’s (downup (bl ’s)) ’s)))

We’ll leave out the details about hiring the , , , and specialists in this
example, so Donna ends up with

In order to evaluate this, Donna needs to know . She hires David,
another specialist, and waits for his answer.

David’s is . He substitutes for in the body of , and gets

After some uninteresting work, David has

and he hires Dennis to compute . There are now three little people, all
in the middle of some computation, and each of them is working on a different
word.

Dennis substitutes for , and ends up with

He hires Derek to compute . Derek needs to compute

Derek hires Dexter to find of . Now we have to think carefully about the
substitution again. Dexter substitutes his actual argument, , for his formal parameter

, and ends up with

of 1. So Dexter hires Simi, a specialist, who returns . Dexter
returns the same answer to Derek.

Derek, you will recall, is trying to compute

is

Chapter 13 How Recursion Works 209

(downup ’s)

(sm s sm)

(downup ’sm) (sm s sm) downup sm

(smi sm s sm smi)
(downup ’smi)

(se ’sm (downup ’s) ’sm)

(se ’sm ’(s) ’sm)

(se ’smi ’(sm s sm) ’smi)

(smil smi sm s sm smi smil)

and now he knows the value of . So he hires Savita to compute

and the answer is . Derek returns this answer to Dennis. By the way, do
you remember what question Derek was hired to answer? Dennis wanted to know

. The answer Derek gave him was , which of .
Pretty neat, huh?

Dennis hires Sigrid to compute

and returns to David. His answer is the correct value of
. David returns

Tracing

sentence

wd

sentence butlast

sequential

trace

210 Part IV Recursion

(se ’smile (downup ’smil) ’smile)

(smile smil smi sm s sm smi smil smile)

trace* Unfortunately, isn’t part of the Scheme standard, so it doesn’t behave the same way in
every version of Scheme.

** Even if tracing doesn’t help you with recursion, you’ll find that it’s a useful technique in
debugging any procedure.

to Donna, who has been waiting all this time to evaluate

Her waiting microseconds are over. She hires a specialist and returns

If you have a group of friends whose names all start with “D,” you can try this out
yourselves. The rules of the game are pretty simple. Remember that each one of you
can have only one single value for . Also, only one of you is in charge of the game at
any point. When you hire somebody, that new person is in charge of the game until he
or she tells you the answer to his or her question. If some of you have names that don’t
start with “D,” you can be specialists in or or something. Play hard,
play fair, nobody hurt.

The little-people model explains recursion very well, as long as you’re willing to focus your
attention on the job of one little person, taking the next little person’s subtask as a “black
box” that you assume is carried out correctly. Your willingness to make that assumption
is a necessary step in becoming truly comfortable with recursive programming.

Still, some people are very accustomed to a model of computing. In that
model, there’s only one computer, not a lot of little people, and that one computer has
to carry out one step at a time. If you’re one of those people, you may find it hard to take
the subtasks on faith. You want to know exactly what happens when! There’s nothing
wrong with such healthy scientific skepticism about recursion.

If you’re a sequential thinker, you can procedures to get detailed information
about the sequence of events.* But if you’re happy with the way we’ve been talking
about recursion up to now, and if you find that this section doesn’t contribute to your
understanding of recursion, don’t worry about it. Our experience shows that this way of
thinking helps some people but not everybody.** Before we get to recursive procedures,

Chapter 13 How Recursion Works 211

trace trace

double
double yum yumyum double

yumyum double

untrace

(double frozen)
frozenfrozen

(double yum)
yumyum
(double yumyum)
yumyumyumyum
(double yumyumyumyum)
yumyumyumyumyumyumyumyum

(define (double wd) (word wd wd))

> (trace double)
> (double ’frozen)

FROZENFROZEN

> (double (double (double ’yum)))

YUMYUMYUMYUMYUMYUMYUMYUM

> (untrace double)

* In this example the return value was printed twice, because the procedure we traced was
invoked directly at the Scheme prompt. Its return value would have been printed once anyway, just
because that’s what Scheme always does. It was printed another time because of the tracing. In this
book we’ve printed the trace-specific output in smaller type and lower-case to help you understand
which is what, but of course on the actual computer you’re on your own.

let’s just trace some nonrecursive ones:

The argument to specifies a procedure. When you invoke , that procedure
becomes “traced”; this means that every time you invoke the procedure, Scheme will
print out the name of the procedure and the actual arguments. When the procedure
returns a value, Scheme will print that value.*

Tracing isn’t very interesting if we’re just invoking a traced procedure once. But
look what happens when we trace a procedure that we’re using more than once:

This time, there were three separate invocations of , and we saw each one as it
happened. First we d , and the answer was . Then we d

, and so on. Finally, after we invoked for the last time, its result was
printed by the read-eval-print loop.

When you’re finished investigating a procedure, you can turn off tracing by invoking
with the procedure as argument:

212 Part IV Recursion

|

(downup ’trace)

downup
(t)

(define (downup wd)
(if (= (count wd) 1)

(se wd)
(se wd (downup (bl wd)) wd)))

> (trace downup)

> (downup ’trace)

(TRACE TRAC TRA TR T TR TRA TRAC TRACE)

(downup trace)
| (downup trac)
| | (downup tra)
| | | (downup tr)
| | | | (downup t)
| | | | (t)
| | | (tr t tr)
| | (tra tr t tr tra)
| (trac tra tr t tr tra trac)
(trace trac tra tr t tr tra trac trace)

* That’s computer science slang for “depending on a number of factors that I consider too
complicated to bother explaining” or “depending on a number of factors that I don’t understand
myself.” Some computer systems automatically print the phase of the moon on program listings
as an aid for programmers with “POM-dependent” programs. What we meant in this case is that it
depends both on your version of Scheme and on the exact form of your recursive procedure.

Let’s try tracing a recursive procedure:

When a procedure calls itself recursively, depending on the phase of the moon,* Scheme
may indent the trace display to show the levels of procedure calling, and draw a line of
vertical bars (“ ”) from a procedure’s invocation to its return value below. This is so you
can look at a procedure invocation and see what value it returned, or vice versa.

How does the trace help us understand what is going on in the recursion? First, by
reading the trace results from top to bottom, you can see the actual sequence of events
when the computer is carrying out your Scheme program. For example, you can see that
we start trying to figure out ; the first thing printed is the line that
says we’re starting that computation. But, before we get a result from that, four more

computations have to begin. The one that begins last finishes first, returning
; then another one returns a value; the one that started first is the last to return.

You can also read the trace horizontally instead of vertically, focusing on the levels of
indentation. If you do this, then instead of a sequence of independent events (such-and-

downup
downup

downup

+ fib
fib

downup

(fib 4)
| (fib 2)
| 1
| (fib 3)
| | (fib 1)
| | 1
| | (fib 2)
| | 1
| 2
3

(define (fib n)
(if (<= n 2)

1
(+ (fib (- n 1))

(fib (- n 2)))))

> (fib 4)

3

inclusion

that
Fibonacci numbers

n

Chapter 13 How Recursion Works 213

such starts, such-and-such returns a value) you see the of processes within other
ones. The smallest invocation is entirely inside the next-smallest one, and so on.
The initial invocation of includes all of the others.

Perhaps you’re thinking that ’s pattern of inclusion is the only one possible
for recursive procedures. That is, perhaps you’re thinking that every invocation includes
exactly one smaller invocation, and one includes a yet-smaller one, and so on. But
actually the pattern can be more complicated. Here’s an example. The
are a sequence of numbers in which the first two numbers are 1 and each number after
that is the sum of the two before it:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

(They’re named after Leonardo Pisano. You’d think they’d be called “Pisano numbers,”
but Leonardo had a kind of alias, Leonardo Fibonacci, just to confuse people.) Here’s a
procedure to compute the th Fibonacci number:

Here’s a trace of computing the fourth Fibonacci number:

(By the way, this trace demonstrates that in the dialect of Scheme we used, the argument
subexpressions of the expression in are evaluated from right to left, because the
smaller arguments come before the larger ones in the trace.)

As you can see, we still have invocations within other invocations, but the pattern
is not as simple as in the case. If you’re having trouble making sense of this
pattern, go back to thinking about the problem in terms of little people; who hires whom?

⇒

⇒

13.1

13.2

13.3

214 Part IV Recursion

Pitfalls

Boring Exercises

downup
(smi sm s sm smi)

trace

explode

trace

pigl

downup

(trace or)

(explode ’ape)

(pigl ’throughout)

(define (downup wd)
(se wd (downup (bl wd)) wd))

Whenever you catch yourself using the words “go back” or “goes back” in describing
how some procedure works, bite your tongue. A recursive invocation isn’t a going back;
it’s a separate process. The model behind “go back” is that the same little person starts
over again at the beginning of the procedure body. What actually happens is that a new
little person carries out the same procedure. It’s an important difference because when
the second little person finishes, the first may still have more work to do.

For example, when we used little people to show the working of , Dennis
computes the result and returns that value to David; at that point,
David still has work to do before returning his own result to Donna.

The mechanism doesn’t work for special forms. For example, you can’t say

although you can, and often will, trace primitive procedures that aren’t special forms.

Trace the procedure from page 183 and invoke

How many recursive calls were there? What were the arguments to each recursive call?
Turn in a transcript showing the listing.

How many -specialist little people are involved in evaluating the following
expression?

What are their arguments and return values, and to whom does each give her result?

Here is our first version of from Chapter 11. It doesn’t work because it
has no base case.

13.4

13.5

13.6

Real Exercises

invocation

does

Chapter 13 How Recursion Works 215

butlast

pigl

pigl
prawn

rawnp pigl
awnpr

ay awnpray

(factorial 6) (factorial 2)
2

> (downup ’toe)
ERROR: Invalid argument to BUTLAST: ""

(define (forever n)
(if (= n 0)

1
(+ 1 (forever n))))

> (pigl ’prawn)
AWNPRAY

(downup ’smile)

Explain what goes wrong to generate that error. In particular, why does Scheme try to
take the of an empty word?

Here is a Scheme procedure that never finishes its job:

Explain why it doesn’t give any result. (If you try to trace it, make sure you know how to
make your version of Scheme stop what it’s doing and give you another prompt.)

It may seem strange that there is one little person per of a procedure,
instead of just one little person per procedure. For certain problems, the person-per-
procedure model would work fine.

Consider, for example, this invocation of :

Suppose there were only one specialist in the computer, named Patricia. Alonzo
hires Patricia and gives her the argument . She sees that it doesn’t begin with a
vowel, so she moves the first letter to the end, gets , and tries to that. Again,
it doesn’t begin with a vowel, so she moves another letter to the end and gets .
That begin with a vowel, so she adds an , returning to Alonzo.

Nevertheless, this revised little-people model doesn’t always work. Show how it fails to
explain what happens in the evaluation of

As part of computing , Scheme computes and
gets the answer . After Scheme gets that answer, how does it know what to do next?

