
CS281B/Stat241B (Spring 2008) Statistical Learning Theory Lecture: 9

Convex loss vs. 0–1 loss

Lecturer: Peter Bartlett Scribe: Shaunak Chatterjee and Norm Aleks

1 Marginalized kernel, continued

Following up on the prior lecture, we verify that the marginalized kernel is indeed a kernel. First define a
kernel on x: k((x, h), (x′, h′)). (For example, x could be a DNA sequence and h, the hidden variable, could
be the role it plays in the genome.) Using Pr(x, h) and Pr(h|x),

km(x, x′) =
∑
h,h′

k((x, h), (x′, h′)) Pr(h|x) Pr(h′|x′)

=
∑
h,h′

k((x, h), (x′, h′))k1((h, x), (h′, x′)) (k1 is a kernel on (x, h) pairs)

=
∑
h,h′

k2((h, x), (h′, x′)) (The product of two kernels is also a kernel)

=
∑
h,h′

Φ(h, x)T Φ(h′, x′)

=

[∑
h

Φ(h, x)

]T [∑
h′

Φ(h′, x′)

]
= Φ̃(x)T Φ̃(x′)

= k̃(x, x′)

2 0–1 loss vs. convex loss

Or, what’s the impact of using a computationally convenient loss function?

The basic optimization problem we are working with is:

min
w

1
2
‖w‖2 +

C

n

n∑
i=1

φ(yiw
T xi)

where φ is any convex function; so far, we have been using the hinge function, φ(α) = (1 − α)+ (where
x+ = max(0, x)), as our example. In the optimization, the first addend increases with the complexity of the
function, and the second decreases with a better fit to the data. This is an example of a regularized empirical
risk criterion, which in general has the form

Regularized empirical risk = (loss of f on sample) + (complexity penalty on f)
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RKHS H

Br

Figure 1: We are working with functions
within this ball, of radius Br, in the Hilbert
space.

Think of the regularized empirical risk as equivalent to

min
f

(loss of f on sample) s.t. complexity (f) ≤ B

There is a trade-off between the approximation and estimation errors: as we choose a more complex F (for
example, larger radius B), we have a richer function class, and so can obtain smaller approximation error.
However, at the same time, the estimation error—that is, the difference between the performance of the
function that we choose and the performance of the best function in the class—becomes larger. This is
illustrated in Figure 2.

For today we are focusing only on the difference in the expectation of the losses, and considering what
happens when we replace the 0-1 loss, which is of interest in pattern classification, with a convex loss. That
is, we might wish to choose f ∈ F , where F = {f ∈ H : ‖f‖H ≤ B}, to minimize the risk,

Pr(Y 6= f(X)) = E1[yi 6= f(xi)]

For computational convenience we work with a convex loss function rather than the indicator/step loss
function. That is, we consider:

min
f∈F

E φ(Y f(X)) vs. min
f∈F

E 1[Y 6= sign(f(X))]

approx-
imation

error

risk-empirical risk,
or "estimation error"

B, C increasing ->
more complex functions allowed

Figure 2: A look at the trade-off between ap-
proximation error and estimation error for
increasing values of Br and C.
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This naturally leads to an interesting question: when does minimization of Rφ(f) (which equals E φ(Y f(x)))
lead to small R(f) (which equals E 1[Y 6= sign(f(X)))?

Observation: If φ(α) ≥ 1[α ≤ 0] (that is, the loss according to φ is always at least the true loss), then
R(f) ≤ Rφ(f). (This is a weak observation if R∗ = inf R(f) > 0.)

If it is the case that R∗ > 0, what more can we say? When does Rφ(f) = R∗
φ(f) (= inf Rφ(f)) imply that

R(f) = R∗?

Let’s consider a fixed x ∈ X. Define η(x) = Pr(Y = 1|X = x).

Rφ(f) = E φ(Y (f(x)))
= E E [φ(Y f(x))|X]

and
E(φ(Y f(x))|X = x) = η(x)φ(f(x)) + (1− η(x))φ(−f(x))

Define the optimal value of this criterion as

H : [0, 1] → R
H(η) = inf

α∈R
(ηφ(α) + (1− η)φ(−α))

(For example, substituting in the hinge function for φ, we get H(η) = 2 min(η, 1− η)). Now let us define:

α∗(η) = arg min
α∈R∪{±∞}

(ηφ(α) + (1− η)φ(−α))

For example, using the hinge function for φ, we get:

α∗(η) = sign(η − 1
2
).

Choice of the wrong sign of α, that is, different from sign(η − 1/2), must result in a value of ηφ(α) + (1 −
η)φ(−α) that is larger than H(η) (otherwise minimization won’t yield the correct answer), so we first define
an optimizer with the “wrong sign”:

H−(η) = inf
α s.t. α(η−1/2)≤0

(ηφ(α) + (1− η)φ(−α))

Definition. φ is “classification-calibrated” if η 6= 1
2 ⇒ H−(η) > H(η)

Theorem 2.1. For φ convex and classification-calibrated,

∀f,Ψ(R(f)−R∗) ≤ Rφ(f)−R∗
φ , where

Ψ(θ) = H−
(

1 + θ

2

)
−H

(
1 + θ

2

)
= φ(0)−H

(
1 + θ

2

)

Also, Ψ(0) > 0 iff φ > 0.
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For example, with the hinge function,

Ψ(θ) = 1−H
(

1 + θ

2

)
= 1− 2 min

(
1 + θ

2
,
1− θ

2

)
= 1− 2

(
1
2

+
1
2

min(θ,−θ)
)

= |θ|

Proof. Recall from Lecture 1 that

R(f)−R∗ = E
[
1

[
sign(f(x)) 6= sign

(
η(x)− 1

2

)]
|2η(x)− 1|

]
By Jensen’s inequality,

Ψ(R(f)−R∗) ≤ E Ψ
(

1
[
sign(f(x)) 6= sign

(
η(x)− 1

2

)]
|2η(x)− 1|

)
because φ(0) = 0

= E
[
1

[
sign(f(x)) 6= sign

(
η(x)− 1

2

)]
Ψ(|2η(x)− 1|)

]
by φ’s def. and symmetry of H, H− around

1
2

= E
[
1

[
sign(f(x)) 6= sign

(
η(x)− 1

2

)]
(H−(η(x))−H(η(x)))

]
≤ E [φ(Y f(x))−H(η(x))]
= Rφ(f)−R∗

φ by definitions of Rφ(f) and H

The final inequality follows because:

• if sign(f) 6= sign
(
η(x)− 1

2

)
, then E [φ(Y f(x))|x] ≥ H−(η(x));

• otherwise, E [φ(Y f(x))|x] ≥ H(η(x)).

Lemma 2.2. For φ convex, φ is classification-calibrated iff

1. φ is differentiable at 0

2. φ′(0) < 0

Proof. If conditions (1) and (2) are true, it is easy to verify that the convex function φ is classification-
calibrated.

Now for the “only if” part:

Suppose φ is not differentiable at zero, then it can be shown that even small perturbations of η around
η = 0.5 will not move the minimum away from φ(0). This is illustrated in the figure when η = 0.4 and
η = 0.6, H(η) = H−(η) = φ(0), which obviously violates our definition of φ being classification calibrated.
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Figure 3: Convex φ where φ is not differentiable at 0.

It is worthwhile to consider the possibility of making the RHS of Theorem 2.1 closer to zero, since it is the
upper bound on the function of the excess risk.

Notice that Rφ(f) − R∗
φ will decrease monotonically as we increase the radius of the ball in Hilbert space,

allowing more and more functions to be considered.

Rφ(fn) − R∗
φ = (Rφ(fn)− inf

f∈Br

Rφ(f)) + ( inf
f∈Br

Rφ(f)−R∗
φ)


