
In the old days, they “defined procedures” like this.

procedures.

41

How to Define a Procedure

4 Defining Your Own Procedures

define

define

square Square
square

(define (square x)
(* x x))

> (square 7)
49

> (+ 10 (square 2))
14

Until now we’ve been using procedures that Scheme already knows when you begin
working with it. In this chapter you’ll find out how to create new procedures.

A Scheme program consists of one or more A procedure is a description of
the process by which a computer can work out some result that we want. Here’s how to
define a procedure that returns the square of its argument:

(The value returned by may differ depending on the version of Scheme you’re
using. Many versions return the name of the procedure you’re defining, but others
return something else. It doesn’t matter, because when you use you aren’t
interested in the returned value, but rather in the fact that Scheme remembers the new
definition for later use.)

This is the definition of a procedure called . takes one argument, a
number, and it returns the square of that number. Once you have defined , you
can use it just the same way as you use primitive procedures:

argument
name

procedure
name

body

(define?(square?x)
??(*?x?x))

keyword

Special Forms

> (square (square 3))
81

(define (square x))
define

define

body:

special form,

doesn’t

42 Part II Composition of Functions

define

(square x)
(square 7)

Define

square
square x (* x x)

(square x) square

* Technically, the entire expression is the special form; the word
itself is called a . But in fact Lispians are almost always loose about this distinction

and say “ is a special form,” just as we’ve done here. The word “form” is an archaic synonym
for “expression,” so “special form” just means “special expression.”

This procedure definition has four parts. The first is the word , which
indicates that you are defining something. The second and third come together inside
parentheses: the name that you want to give the procedure and the name(s) you want to
use for its argument(s). This arrangement was chosen by the designers of Scheme because
it looks like the form in which the procedure will be invoked. That is, looks
like . The fourth part of the definition is the an expression whose
value provides the function’s return value.

is a an exception to the evaluation rule we’ve been going on about.*
Usually, an expression represents a procedure invocation, so the general rule is that
Scheme first evaluates all the subexpressions, and then applies the resulting procedure
to the resulting argument values. The specialness of special forms is that Scheme

evaluate all the subexpressions. Instead, each special form has its own particular
evaluation rule. For example, when we defined , no part of the definition was
evaluated: not , not , and not . It wouldn’t make sense to evaluate

because you can’t invoke the procedure before you define it!

. . .

Functions and Procedures

define
define

define
define define

define define
define define

remainder

> +
#<PRIMITIVE PROCEDURE +>

> define
ERROR -- INVALID CONTEXT FOR KEYWORD DEFINE

functions.
square

plural
argument.

process

f x x

g x x

f g

Chapter 4 Defining Your Own Procedures 43

It would be possible to describe special forms using the following model: “Certain
procedures want their arguments unevaluated, and Scheme recognizes them. After
refraining from evaluating ’s arguments, for example, Scheme invokes the

procedure with those unevaluated arguments.” But in fact the designers of
Scheme chose to think about it differently. The entire special form that starts with

is just a completely different kind of thing from a procedure call. In Scheme
there is no procedure named . In fact, is not the name of anything at
all:

Nevertheless, in this book, unless it’s really important to make the distinction, we’ll talk
as if there were a procedure called . For example, we’ll talk about “ ’s
arguments” and “the value returned by ” and “invoking .”

Throughout most of this book, our procedures will describe processes that compute
A function is a connection between some values you already know and a new

value you want to find out. For example, the function takes a number, such as 8,
as its input value and returns another number, 64 in this case, as its output value. The

function takes a noun, such as “computer,” and returns another word, “computers”
in this example. The technical term for the function’s input value is its A
function may take more than one argument; for example, the function takes
two arguments, such as 12 and 5. It returns one value, the remainder on dividing the
first argument by the second (in this case, 2).

We said earlier that a procedure is “a description of the process by which a computer
can work out some result that we want.” What do we mean by ? Consider these two
definitions:

() = 3 + 12

() = 3(+ 4)

The two definitions call for different arithmetic operations. For example, to compute
(8) we’d multiply 8 by 3, then add 12 to the result. To compute (8), we’d add 4 to

f g

f
f

f

(define (f x)
(+ (* 3 x) 12))

(define (g x)
(* 3 (+ x 4)))

processes, function.

table

graphs,

is represented by is

44 Part II Composition of Functions

* Also, we’ll sometimes use the terms “domain” and “range” when we’re talking about procedures,
although technically, only functions have domains and ranges.

8, then multiply the result by 3. But we get the same answer, 36, either way. These two
equations describe different but they compute the same The function
is just the association between the starting value(s) and the resulting value, no matter
how that result is computed. In Scheme we could say

and we’d say that and are two procedures that represent the same function.

In real life, functions are not always represented by procedures. We could represent
a function by a showing all its possible values, like this:

Alabama Montgomery
Alaska Juneau
Arizona Phoenix
Arkansas Little Rock
California Sacramento
.

This table represents the State Capital function; we haven’t shown all the lines of the
complete table, but we could. There are only a finite number of U.S. states. Numeric
functions can also be represented by as you probably learned in high school
algebra. In this book our focus is on the representation of functions by procedures. The
only reason for showing you this table example is to clarify what we mean when we say
that a function a procedure, rather than that a function the procedure.

We’ll say “the procedure ” when we want to discuss the operations we’re telling
Scheme to carry out. We’ll say “the function represented by ” when our attention
is focused on the value returned, rather than on the mechanism. (But we’ll often
abbreviate that lengthy second phrase with “the function ” unless the context is
especially confusing.)*

(square (+ 5 9))

Argument Names versus Argument Values

square x
square 7

x
square

square x

square

square
x

(+ 5 9)

very
tears

Haddock’s
Eyes.

called. The Aged Aged Man.
song

song Ways And
Means called,

is

A-sitting On A
Gate

Through the Looking-Glass, and What Alice Found There

defined name,
invoked value

that number that number.

formal parameter.

actual argument.

actual argument expression actual
argument value

Chapter 4 Defining Your Own Procedures 45

“It’s long,” said the Knight, “but it’s very, beautiful. Everybody that
hears me sing it—either it brings the into their eyes, or else—”

“Or else what?” said Alice, for the Knight had made a sudden pause.
“Or else it doesn’t, you know. The name of the song is called ‘

’ ”
“Oh, that’s the name of the song, is it?” Alice said, trying to feel interested.
“No, you don’t understand,” the Knight said, looking a little vexed. “That’s

what the name is The name really is ‘ ’ ”
“Then I ought to have said ‘That’s what the is called’?” Alice corrected

herself.
“No, you oughtn’t; that’s quite another thing! The is called ‘
’: but that’s only what it’s you know!”

“Well, what the song, then?” said Alice, who was by this time completely
bewildered.

“I was coming to that,” the Knight said. “The song really is ‘
’: and the tune’s my own invention.”

—Lewis Carroll,

Notice that when we the procedure we gave a , for its argument.
By contrast, when we we provided a for the argument (e.g.,).
The word is a “place holder” in the definition that stands for whatever value you use
when you call the procedure. So you can read the definition of as saying, “In
order to a number, multiply by ” The name holds the
place of the particular number that you mean.

Be sure you understand this distinction between defining a procedure and calling it.
A procedure represents a general technique that can be applied to many specific cases.
We don’t want to build any particular case into the procedure definition; we want the
definition to express the general nature of the technique. You wouldn’t want a procedure
that only knew how to take the square of 7. But when you actually get around to using

, you have to be specific about which number you’re squaring.

The name for the name of an argument (whew!) is In our
example, is the formal parameter. (You may hear people say either “formal” alone or
“parameter” alone when they’re feeling lazy.) The technical term for the actual value of
the argument is the In a case like

you may want to distinguish the from the
14. Most of the time it’s perfectly clear what you mean, and you just say

square

Procedure as Generalization

generalize

46 Part II Composition of Functions

(define (f a b)
(+ (* 3 a) b))

> (f 5 8)
23

> (f 8 5)
29

> (/ (+ 17 25) 2)
21

> (/ (+ 14 68) 2)
41

(/ (+) 2)

(define (average a b)
(/ (+ a b) 2))

“argument” for all of these things, but right now when you’re learning these ideas it’s
important to be able to talk more precisely.

The procedure takes one argument. If a procedure requires more than
one argument, then the question arises, which actual argument goes with which formal
parameter? The answer is that they go in the order in which you write them, like this:

What’s the average of 17 and 25? To answer this question you could add the two numbers,
getting 42, and divide that by two, getting 21. You could ask Scheme to do this for you:

What’s the average of 14 and 68?

Once you understand the technique, you could answer any such question by typing
an expression of the form

to Scheme.

But if you’re going to be faced with more such problems, an obvious next step is to
the technique by defining a procedure:

σ
−∑ ∑()

√√√√√ =1
2

=1

2

x

n

i i
n

i i

Composability

> (average 27 4)
15.5

x x

n

Chapter 4 Defining Your Own Procedures 47

standard-deviation

+
average standard-deviation

average
+

With this definition, you can think about the next problem that comes along in terms of
the problem itself, rather than in terms of the steps required for its solution:

This is an example of what we meant when we defined “abstraction” as noticing a pattern
and giving it a name. It’s not so different from the naming of such patterns in English;
when someone invented the name “average” it was, probably, after noticing that it was
often useful to find the value halfway between two other values.

This naming process is more important than it sounds, because once we have a
name for some idea, we can use that idea without thinking about its pieces. For example,
suppose that you want to know not only the average of some numbers but also a measure
of whether the numbers are clumped together close to the average, or widely spread
out. Statisticians have developed the “standard deviation” as a measure of this second
property. You’d rather not have to think about this mysterious formula:

=

but you’d be happy to use a procedure that you found in a
collection of statistical programs.

After all, there’s no law of nature that says computers automatically know how to add
or subtract. You could imagine having to instruct Scheme to compute the sum of two
large numbers digit by digit, the way you did in elementary school. But instead someone
has “taught” your computer how to add before you get to it, giving this technique the
name so that you can ask for the sum of two numbers without thinking about the
steps required. By inventing or we are extending the
repertoire of computations that you can ask for without concerning yourself with the
details.

We’ve suggested that a procedure you define, such as , is essentially similar to
one that’s built into Scheme, such as . In particular, the rules for building expressions
are the same whether the building blocks are primitive procedures or defined procedures.

The Substitution Model

sqrt

*

standard-deviation
square

model

substitution

48 Part II Composition of Functions

* You know, that’s when you wave your hands around in the air instead of explaining what you
mean.

> (average (+ 10 8) (* 3 5))
16.5

> (average (average 2 3) (average 4 5))
3.5

> (sqrt (average 143 145))
12

Any return value can be used as an end in itself, as the return value from was
used in the last of these examples, or it can provide an argument to another procedure,
as the return value from was used in the first of these examples.

These small examples may seem arbitrary, but the same idea, composition of
functions, is the basis for all Scheme programming. For example, the complicated
formula we gave for standard deviation requires computing the squares of several
numbers. So if we were to write a procedure, it would invoke

.

We’ve paid a lot of attention to the details of formal parameters and actual arguments,
but we’ve been a little handwavy* about how a procedure actually computes a value when
you invoke it.

We’re going to explain what happens when you invoke a user-defined procedure.
Every explanation is a story. No story tells the entire truth, because there are always some
details left out. A is a story that has just enough detail to help you understand
whatever it’s trying to explain but not so much detail that you can’t see the forest for the
trees.

Today’s story is about the model. When a procedure is invoked, the goal
is to carry out the computation described in its body. The problem is that the body is
written in terms of the formal parameters, while the computation has to use the actual
argument values. So what Scheme needs is a way to associate actual argument values with
formal parameters. It does this by making a new copy of the body of the procedure, in

(define (square x)
(* x x))

(* x x)

(* 5 5)

Chapter 4 Defining Your Own Procedures 49

square

square (* x x)
(square 5) x

(* x x)
x

square
+ *

square
(square 6) (* 6 6)

* You may be thinking that this is rather an inefficient way to do things—all this copying and
replacement before you can actually compute anything. Perhaps you’re afraid that your Scheme
programs will run very slowly as a result. Don’t worry. It really happens in a different way, but the
effect is the same except for the speed.

which it substitutes the argument values for every appearance of the formal parameters,
and then evaluating the resulting expression. So, if you’ve defined with

then the body of is . When you want to know the square of a particular
number, as in , Scheme substitutes the 5 for everywhere in the body of
square and evaluates the expression. In other words, Scheme takes

then does the substitution, getting

and then evaluates that expression, getting 25.

If you just type into Scheme, you will get an error message complaining
that doesn’t mean anything. Only after the substitution does this become a meaningful
expression.

By the way, when we talk about “substituting into the body,” we don’t mean that the
procedure’s definition is changed in any permanent way. The body of the procedure
doesn’t change; what happens, as we said before, is that Scheme constructs a new
expression that looks like the body, except for the substitutions.*

There are little people who specialize in , just as there are little people who
specialize in and . The difference is that the little people who do primitive procedures
can do the work “in their head,” all at once. The little people who carry out user-defined
procedures have to go through this substitution business we’re talking about here. Then
they hire other little people to help evaluate the resulting expression, just as Alonzo hires
people to help him evaluate the expressions you type directly to Scheme.

Let’s say Sam, a little person who specializes in , has been asked to compute
. Sam carries out the substitution, and is left with the expression to

reports to hired

50 Part II Composition of Functions

hypotenuse

sqrt +
square (square 5)

x square
x (square 12)

(define (hypotenuse a b)
(sqrt (+ (square a) (square b))))

> (hypotenuse 5 12)

(sqrt (+ (square 5) (square 12)))

(hypotenuse 5 12) ; substitute into HYPOTENUSE body
(sqrt (+ (square 5) (square 12))) ; substitute for (SQUARE 5)

(* 5 5)
25

(sqrt (+ 25 (square 12))) ; substitute for (SQUARE 12)
(* 12 12)
144

(sqrt (+ 25 144))
(+ 25 144) ; combine the results as before
169

(sqrt 169)
13

sqrt + square

* Until we started defining our own procedures in this chapter, all of the little people were hired
by Alonzo, because all expressions were typed directly to a Scheme prompt. Now expressions can
come from the bodies of procedures, and so the little people needed to compute those expressions
are hired by the little person who’s computing that procedure. Notice also that each little person

another little person, not necessarily the one who her. In this case, if Harry hires
Shari for , Paul for , and Slim and Sydney for the two s, then Slim reports to Paul,
not to Harry. Only Shari reports directly to Harry.

evaluate. Sam then hires Tessa, a multiplication specialist, to evaluate this new expression.
Tessa tells Sam that her answer is 36, and, because the multiplication is the entire problem
to be solved, this is Sam’s answer also.

Here’s another example:

Suppose Alonzo hires Harry to compute this expression. Harry must first substitute the
actual argument values (5 and 12) into the body of :

Now he evaluates that expression, just as Alonzo would evaluate it if you typed it at a
Scheme prompt. That is, Harry hires four little people: one expert, one expert,
and two experts.* In particular, some little person has to evaluate ,
by substituting 5 for in the body of , as in the earlier example. Similarly, we
substitute 12 for in order to evaluate :

⇒

⇒

⇒

Pitfalls

each compound procedure
composed

one

sum

f x x

x

Chapter 4 Defining Your Own Procedures 51

* This is especially problematic for people who used to program in a language like Pascal or
BASIC, where you say things like “ ” all the time.

(define (sum-of-squares x y) ;; wrong!
(square x)
(square y))

(define (sum-of-squares x y)
(+ (square x)

(square y)))

(define (f x) ;; wrong!
(* x 3)
(+ x 10))

X = X * 3

Don’t forget, in the heady rush of learning about the substitution model, what you already
knew from before: Each piece of this computation is done by a little person, and some
other little person is waiting for the result. In other words, the substitution model tells us
how is carried out, but doesn’t change our picture of the way in
which procedure invocations are into larger expressions.

Don’t forget that a function can have only return value. For example, here’s a
program that’s supposed to return the sum of the squares of its two arguments:

The problem is that the body of this procedure has two expressions, instead of just one.
As it turns out, Scheme just ignores the value of the first expression in cases like this, and
returns the value of the last one. What the programmer wants is the of these two
values, so the procedure should say

Another pitfall comes from thinking that a procedure call changes the value of a
parameter. Here’s a faulty program that’s supposed to compute the function described
by () = 3 + 10:

Again, the first expression has no effect and Scheme will just return the value + 10.*

A very common pitfall in Scheme comes from choosing the name of a procedure as
a parameter. It doesn’t come up very often with procedures like the ones in this chapter

⇒

⇒

(area 8) area 8 square
(8 8)

8 8 8

square

define

must

name
actual

52 Part II Composition of Functions

(define (square x)
(* x x))

(define (area square) ;; wrong!
(square square))

(define (f (+ 3 x) y) ;; wrong!
(* x y))

whose domains and ranges are both numbers, but it will be more likely later. If you have
a program like this:

then you’ll get in trouble when you invoke the procedure, for example, by saying
. The little person will substitute for everywhere in the

procedure definition, leaving you with the expression to evaluate. That expression
would mean to apply the procedure to the argument , but isn’t a procedure, so an
error message results.

It isn’t a problem if the formal parameter is the name of a procedure that you don’t
use inside the body. The problem arises when you try to use the same name, e.g., ,
with two meanings within a single procedure. But special forms are an exception; you
can never use the name of a special form as a parameter.

A similar problem about name conflicts comes up if you try to use a keyword (the
name of a special form, such as) as some other kind of name—either a formal
parameter or the name of a procedure you’re defining. We’re listing this separately
because the result is likely to be different. Instead of getting the wrong value substituted,
as above, you’ll probably see a special error message along the lines of “improper use of
keyword.”

Formal parameters be words. Some people try to write procedures that have
compound expressions as the formal parameters, like this:

Remember that the job of the procedure definition is only to provide a for
the argument. The argument isn’t pinned down until you invoke the procedure.
People who write programs like the one above are trying to make the procedure definition
do some of the job of the procedure invocation.

4.1

4.2

4.3

Boring Exercises

Chapter 4 Defining Your Own Procedures 53

(define (ho-hum x y)
(+ x (* 2 y)))

(ho-hum 8 12)

(define (yawn x)
(+ 3 (* x 2)))

(yawn (/ 8 2))

(define (f x y) (- y x))

(define (identity x) x)

(define (three x) 3)

(define (seven) 7)

(define (magic n)
(- (/ (+ (+ (* 3 n)

13)
(- n 1))

4)
3))

Consider this procedure:

Show the substitution that occurs when you evaluate

Given the following procedure:

list all the little people that are involved in evaluating

(Give their names, their specialties, their arguments, who hires them, and what they do
with their answers.)

Here are some procedure definitions. For each one, describe the function in
English, show a sample invocation, and show the result of that invocation.

−

−

×
×

9
5

5
9

7

9

Real Exercises

4.4

4.5

4.6

4.7

4.8

fourth
square

scientific

F C C F

54 Part II Composition of Functions

(define (sphere-volume r)
(* (/ 4 3) 3.141592654)
(* r r r))

(define (next x)
(x + 1))

(define (square)
(* x x))

(define (triangle-area triangle)
(* 0.5 base height))

(define (sum-of-squares (square x) (square y))
(+ (square x) (square y)))

> (scientific 7 3)
7000

Each of the following procedure definitions has an error of some kind. Say what’s
wrong and why, and fix it:

Write a procedure to convert a temperature from Fahrenheit to Celsius, and another
to convert in the other direction. The two formulas are = + 32 and = (32).

Define a procedure that computes the fourth power of its argument. Do
this two ways, first using the multiplication function, and then using and not
(directly) using multiplication.

Write a procedure that computes the absolute value of its argument by finding the
square root of the square of the argument.

“Scientific notation” is a way to represent very small or very large numbers by
combining a medium-sized number with a power of 10. For example, 5 10 represents
the number 50000000, while 3.26 10 represents 0.00000000326 in scientific notation.
Write a procedure that takes two arguments, a number and an exponent
of 10, and returns the corresponding value:

4.9

4.10

a b

Chapter 4 Defining Your Own Procedures 55

21/50000 4.2E-4
0.00042

log floor

discount

ceiling

> (scientific 42 -5)
0.00042

> (sci-coefficient 7000)
7

> (sci-exponent 7000)
3

> (discount 10 5)
9.50

> (discount 29.90 50)
14.95

> (tip 19.98)
3.02

> (tip 29.23)
4.77

> (tip 7.54)
1.46

Some versions of Scheme represent fractions in / form, and some use scientific
notation, so you might see or as the result of the last example instead
of , but these are the same value.

(A harder problem for hotshots: Can you write procedures that go in the other direction?
So you’d have

You might find the primitive procedures and helpful.)

Define a procedure that takes two arguments: an item’s initial price and
a percentage discount. It should return the new price:

Write a procedure to compute the tip you should leave at a restaurant. It should
take the total bill as its argument and return the amount of the tip. It should tip by 15%,
but it should know to round up so that the total amount of money you leave (tip plus
original bill) is a whole number of dollars. (Use the procedure to round up.)

