
Alonzo Church
inventor of lambda calculus

127

9 Lambda

add-three
every

Lambda

(lambda (number) (+ number 3))

(define (add-three number)
(+ number 3))

(define (add-three-to-each sent)
(every add-three sent))

> (add-three-to-each ’(1 9 9 2))
(4 12 12 5)

(define (add-three-to-each sent)
(every sent))

> (add-three-to-each ’(1 9 9 2))
(4 12 12 5)

Let’s say we want to add three to each of the numbers in a sentence. Using the tools from
Chapter 8, we would do it like this:

It’s slightly annoying to have to define a helper procedure just so we can use
it as the argument to . We’re never going to use that procedure again, but we still
have to come up with a name for it. We’d like a general way to say “here’s the function I
want you to use” without having to give the procedure a name. In other words, we want a
general-purpose procedure-generating procedure!

is the name of a special form that generates procedures. It takes some
information about the function you want to create as arguments and it returns the
procedure. It’ll be easier to explain the details after you see an example.

λ

the procedure
returned by

128 Part III Functions as Data

every
add-three

lambda every
lambda

lambda make-procedure
lambda

lambda define

define

lambda

lambda

lambda

lambda
lambda

> ((lambda (a b) (+ (* 2 a) b)) 5 6)
16

> ((lambda (wd) (word (last wd) (first wd))) ’impish)
HI

> (every (lambda (wd) (se (first wd) wd (last wd)))
’(only a northern song))

(O ONLY Y A A A N NORTHERN N S SONG G)

lambda

* It comes from a branch of mathematical logic called “lambda calculus” that’s about the
formal properties of functions. The inclusion of first-class functions in Lisp was inspired by this
mathematical work, so Lisp borrowed the name .

The first argument to is, in effect, the same procedure as the one we called
earlier, but now we can use it without giving it a name. (Don’t make the

mistake of thinking that is the argument to . The argument is
.)

Perhaps you’re wondering whether “lambda” spells something backward. Actually,
it’s the name of the Greek letter L, which looks like this: . It would probably be
more sensible if were named something like , but the name

is traditional.*

Creating a procedure by using is very much like creating one with ,
as we’ve done up to this point, except that we don’t specify a name. When we create
a procedure with , we have to indicate the procedure’s name, the names of its
arguments (i.e., the formal parameters), and the expression that it computes (its body).
With we still provide the last two of these three components.

As we said, is a special form. This means, as you remember, that its
arguments are not evaluated when you invoke it. The first argument is a sentence
containing the formal parameters; the second argument is the body. What
returns is an unnamed procedure. You can invoke that procedure:

In real life, though, you’re not likely to create a procedure with merely
to invoke it once. More often, we use as in the first example in this chapter,
to provide a procedure as argument to a higher-order function. Here are some more
examples:

procedure,

Chapter 9 Lambda 129

Procedures That Return Procedures

lambda

(make-adder 4)

make-adder 4 num
make-adder

An even more powerful use of is to provide the value returned by some procedure
that you write. Here’s the classic example:

The value of the expression is a not a number. That
unnamed procedure is the one that adds 4 to its argument. We can understand this by
applying the substitution model to . We substitute for in the body of

; we end up with

and then we evaluate that expression to get the desired procedure.

Here’s a procedure whose argument is a procedure:

> (keep (lambda (n) (member? 9 n)) ’(4 81 909 781 1969 1776))
(909 1969)

> (accumulate (lambda (this that)
(if (> (count this) (count that)) this that))

’(wild honey pie))
HONEY

> (keep (lambda (person) (member? person ’(john paul george ringo)))
’(mick smokey paul diana bill geddy john yoko keith reparata))

(PAUL JOHN)

> (keep (lambda (person) (member? ’e person))
’(mick smokey paul diana bill geddy john yoko keith reparata))

(SMOKEY GEDDY KEITH REPARATA)

(define (make-adder num)
(lambda (x) (+ x num)))

> ((make-adder 4) 7)
11

> (every (make-adder 6) ’(2 4 8))
(8 10 14)

(lambda (x) (+ x 4))

(define (same-arg-twice fn)
(lambda (arg) (fn arg arg)))

DefineThe Truth about

130 Part III Functions as Data

(same-arg-twice word) word
fn

lambda
define define

define

> ((same-arg-twice word) ’hello)
HELLOHELLO

> ((same-arg-twice *) 4)
16

(lambda (arg) (word arg arg))

(define (flip fn)
(lambda (a b) (fn b a)))

> ((flip -) 5 8)
3

> ((flip se) ’goodbye ’hello)
(HELLO GOODBYE)

> (define pi 3.141592654)

> (* pi 10)
31.41592654

> (define drummer ’(ringo starr))

> (first drummer)
RINGO

When we evaluate we substitute the procedure
for the formal parameter , and the result is

One more example:

Remember how we said that creating a procedure with was a lot like creating a
procedure with ? That’s because the notation we’ve been using with is
an abbreviation that combines two activities: creating a procedure and giving a name to
something.

As you saw in Chapter 7, ’s real job is to give a name to some value:

global,

that

Chapter 9 Lambda 131

lambda
define square

x *

* x
*

* pi
x square

define

frist frist

define

(define (square x) (* x x))

(define square (lambda (x) (* x x)))

(* x x)

> (define square (same-arg-twice *))

> (square 7)
49

When we say

it’s actually an abbreviation for

In this example, the job of is to create a procedure that multiplies its argument
by itself; the job of is to name that procedure .

In the past, without quite saying so, we’ve talked as if the name of a procedure were
understood differently from other names in a program. In thinking about an expression
such as

we’ve talked about substituting some actual value for the but took the for granted as
meaning the multiplication function.

The truth is that we have to substitute a value for the just as we do for the . It just
happens that has been predefined to have the multiplication procedure as its value.
This definition of is like the definition of above. “Global” means that it’s
not a formal parameter of a procedure, like in , but has a permanent value
established by .

When an expression is evaluated, every name in the expression must have some
value substituted for it. If the name is a formal parameter, then the corresponding actual
argument value is substituted. Otherwise, the name had better have a global definition,
and value is substituted. It just so happens that Scheme has predefined a zillion
names before you start working, and most of those are names of primitive procedures.

(By the way, this explains why when you make a typing mistake in the name of
a procedure you might see an error message that refers to variables, such as “variable

not bound.” You might expect it to say “ is not a procedure,” but the
problem is no different from that of any other name that has no associated value.)

Now that we know the whole truth about , we can use it in combination with
the function-creating functions in these past two chapters.

The Truth about Let

(

(sqrt (- (b b) (4 a c))))

132 Part III Functions as Data

let

let

define lambda let
lambda

> (define fourth-power (repeated square 2))

> (fourth-power 5)
625

(define (roots a b c)
(roots1 a b c (sqrt (- (* b b) (* 4 a c)))))

(define (roots1 a b c discriminant)
(se (/ (+ (- b) discriminant) (* 2 a))

(/ (- (- b) discriminant) (* 2 a))))

(define (roots a b c)
(let ((discriminant (sqrt (- (* b b) (* 4 a c)))))
(se (/ (+ (- b) discriminant) (* 2 a))

(/ (- (- b) discriminant) (* 2 a)))))

(define (roots a b c)
(lambda (discriminant)
(se (/ (+ (- b) discriminant) (* 2 a))

(/ (- (- b) discriminant) (* 2 a))))
* *)

In Chapter 7 we introduced as an abbreviation for the situation in which we would
otherwise define a helper procedure in order to give names to commonly-used values in
a calculation. We started with

and introduced the new notation

to avoid creating an otherwise-useless named procedure. But now that we know about
unnamed procedures, we can see that is merely an abbreviation for creating and
invoking an anonymous procedure:

What’s shown in boldface above is the part that invokes the procedure created by the
lambda, including the actual argument expression.

Just as the notation to define a procedure with parentheses around its name is an
abbreviation for a and a , the notation is an abbreviation for a

and an invocation.

→

x

x

first

unnamed
g x x g

x x

Chapter 9 Lambda 133

Name Conflicts

Named and Unnamed Functions

(define (f x)
(lambda (x) (+ x 3)))

> (define three 3)
> (define four 4)
> (+ three four)
7

* Professional mathematicians do have a notation for unnamed functions, by the way. They
write .

When a procedure is created inside another procedure, what happens if you use the same
formal parameter name in both?

Answer: Don’t do it.

What actually happens is that the inner wins; that’s the one that is substituted
into the body. But if you find yourself in this situation, you are almost certainly doing
something wrong, such as using nondescriptive names like for your variables.

Although you’ve been running across the idea of function since high school algebra,
you’ve probably never seen an function until now. The high school function
notation, () = 3 + 8, requires you to give the function a name (in this case) when
you create it. Most of the functions you know, both in math and in programming, have
names, such as logarithm or .*

When do you want to name a function, and when not? It may help to think about an
analogy with numbers. Imagine if every Scheme number had to have a name before you
could use it. You’d have to say

This is analogous to the way we’ve dealt with procedures until now, giving each one a
name. Sometimes it’s much easier to use a number directly, and it’s silly to have to give it
a name.

But sometimes it isn’t silly. A common example that we’ve seen earlier is

(3 + 8)

π

purpose,

134 Part III Functions as Data

define

Square
square

lambda

next-to-last

(define pi 3.141592654)

(define (circle-area radius)
(* pi radius radius))

(define (circumference radius)
(* 2 pi radius))

(define (sphere-surface-area radius)
(* 4 pi radius radius))

(define (sphere-volume radius)
(* (/ 4 3) pi radius radius radius))

(define (square x) (* x x))

> (every (lambda (x) (last (bl x))) ’(all together now))
(L E O)

If we couldn’t give a name to the number 3.141592654, then we’d have to type it over
and over again. Apart from the extra typing, our programs would be harder to read and
understand. Giving a name makes the procedures more self-documenting. (That is,
someone else who reads our procedures will have an easier time understanding what we
meant.)

It’s the same with procedures. If we’re going to use a procedure more than once,
and if there’s a meaningful name for it that will help clarify the program, then we define
the procedure with and give it a name.

deserves a name both because we use it often and because there is a good
traditional name for it that everyone understands. More important, by giving
a name, we are shifting attention from the process by which it works (invoking the
multiplication procedure) to its computing the square of a number. From now
on we can think about squaring as though it were a Scheme primitive. This idea of
naming something and forgetting the details of its implementation is what we’ve been
calling “abstraction.”

On the other hand, if we have an unimportant procedure that we’re using only once,
we might as well create it with and without a name.

We could have defined this procedure with the name , but if we’re never
going to use it again, why bother?

⇒

⇒

Pitfalls

procedure.

domain range

other

Chapter 9 Lambda 135

define
lambda

pi

lambda
lambda

lambda
repeated

lambda
lambda

every

h

(define (backwards wd) (accumulate (lambda (a b) (word b a)) wd))

> (backwards ’yesterday)
YADRETSEY

> (every backwards ’(i saw her standing there))
(I WAS REH GNIDNATS EREHT)

(define (pi) 3.141592654)

(* 2 pi)

Here’s an example in which we use an obscure unnamed function to help us define
one that’s worth naming:

It’s very convenient that has an abbreviated form to define a procedure
using a hidden , but because there are two notations that differ only subtly—one
has an extra set of parentheses—you could use the wrong one by mistake. If you say

you’re not defining a variable whose value is a number. Instead the value of will be a
It would then be an error to say

When should the body of your procedure be a expression? It’s easy to go
overboard and say “I’m writing a procedure so I guess I need ” even when the
procedure is supposed to return a word.

The secret is to remember the ideas of and that we talked about
in Chapter 2. What is the range of the function you’re writing? Should it return a
procedure? If so, its body might be a expression. (It might instead be an
invocation of a higher-order procedure, such as , that returns a procedure.)
If your procedure doesn’t return a procedure, its body won’t be a expression.
(Of course your procedure might still use a expression as an argument to some

procedure, such as .)

For example, here is a procedure to keep the words of a sentence that contain the
letter . The domain of the function is sentences, and its range is also sentences. (That
is, it takes a sentence as argument and returns a sentence as its value.)

⇒

9.1

Boring Exercises

keeper
keeper

keep-h keeper keep-h

Lambda

lambda

lambda x
6

procedure

returned by

creation invocation

name

names values

136 Part III Functions as Data

(define (keep-h sent)
(keep (lambda (wd) (member? ’h wd)) sent))

(define (keeper letter)
(lambda (sent)
(keep (lambda (wd) (member? letter wd)) sent)))

(define keep-h (keeper ’h))

((lambda (x) (+ x 3)) 6)

> (lambda (x) (+ (* x 3) 4))

> ((lambda (x) (+ (* x 3) 4)) 10)

> (every (lambda (wd) (word (last wd) (bl wd)))
’(any time at all))

By contrast, here is a function of a letter that returns a to keep words containing
that letter.

The procedure has letters as its domain and procedures as its range. The
procedure has sentences as its domain and as its range, just as

does. In fact, we can use to define :

Don’t confuse the of a procedure with the of one.
creates a procedure. The procedure is invoked in response to an expression whose
first subexpression represents that procedure. That is, the first subexpression could be
the of the procedure, or it could be a expression if you want to create a
procedure and invoke it right away:

In particular, when you create a procedure, you specify its formal parameters—the
for its arguments. When you invoke the procedure, you specify for those

arguments. (In this example, the expression includes the formal parameter ,
but the invocation provides the actual argument .)

What will Scheme print? Figure it out yourself before you try it on the computer.

9.2

9.3

9.4

9.5

Real Exercises

Chapter 9 Lambda 137

lambda

lambda

prepend-every

Rewrite the following definitions so as to make the implicit explicit.

What does this procedure do?

The following program doesn’t work. Why not? Fix it.

It’s supposed to work like this:

In each of the following exercises, write the procedure in terms of and
higher-order functions. Do not use named helper procedures. If you’ve read Part IV,
don’t use recursion, either.

Write :

> ((lambda (x) (+ x 3)) 10 15)

(define (second stuff)
(first (bf stuff)))

(define (make-adder num)
(lambda (x) (+ num x)))

(define (let-it-be sent)
(accumulate (lambda (x y) y) sent))

(define (who sent)
(every describe ’(pete roger john keith)))

(define (describe person)
(se person sent))

> (who ’(sells out))
(pete sells out roger sells out john sells out keith sells out)

> (prepend-every ’s ’(he aid he aid))
(SHE SAID SHE SAID)

> (prepend-every ’anti ’(dote pasto gone body))
(ANTIDOTE ANTIPASTO ANTIGONE ANTIBODY)

9.6

9.7

9.8

9.9

F
G F G

F

138 Part III Functions as Data

sentence-version

letterwords

common-words

> ((sentence-version first) ’(if i fell))
(I I F)

> ((sentence-version square) ’(8 2 4 6))
(64 4 16 36)

> (letterwords ’o ’(got to get you into my life))
(GOT TO YOU INTO)

> (hang ’potsticker ’etaoi)
OT TI E

(define (hang-letter letter guesses)
(if (member? letter guesses)

letter
’))

Write a procedure that takes a function as its argument
and returns a function . should take a single word as argument. should take a
sentence as argument and return the sentence formed by applying to each word of that
argument.

Write a procedure called that takes as its arguments a letter and a
sentence. It returns a sentence containing only those words from the argument sentence
that contain the argument letter:

Suppose we’re writing a program to play hangman. In this game one player has
to guess a secret word chosen by the other player, one letter at a time. You’re going
to write just one small part of this program: a procedure that takes as arguments the
secret word and the letters guessed so far, returning the word in which the guessing
progress is displayed by including all the guessed letters along with underscores for the
not-yet-guessed ones:

Hint: You’ll find it helpful to use the following procedure that determines how to display
a single letter:

Write a procedure that takes two sentences as arguments and
returns a sentence containing only those words that appear both in the first sentence and
in the second sentence.

9.10

9.11

9.12

9.13

9.14

f g

f g x x

Chapter 9 Lambda 139

appearances

appearances

unabbrev

2

6

first-last

compose

substitute

> (unabbrev ’(john 1 wayne fred 4) ’(bill hank kermit joey))
(JOHN BILL WAYNE FRED JOEY)

> (unabbrev ’(i 3 4 tell 2) ’(do you want to know a secret?))
(I WANT TO TELL YOU)

> (first-last ’(california ohio nebraska alabama alaska massachusetts))
(OHIO ALABAMA ALASKA)

> ((compose sqrt abs) -25)
5

> (define second (compose first bf))

> (second ’(higher order function))
ORDER

> (substitute ’maybe ’yeah ’(she loves you yeah yeah yeah))
(SHE LOVES YOU MAYBE MAYBE MAYBE)

In Chapter 2 we used a function called that returns the number
of times its first argument appears as a member of its second argument. Implement

.

Write a procedure that takes two sentences as arguments. It should
return a sentence that’s the same as the first sentence, except that any numbers in the
original sentence should be replaced with words from the second sentence. A number
in the first sentence should be replaced with the second word of the second sentence, a

with the sixth word, and so on.

Write a procedure whose argument will be a sentence. It should
return a sentence containing only those words in the argument sentence whose first and
last letters are the same:

Write a procedure that takes two functions and as arguments. It
should return a new function, the composition of its input functions, which computes
(()) when passed the argument .

Write a procedure that takes three arguments, two words and a
sentence. It should return a version of the sentence, but with every instance of the
second word replaced with the first word:

9.15

9.16

9.17

any

vector

140 Part III Functions as Data

sqrt

sqrt

type-check f
pred Type-check

pred
f pred

#f

sqrt
16 4 sqrt (16 49)

(4 7)

aplize

keep every accumulate

> (define safe-sqrt (type-check sqrt number?))

> (safe-sqrt 16)
4

> (safe-sqrt ’sarsaparilla)
#F

> (define apl-sqrt (aplize sqrt))

> (apl-sqrt 36)
6

> (apl-sqrt ’(1 100 25 16))
(1 10 5 4)

Many functions are applicable only to arguments in a certain domain and result in
error messages if given arguments outside that domain. For example, may require
a nonnegative argument in a version of Scheme that doesn’t include complex numbers.
(In version of Scheme, will complain if its argument isn’t a number at all!)
Once a program gets an error message, it’s impossible for that program to continue the
computation.

Write a procedure that takes as arguments a one-argument procedure
and a one-argument predicate procedure . should return a one-
argument procedure that first applies to its argument; if that result is true, the
procedure should return the value computed by applying to the argument; if
returns false, the new procedure should also return :

In the language APL, most arithmetic functions can be applied either to a number,
with the usual result, or to a —the APL name for a sentence of numbers—in which
case the result is a new vector in which each element is the result of applying the function
to the corresponding element of the argument. For example, the function applied
to returns as in Scheme, but can also be applied to a sentence such as
and it returns .

Write a procedure that takes as its argument a one-argument procedure whose
domain is numbers or words. It should return an APLized procedure that also accepts
sentences:

Write in terms of and .

5h

h5 dk

points.

141

Project: Scoring Bridge Hands

* Why not ? Scheme words that begin with a digit but aren’t numbers have to be surrounded
with double-quote marks. Putting the suit first avoids that.

At the beginning of a game of bridge, each player assigns a value to his or her hand
by counting Bridge players use these points in the first part of the game, the
“bidding,” to decide how high to bid. (A bid is a promise about how well you’ll do in the
rest of the game. If you succeed in meeting your bid you win, and if you don’t meet the
bid, you lose.) For example, if you have fewer than six points, you generally don’t bid
anything at all.

You’re going to write a computer program to look at a bridge hand and decide how
many points it’s worth. You won’t have to know anything about the rest of the game; we’ll
tell you the rules for counting points.

A bridge hand contains thirteen cards. Each ace in the hand is worth four points,
each king is worth three points, each queen two points, and each jack one. The other
cards, twos through tens, have no point value. So if your hand has two aces, a king, two
jacks, and eight other cards, it’s worth thirteen points.

A bridge hand might also have some “distribution” points, which are points having
to do with the distribution of the thirteen cards among the four suits. If your hand has
only two cards of a particular suit, then it is worth an extra point. If it has a “singleton,”
only one card of a particular suit, that’s worth two extra points. A “void,” no cards in a
particular suit, is worth three points.

In our program, we’ll represent a card by a word like (five of hearts) or (king
of diamonds).* A hand will be a sentence of cards, like this:

Card-val

High-card-points

first
butfirst last

card-val

high-card-points

bottom-up

top-down

not

142 Part III Functions as Data

(sa s10 s7 s6 s2 hq hj h9 ck c4 dk d9 d3)

> (card-val ’cq)
2

> (card-val ’s7)
0

> (card-val ’ha)
4

This hand is worth 14 points: ace of spades (4), plus queen of hearts (2), plus jack
of hearts (1), plus king of clubs (3), plus king of diamonds (3), plus one more for having
only two clubs.

To find the suit of a card, we take its , and to find the rank, we take the
. (Why not the ?)

We have a particular program structure in mind. We’ll describe all of the procedures
you need to write; if you turn each description into a working procedure, then you
should have a complete program. In writing each procedure, take advantage of the ones
you’ve already written. Our descriptions are ordered , which means that for each
procedure you will already have written the helper procedures you need. (This ordering
will help you write the project, but it means that we’re beginning with small details. If
we were describing a project to help you understand its structure, we’d do it in
order, starting with the most general procedures. We’ll do that in the next chapter, in
which we present a tic-tac-toe program as a larger Scheme programming example.)

Write a procedure that takes a single card as its argument and returns the
value of that card.

Write a procedure that takes a hand as its argument and returns
the total number of points from high cards in the hand. (This procedure does count
distribution points.)

Project: Scoring Bridge Hands 143

count-suit

suit-counts

suit-dist-points

Count-suit

Suit-counts

Suit-dist-points

Write a procedure that takes a suit and a hand as arguments and returns
the number of cards in the hand with the given suit.

Write a procedure that takes a hand as its argument and returns a
sentence containing the number of spades, the number of hearts, the number of clubs,
and the number of diamonds in the hand.

Write that takes a number as its argument, interpreting it as the

> (high-card-points ’(sa s10 hq ck c4))
9

> (high-card-points ’(sa s10 s7 s6 s2 hq hj h9 ck c4 dk d9 d3))
13

> (count-suit ’s ’(sa s10 hq ck c4))
2

> (count-suit ’c ’(sa s10 s7 s6 s2 hq hj h9 ck c4 dk d9 d3))
2

> (count-suit ’d ’(h3 d7 sk s3 c10 dq d8 s9 s4 d10 c7 d4 s2))
5

> (suit-counts ’(sa s10 hq ck c4))
(2 1 2 0)

> (suit-counts ’(sa s10 s7 s6 s2 hq hj h9 ck c4 dk d9 d3))
(5 3 2 3)

> (suit-counts ’(h3 d7 sk s3 c10 dq d8 s9 s4 d10 c7 d4 s2))
(5 1 2 5)

144 Part III Functions as Data

Hand-dist-points

Bridge-val

hand-dist-points

bridge-val

> (suit-dist-points 2)
1

> (suit-dist-points 7)
0

> (suit-dist-points 0)
3

> (hand-dist-points ’(sa s10 s7 s6 s2 hq hj h9 ck c4 dk d9 d3))
1

> (hand-dist-points ’(h3 d7 sk s3 c10 dq d8 s9 s4 d10 c7 d4 s2))
3

> (bridge-val ’(sa s10 s7 s6 s2 hq hj h9 ck c4 dk d9 d3))
14

> (bridge-val ’(h3 d7 sk s3 c10 dq d8 s9 s4 d10 c7 d4 s2))
8

number of cards in a suit. The procedure should return the number of distribution
points your hand gets for having that number of cards in a particular suit.

Write , which takes a hand as its argument and returns the number
of distribution points the hand is worth.

Write a procedure that takes a hand as its argument and returns the total
number of points that the hand is worth.

