
Church Numerals 
Amazingly, any function that can be computed at all, such as factorial(5) or sqrt(7) or piglatin(snap), can be 
computed using only  and . The study of how to do this is "lambda calculus," a branch of 
mathematics invented by Alonzo Church.  ("Lambda" is what the non-Snap! world calls gray rings.  In the 
notation used in lambda calculus, there's no need for a CALL block because following a function with an 
argument implies calling the former with the latter.  Of course, since the only data type in lambda calculus is 
functions, the argument to a function is always itself a function!)  You end up with long ugly programs, and 
nobody would use them in practice, but knowing that you could is useful for reasoning about programs.  If you 
can prove something is true for programs made out of just lambdas, then you know it's true for real programs on 
real computers. 
 
In this exercise you're going to invent arithmetic.  As in the actual historical invention of numbers, we start with 
just the natural numbers (nonnegative integers).  Once those work, you can extend arithmetic to include fractions, 
negative numbers, irrational numbers, and complex numbers. In lambda calculus there's no 
to create functions with names; if you want recursion, you have to figure out a way to let an anonymous block call 
itself !  There are no global variables, either; if you want to use the value of an expression twice, you have to put 
the expression in the program twice.  For this project, though, you’re going to abbreviate, in the interest of writing 
readable programs, by using global variables to hold the functions.  But you can’t cheat by writing a call to itself 
in the definition of a function. 
 
Snap! functions are named specially, separate from the use of variables to name other things.  Once a function is 
defined, the block that represents it visually implies calling the function, with slots ready to accept inputs. 

 
 
 

 
In this project, though, you’ll make all function creation (lambda expressions) and function calls explicit: 

 
When you see in the starter project, you’re supposed to replace it with code you write! 
 
Important:  Almost all the time, when someone drags a ringed expression into a ringed input slot, the person 
wants one ring, and doesn’t understand that the ring already in the slot will stay there, around the input 
expression.  So Snap! tries to help out by removing the outer (already provided) ring and keeping the inner (user-
made) one.  It doesn’t matter which ring is deleted except in the case of nested rings with explicit input names.  
Look at the picture of successor below.  Do this experiment:  Try to recreate it by first making an outer ring with 
input name number.  Then, separately, make another ring with input name f and drag it into the number ring.  Poof!  
Snap! did you a favor and got rid of the number ring. 
 
The secret is to make nests of rings from the inside out.  First make a ring with input name x.  Then right-click on 
that ring and choose “ringify” from the menu.  That wraps a new ring outside your x ring; give it the input name 
f.  Then ringify that one, and give the outer ring an input named number.  Now you have all the input names you 
need to build whatever function is going to be inside the three rings. 
 
But actually, you’ll equally often have to use the “unringify” option when using the result of a call as the function 
input to another call. 
 
If the only data type you’re given is functions, how do you use functions to represent numbers?  The answer is 
that the number three means to call some function repeatedly three times: f(f(f(x))).  Here’s how we could say that 
in Snap! notation: 

 
This says that the function three takes some function, which we’ll call f, as input; three returns a function of x that 
calls f  three times, starting with the value x. 
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But we don’t want to have to write explicit definitions for one, two, three, four… and so on forever.  Instead, we 
start by giving you two functions, zero and successor: 
 

 
 
See what I mean about ugly programs?  But the idea isn't that bad.  Every number is a function that takes another 
function, f, as input.  It returns a function of x that computes f(f(f(...f(x)))) with that number of calls to f.  So, in 
particular, the number zero returns a function of f that doesn't call f at all; what zero returns is the identity function 
that returns its input unmodified.  
 
We don't have to build a library of named numbers because we can make any number we want with the successor 
function, which takes a number as input and returns the next number (number +1).  Here's how it works:  Suppose 
we have number.  Then, for any function f, we can call number with argument f, and that gives us a function that 
calls f number times.  The number number +1 should be a function of f that returns a function that calls f number +1 
times.  So we just have to call f one more time.  Look in the definition of successor for the place where it calls number 
with input f, then see how it calls f with, as input, the result of calling number-of-f with input x. 
 
Note:  We are always using the name number for inputs that we know will be Church numerals.  We always use f 
 for an arbitrary function, and x for something we’re thinking of simply as data.  But there’s nothing magic about 
the names!  Just because you use the name number for an input doesn’t guarantee that your code treats it like a 
number.  You could keep the default names #1, #2, and so on, and the meaning of your program wouldn’t change. 
 
A Church numeral is always two nested functions:   
. 
 
Ex. 1: Convince yourself that 

reports a function that has the same behavior as three above. 
 
Note: To help with debugging, you can use the following function, TRY. You call it with a Church numeral and it 
reports the ordinary number that corresponds to it.  TRY isn't part of the Church numeral system, just a 
debugging tool.  That’s why its name is in capital letters, to remind you that you can’t make it part of the solution 
to a problem. 
 

 
Make sure you understand why TRY has an ordinary Snap! + block instead of calling successor. 
 
 
Ex. 2: Using only zero and successor as helpers if necessary, write a plus function that takes two numbers (that is, 
two Church numerals) and reports their sum, also as a Church numeral.  In other words, given two numbers a 
and b, you want to report a function of f that reports the function that calls f a+b times on some input x.  You can 
make plus the value of a global variable, just for convenience, but you can't use recursion in defining it.  (If you're 
thinking in terms of recursion, you're not taking advantage of what the numbers a and b mean.)   



Historical note: In traditional lambda calculus, you can't have a function of two inputs like plus. All functions take 
exactly one input.  But you can write a plus function that takes a number a as input, and reports a function that takes 
b as input and reports the sum a+b: 

 
This trick, turning a two-input function into a one-input function that returns a function of the second input, is 
called "Currying" after the logician Haskell Curry.  But you may abbreviate this way: 

 
 
Ex. 3: Similarly, write times and expt (exponentiation). 
 
 
Beyond this point you need a way to do conditional evaluation: if-then-else.  First you need Boolean (true/false) 
values: 

  
 
 
Ex. 4:  Invent zero?, our first predicate function; it takes a number (a Church numeral) as input and reports true if 
and only if the number is zero. 
 
Hint: zero? has to return true or false, that is, a function of two inputs that selects one of them.  So your block will 
include a call to the number input to zero?, and it’ll involve true and false somehow.  We provide a debugging aid: 

 

 
 
Ex. 5: Invent if-then-else.  This function has to be defined as a standard Snap! custom block, rather than by 
assigning a lambda expression to a variable.  The reason won’t be obvious until you generate a mechanism for 
recursion, quite a while from now, so we’re going to take a detour to talk about how Snap! evaluates procedure 
calls.  Take a simple function like this: 

What are the steps, in detail, that Snap! takes when you call it with, for example, this:  ? 
First, Snap! computes 2+3, getting 5.  Second, it calls square, with 5 as its input.  During this call to square, number 
has the value 5.  Third, it evaluates the body of square, which says to multiply 5 by 5.  The multiplication function 
knows only that it has to multiply 5 by 5.  It doesn’t know or care that both of those fives were computed by the 
expression 2+3.  First compute the input values, then call the function.  This sequence of steps is called applicative 
order evaluation, and it’s how most programming languages work. 
 
But applicative order doesn’t work for Snap!’s  block.  Depending on the value of its first 
input, if-then-else has to evaluate either its second input or its third input, but not both.  The block has to be called 
before its input expressions are evaluated, not after.  Why is this important?  Don’t you get the same answer either 
way?  Well, yes, if you get an answer at all, it’ll be the same answer either way.  But we’ll see in a moment that 
you might never get the answer, using applicative order evaluation.  (The alternative, in which the function is 
called with its input expressions rather than its input values, is called normal order evaluation.)  As a first step in the 
argument, imagine that one of the two alternative expressions takes a very long time to compute—the millionth 
prime number, let’s say.  Then sometimes, depending on the value of the first input, the entire computation of the 
if expression will take much longer in applicative order (in which we have to compute both alternatives before we 
get to decide which we want) than in normal order (in which if we’re lucky we don’t have to do that long 



computation at all).  A similar but more extreme case would be that one of the branches has an infinite loop; with 
applicative order evaluation the computation would always take forever, regardless of the first input, but normal 
order lets one of the alternatives, the one without the infinite loop, produce a result. 
 
The inputs to a gray-ring lambda expression in Snap! are always computed in applicative order.  That’s why you 
can’t define if-then-else the way we’re defining everything else, with 

 
But Snap! does provide a mechanism to achieve the effect of normal order evaluation in its function definitions. 
You declare the inputs to be of a Procedure type: 

 
To make this fully equivalent to normal order evaluation, the first input should be of Procedure type also, but we 
don’t have to do that because the first input is always evaluated, first thing in the if-then-else algorithm.  Also, you 
might think that first input should be of type Boolean, but it’s not going to be a Snap! Boolean, but rather a 
lambda-calculus Boolean.  All three inputs to if-then-else will be functions, because that’s the only data type we 
have! 
 
Okay, now you’re ready to finish the definition of if-then-else.  It should expect its first input to be one of the 
Boolean values we gave you on the previous page: 

 
It’ll use that input to choose one of its other inputs, which you’ll evaluate with a call block:  
(but probably not that simple…).  The call sort of undoes the wrapping of a gray ring around the input. 
 
Remember that if the expression you drag into one of those rings is a variable, Snap! will do you a favor and 
unringify it.  You’ll have to re-ringify it. 
 
After this we’re back to the usual rule, inventing new functions as explicit lambda expressions (gray rings). 
 
Ex. 6:  Beyond this point we're going to need a small data aggregate, called a "pair," basically a two-item list.  We 
need a two-input function cons to construct a pair with the two inputs as its items, and we need selectors car for 
the first item of a pair and cdr for the second item of a pair.  Here's car; you write the others. 

 
 
  



Historical note: cons, car, and cdr are the names for these functions in Lisp.  "Cons" abbreviates "construct"; the 
other two names have to do with the particuar computer model on which Lisp was first implemented, in which 
the main internal register was divided into an Address part and a Decrement part.  "Car" abbreviates "Contents of 
Address [field of the] Register."  These ridiculous-seeming names have survived over 50 years because they can 
easily be composed verbally, so the function cdaddr (“kuh DA duh der”) is cdr(car(cdr(cdr(pair))))! 
 
 
Ex. 7: (This is the hardest exercise!)  Invent predecessor, a function that takes a number number and reports the 
number number-1.  Don't worry about what it reports if its input is zero.  Hint: Our solution uses pairs. 
 
Better hint:  It involves these expressions: 

 
 
Ex. 8: Using predecessor, invent difference, a function of two numbers a and b that reports a-b. Again, don't worry 
about what it reports if a<b. 
 
Ex. 9:  Invent versions of and, or, and not that work on the Booleans given above. 
 
Ex. 10:  Using the results of the two previous exercises, invent the relational predicates lesseq?, greatereq?, 
equal?, less?, and greater?, each of which takes two Church numerals and reports a Boolean. 
 
 
Ex. 11:  (This is the other hardest exercise!)  Time to invent recursion.  That is, we need to invent a way for a 
function made with a gray ring, so it doesn't have a name and doesn't appear in the block palette, to call itself. 
This is the point at which you have to remember that putting the functions you create in global variables is just an 
abbreviation to make your code not as hideous as it would be in strict lambda calculus, which has no global 
variables.  In inventing recursion, it would be cheating to give a function a name, by putting it in a global 
variable, and then using that name to call it.  So, no set blocks in this exercise. Hint: If we don't have "Make a 
block," and we don't have "Make a variable," so there's no global naming, the only way we have to give 
something a name is to make it an input to the block.  Here’s the factorial function written that way: 
 

 
 
(This isn't a Church-numeral example; to simplify the picture and focus only on the problem of recursion, the 
ordinary Snap! arithmetic operations and if-then-else are used here. But once we have recursion invented, you'll 
use it with Church numeral arithmetic.)  What we need is a function that takes a two-input function like this one 
as its input, and reports a one-input function (whose input corresponds to the input n above) that calls this 
function with itself as its first input. 
 
(Historical note: The lambda-calculus solution to this problem is called the "Y combinator."  If you’ve heard of 
the venture capital company called that, this is where it gets its name from.) 
 
The function you’re going to write is much simpler than the official Y combinator, because reasons, but its job is 
to take a two-input function such as the picture above, and report a one-input function that (in this example) 
works like the ordinary factorial function, taking n as its input and reporting the factorial of n: 
 
 
 
 
 
  



Ex. 12: Use Y to write a factorial function for Church numerals.  That is, use your if-then-else, equal?, times, and so 
on instead of the ordinary Snap! functions.  For ease of use, put your function in a factorial variable, but don’t 
use factorial inside its definition. 

 
 
 
Ex. 13: Write a division function that returns a pair of Church numerals, one for the quotient and one for the 
remainder. 
 
To debug your function, you’ll want an easy way to make biggish Church numerals: 

 
But you’ll find that dividing 87 by something takes a long time; you’ll probably prefer an example such as 26/3. 
 
The end! You’ve made the basics of nonnegative-integer arithmetic, starting with only             and                         , as 
advertised.  For example, you should be able to write prime?, although it’d be painful. 
 
Another direction you could pursue is to create lambda-calculus rational numbers, represented as a pair of two 
Church numerals, the numerator and the denominator.  The relational operators are a bit tricky because the result of 
adding two rational numbers often isn’t a fraction in lowest terms.  So either you have to reduce all arithmetic results 
to lowest terms or you have to have relational operators that understand that 3/6 = 1/2. 
 
And then the next step is negative numbers, represented as a pair whose car is a Boolean and whose cdr is a rational 
number as defined above.  The number is negative if the Boolean is true. 
 
Extending this project to real numbers would be quite a lot harder than all of the above.  Irrational numbers are 
problematic even in normal arithmetic, because you can’t represent them exactly: √2 = 1.41421356237309… 
The problem is with those three dots.  If you can’t represent √2 exactly, how can equal? know whether one string 
of digits is really equal to another?  The value √2 + 10!"# will look a lot like √2 in the first 40 digits.  In fact, it’s 
theoretically impossible to have a representation that works for all possible real numbers; there are numbers that 
are literally not describable.  So don’t try! 

 


