Variational Methods

Peter Bartlett
Announcements

- Poster sessions will be on Tue Dec 1 (Stat241A) and Thu Dec 3 (CS281A), here, 11-12:30. Please attend both sessions.

- Project reports are due at 5pm on Friday December 4. In the box outside 723 SD Hall. This deadline is firm.
Key ideas of this lecture

- Variational approach: Inference as optimization.

- Mean field algorithm.
 - Approximate \mathcal{M} with smaller set $\hat{\mathcal{M}}$.
 - Coordinate ascent is mean field algorithm.
 - $\hat{\mathcal{M}}$ is not convex.
 - Equivalent to finding closest (KL) μ in $\hat{\mathcal{M}}$.
 - Example: Gaussian mean field.

- Loopy belief propagation.
 - Approximate \mathcal{M} with larger tree-based $\hat{\mathcal{M}}$.
 - Approximate $H(\mu)$ with $H_{\text{Bethe}}(\mu)$.
 - Updates to find stationary points of Lagrangian: Loopy belief propagation.
Variational Methods

- Represent quantity of interest as solution to (or value of) an optimization problem.
- Then approximate the optimization problem:
 - Approximate the constraint set.
 - Approximate the criterion.
Variational Approach: Ingredients

1. Exponential family representation of graphical model.
2. Mean parameters μ correspond to desired marginal (conditional) clique probabilities.
3. Realizable mean parameter set \mathcal{M} (marginal polytope).
4. Inference as optimization problem via conjugate dual representation of log normalization.
Variational Approach: Ingredients

Exponential family:

\[p(x) = h(x) \exp \left(\langle \theta, \phi(x) \rangle - A(\theta) \right). \]

Example: pairwise MRF \((x_v \in \{0, 1, \ldots, r - 1\})\).

\[p(x) = \exp \left(\sum_{v \in V} \sum_i \theta_{v,i} 1[x_v = i] \right. \]

\[+ \sum_{\{u,v\} \in E} \sum_{i,j} \theta_{u,i;v,j} 1[x_u = i] 1[x_v = j] \right), \]

for \(\theta \in \Omega = \{ \theta : A(\theta) < \infty \} = \mathbb{R}^{|V| + r^2|E|}. \)
Variational Approach: Ingredients

1. Exponential family representation of graphical model.
2. Mean parameters μ correspond to desired marginal (conditional) clique probabilities.
3. Realizable mean parameter set \mathcal{M} (marginal polytope).
4. Inference as optimization problem via conjugate dual representation of log normalization.
Variational Approach: Ingredients

Define the set \mathcal{M} of realizable mean parameters (marginal polytope) as

$$
\mathcal{M} = \left\{ \mu \in \mathbb{R}^d : \exists p \text{ s.t. } \forall \alpha, \mathbb{E}_p[\phi_\alpha(X)] = \mu_\alpha \right\}
$$

if \mathcal{X} is finite:

$$
= \text{co}\{\phi(x) : x \in \mathcal{X}\},
$$

where co represents the convex hull.

Example: pairwise MRF $(x_v \in \{0, 1, \ldots, r - 1\})$.

$$
\mu_v = \mathbb{E}_p 1[X_v = i] = \Pr(X_v = i)
$$

$$
\mu_{u,v} = \mathbb{E}_p 1[x_u = i] 1[x_v = j] = \Pr(X_u = i, X_v = j).
$$
Variational Approach: Ingredients

1. Exponential family representation of graphical model.
2. Mean parameters μ correspond to desired marginal (conditional) clique probabilities.
3. Realizable mean parameter set \mathcal{M} (marginal polytope).
4. Inference as optimization problem via conjugate dual representation of log normalization.
The conjugate dual of the log normalization A is

$$A^*(\mu) = \sup_{\theta \in \Omega} (\langle \mu, \theta \rangle - A(\theta)) = -H(p_{\theta(\mu)}),$$

where $\mu \in \mathbb{R}^d$ for $\Omega \subseteq \mathbb{R}^d$ and $H(p)$ is the entropy. For $\theta \in \Omega$,

$$A(\theta) = \sup_{\mu \in \mathcal{M}} (\langle \theta, \mu \rangle - A^*(\mu))$$

$$= \sup_{\mu \in \mathcal{M}} (\langle \theta, \mu \rangle + H(p_{\theta(\mu)})).$$
Variational Approach: Ingredients

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \left(\langle \theta, \mu \rangle + H(p_{\theta(\mu)}) \right). \]

Solving this optimization problem gives the value \(A(\theta) \) and the mean parameters \(\mu = \mathbb{E}_{\theta}[\phi(X)] \).

These correspond to the expectation of the sufficient statistics. (conditional expectation, if evidence has been incorporated).

For example, for discrete pairwise MRFs, they give the marginal singleton and pairwise distributions.
Represent quantity of interest as solution to (or value of) an optimization problem:

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \left(\langle \theta, \mu \rangle + H(p_{\theta(\mu)}) \right). \]

Then approximate the optimization problem:
- Approximate the constraint set, \(\mathcal{M} \).
- Approximate the criterion, \(\langle \theta, \mu \rangle + H(p_{\theta(\mu)}) \).
Key ideas of this lecture

- Variational approach: Inference as optimization.
- Mean field algorithm.
 - Approximate \mathcal{M} with smaller set $\hat{\mathcal{M}}$.
 - Coordinate ascent is mean field algorithm.
 - $\hat{\mathcal{M}}$ is not convex.
 - Equivalent to finding closest (KL) μ in $\hat{\mathcal{M}}$.
 - Example: Gaussian mean field.
- Loopy belief propagation.
 - Approximate \mathcal{M} with larger tree-based $\hat{\mathcal{M}}$.
 - Approximate $H(\mu)$ with $H_{\text{Bethe}}(\mu)$.
 - Updates to find stationary points of Lagrangian: Loopy belief propagation.
Consider the Ising model:

\[x_u \in \{0, 1\}. \]

\[\psi_{u,v}(x_u, x_v) = \exp (\theta_{u,v} x_u x_v), \]

\[\psi_v(x_v) = \exp (\theta_v x_v). \]

\[p(x) = \exp \left(\sum_{v \in V} \theta_v x_v + \sum_{\{u,v\} \in E} \theta_{u,v} x_u x_v - A(\theta) \right). \]
Mean Field Algorithm

- Consider Gibbs sampling, and replace X_u by its expectation:

$$\mu_v := \frac{1}{1 + \exp \left(-\theta_v - \sum_{u \in N(v)} \theta_{v,u} \mu_u \right)}.$$

- Naive mean field algorithm for the Ising model.
Consider the optimization problem

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \left(\langle \theta, \mu \rangle + H(p_{\theta(\mu)}) \right).$$

If we approximate \mathcal{M} with the smaller set:

$$\hat{\mathcal{M}} = \{ \mu \in \mathcal{M} : \mu_{u,v} = \mu_u \mu_v \}.$$

Then we have

$$A(\theta) \geq \sup_{\mu \in \hat{\mathcal{M}}} \left(\sum_{v \in V} \theta_v \mu_v + \sum_{\{u,v\} \in E} \theta_{u,v} \mu_u \mu_v
- \sum_{v \in V} (\mu_v \log \mu_v + (1 - \mu_v) \log(1 - \mu_v)) \right).$$
Variational Interpretation

- Coordinate ascent in μ_v gives

$$\mu_v = \frac{1}{1 + \exp \left(-\theta_v - \sum_{u \in N(v)} \theta_{u,v} \mu_u \right)},$$

which is the mean field update.

- The criterion is strictly concave in each coordinate μ_v.

- But it is not a concave maximization problem...
Mean Field \hat{M} is Not Convex

\[M = \text{co}\{\phi(x) : x \in X\}, \]
\[\hat{M} = \{\mu \in M : \mu_{u,v} = \mu_u \mu_v\}. \]

- $\hat{M} \subseteq M$.
- $\phi(x) \in \hat{M}$:
 Place all mass on x. For such a distribution, $\mu_v \in \{0, 1\}$, and so $\mu_{u,v} = \mu_u \mu_v$.
- But M is the convex hull of these points in \hat{M}.
- So if \hat{M} is a proper subset of M, it must be nonconvex.
Key ideas of this lecture

- Variational approach: Inference as optimization.
- Mean field algorithm.
 - Approximate \mathcal{M} with smaller set $\hat{\mathcal{M}}$.
 - Coordinate ascent is mean field algorithm.
 - $\hat{\mathcal{M}}$ is not convex.
 - Equivalent to finding closest (KL) μ in $\hat{\mathcal{M}}$.
 - Example: Gaussian mean field.
- Loopy belief propagation.
 - Approximate \mathcal{M} with larger tree-based $\hat{\mathcal{M}}$.
 - Approximate $H(\mu)$ with $H_{\text{Bethe}}(\mu)$.
 - Updates to find stationary points of Lagrangian: Loopy belief propagation.
Mean Field and KL-Divergence

For the exponential family

\[p(x) = h(x) \exp (\langle \theta, \phi(x) \rangle - A(\theta)) , \]

consider two parameters \(\theta^1 \) and \(\theta^2 \).

The KL-divergence between the distributions \(p_{\theta^1} \) and \(p_{\theta^2} \) (with mean parameters \(\mu^1 \) and \(\mu^2 \)) is

\[
D(\theta^1; \theta^2) = \mathbb{E}_{\theta^1} \log \frac{p_{\theta^1}(X)}{p_{\theta^2}(X)}
\]

\[
= \langle \mu^1, \theta^1 - \theta^2 \rangle - A(\theta^1) + A(\theta^2)
\]

\[
= A(\theta^2) - (A(\theta^1) + \langle \mu^1, \theta^2 - \theta^1 \rangle) .
\]
Mean Field and KL-Divergence

\[D(\theta^1; \theta^2) = A(\theta^2) - \left(A(\theta^1) + \langle \mu^1, \theta^2 - \theta^1 \rangle \right). \]

Using conjugate duality,

\[A^*(\mu^1) = \sup_{\theta \in \Omega} \left(\langle \mu^1, \theta \rangle - A(\theta) \right) \]
\[= \langle \mu^1, \theta^1 \rangle - A(\theta^1), \]

we have

\[D(\theta^1; \theta^2) = A(\theta^2) - \left(\langle \mu^1, \theta^2 \rangle - A^*(\mu^1) \right). \]
\[D(\theta^1; \theta^2) = A(\theta^2) - (\langle \mu^1, \theta^2 \rangle - A^*(\mu^1)) \].

So choosing \(\mu \in \hat{\mathcal{M}} \) to maximize

\[\langle \mu^1, \theta \rangle - A(\theta) \]

corresponds to choosing the distribution \(\mu \) from the approximating set \(\hat{\mathcal{M}} \) to minimize the KL-divergence

\[D(\mu; \theta) = A(\theta) - (\langle \mu, \theta \rangle - A^*(\mu)) \].

That is, the mean field algorithm aims for the best approximation (in terms of KL-divergence) in \(\hat{\mathcal{M}} \).
Key ideas of this lecture

- Variational approach: Inference as optimization.
- Mean field algorithm.
 - Approximate \mathcal{M} with smaller set $\hat{\mathcal{M}}$.
 - Coordinate ascent is mean field algorithm.
 - $\hat{\mathcal{M}}$ is not convex.
 - Equivalent to finding closest (KL) μ in $\hat{\mathcal{M}}$.
 - Example: Gaussian mean field.
- Loopy belief propagation.
 - Approximate \mathcal{M} with larger tree-based $\hat{\mathcal{M}}$.
 - Approximate $H(\mu)$ with $H_{\text{Bethe}}(\mu)$.
 - Updates to find stationary points of Lagrangian: Loopy belief propagation.
Another mean field example: Gaussian MRF.

Mean parameters:

\[\mu = \mathbb{E}X \in \mathbb{R}^d, \]
\[\Sigma = \mathbb{E}XX' \in S_+^d. \]

Approximate with disconnected graph (empty edge set):

\[\mathcal{M} = \{ (\mu, \Sigma) : \Sigma - \mu\mu' = \text{diag}(\Sigma - \mu\mu') \}
\]
\[\Sigma - \mu\mu' \geq 0 \}. \]
Gaussian Mean Field

Entropy for a Gaussian is

\[
\frac{1}{2} \ln \left((2\pi e)^d |\Sigma - \mu \mu'| \right).
\]

Since covariance matrix is diagonal, we have

\[
A^*(\mu, \Sigma) = -\frac{d}{2} \ln(2\pi e) - \frac{1}{2} \sum_{i=1}^{d} \ln (\Sigma_{ii} - \mu_i^2).
\]

Optimization problem becomes

\[
\max_{(\mu, \Sigma) \in \hat{\mathcal{M}}} \left(\langle \theta, \mu \rangle + \langle \Theta, \Sigma \rangle + \frac{1}{2} \sum_{i=1}^{d} \ln (\Sigma_{ii} - \mu_i^2) \right).
\]
Gaussian Mean Field

Calculus shows that fixed point satisfies, for all $i \in V$,

$$
\Theta_{ii} = -\frac{1}{2(\mu_{ii} - \mu_i^2)},
$$

$$
\frac{\mu_i}{2(\mu_{ii} - \mu_i^2)} = \theta_i + \sum_{j \in N(i)} \theta_{ij} \mu_j.
$$

Iteration

$$
\mu_i := -\frac{1}{\Theta_{ii}} \left(\theta_i + \sum_{j \in N(i)} \Theta_{ij} \mu_j \right)
$$

solves these fixed point equations (provided $-\Theta$ is diagonally dominant):

corresponds to Gauss-Seidel iteration.
Key ideas of this lecture

- Variational approach: Inference as optimization.
- Mean field algorithm.
 - Approximate \mathcal{M} with smaller set $\hat{\mathcal{M}}$.
 - Coordinate ascent is mean field algorithm.
 - $\hat{\mathcal{M}}$ is not convex.
 - Equivalent to finding closest (KL) μ in $\hat{\mathcal{M}}$.
 - Example: Gaussian mean field.
- Loopy belief propagation.
 - Approximate \mathcal{M} with larger tree-based $\hat{\mathcal{M}}$.
 - Approximate $H(\mu)$ with $H_{\text{Bethe}}(\mu)$.
 - Updates to find stationary points of Lagrangian: Loopy belief propagation.
Loopy Belief Propagation

Consider a pairwise MRF:

- Graph $G = (V, E)$.
- $X_v \in \mathcal{X} := \{0, \ldots, r - 1\}$ for $v \in V$.
- Sufficient statistics are indicators for singleton and pairwise marginals (nodes and edges):

$$1[x_v = i] \quad v \in V, \ i \in \mathcal{X}$$

$$1[x_u = i, x_v = j] \quad \{u, v\} \in E, \ i, j \in \mathcal{X}$$
Loopy Belief Propagation

Exponential representation:

\[
p(x) = \exp \left(\sum_{v \in V} \sum_{i} \theta_{v,i} 1[x_v = i] \right) \\
+ \sum_{\{u,v\} \in E} \sum_{i,j} \theta_{u,i;v,j} 1[x_u = i] 1[x_v = j] \\
= \exp \left(\sum_{v \in V} \theta_v(x_v) + \sum_{\{u,v\} \in E} \theta_{u,v}(x_u, x_v) \right),
\]

where \(\theta_v(x_v) = \sum_{i \in X} \theta_{v,i} 1[x_v = i] \),

\[
\theta_{u,v}(x_u, x_v) = \sum_{i,j \in X} \theta_{u,i;v,j} 1[x_u = i] 1[x_v = j].
\]
Loopy Belief Propagation

An alternative protocol for belief propagation in trees:

1. \(m^{(0)}_{v,u}(x_u) = 1 \) for all \(\{u, v\} \in E \).

2. At iteration \(t = 1, 2, \ldots \),

\[
 m^{(t)}_{v,u}(x_u) = \sum_{x_v} \exp (\theta_v(x_v) + \theta_{u,v}(x_u, x_v)) \prod_{w \in N(v) \setminus \{u\}} m^{(t-1)}_{w,v}(x_v)
\]

- This protocol makes sense for arbitrary graphs: pretend that the graph is a tree.
- If there are a few long cycles, we might expect this to work well.
Variational Interpretation

If we

1. Approximate the marginal polytope \mathcal{M} with a tree-based outer bound $\hat{\mathcal{M}}$,

2. Approximate the entropy $-A^*(\mu)$ with something tractable (the Bethe approximation),

3. Iteratively update variables to find stationary points of the Lagrangian,

then we arrive at loopy belief propagation.
Mean Parameters

\[\mu_v(x_v) := \sum_{i \in \mathcal{X}} \mu_{v,i} \mathbb{1}[x_v = i], \]

\[\mu_{u,v}(x_u, x_v) := \sum_{i,j \in \mathcal{X}} \mu_{u,i,v,j} \mathbb{1}[x_u = i] \mathbb{1}[x_v = j]. \]

\[\mathcal{M} = \left\{ \mu : \mu_v(x_v) = \sum_{x_u, u \neq v} p(x), \mu_{u,v}(x_u, x_v) = \sum_{x_w, w \neq u, v} p(x) \right\}. \]
Tree-Based Outer Bound on \mathcal{M}

$$\hat{\mathcal{M}} = \left\{ \tau : \tau \geq 0, \sum_{x_v} \tau_v(x_v) = 1, \sum_{x_u} \tau_{u,v}(x_u, x_v) = \tau_v(x_v) \right\}.$$

- For any G, $\mathcal{M} \subseteq \hat{\mathcal{M}}$.
- If G is a tree, there is a junction tree, so local consistency implies global consistency: $\hat{\mathcal{M}} = \mathcal{M}$.
Variational Interpretation

1. Approximate the marginal polytope \mathcal{M} with a tree-based outer bound $\hat{\mathcal{M}}$,

2. Approximate the entropy $-A^*(\mu)$ with something tractable (the Bethe approximation),

3. Iteratively update variables to find stationary points of the Lagrangian.
Bethe Entropy Approximation

\[H_{\text{Bethe}}(\mu) = \sum_{v \in V} H_v(\mu_v) - \sum_{\{u,v\} \in E} I_{u,v}(\mu_{u,v}), \]

where \(H_v \) is the single node entropy,

\[H_v(\mu_v) = -\sum_{x_v} \mu_v(x_v) \log \mu_v(x_v), \]

and \(I_{u,v} \) is the mutual information between \(X_u \) and \(X_v \),

\[I_{u,v}(\mu_{u,v}) = D(\mu_{u,v}; \mu_u \mu_v) \]

\[= -\sum_{x_u, x_v} \mu_{u,v}(x_u, x_v) \log \frac{\mu_{u,v}(x_u, x_v)}{\mu_u(x_u) \mu_v(x_v)}. \]
Bethe Entropy Approximation

Recall that, if an undirected graph G has a junction tree, then the joint distribution can be expressed as

$$p(x) = \frac{\prod_{c \in C} p(x_C)}{\prod_{s \in S} p(x_s)},$$

where C is the set of cliques and S the set of separators. This implies that if G is a tree, we can write

$$p(x) = \prod_{v \in V} \mu_v(x_v) \prod_{\{u,v\} \in E} \frac{\mu_{u,v}(x_u, x_v)}{\mu_u(x_u) \mu_v(x_v)}.$$
Bethe Entropy Approximation

If G is a tree,

$$p(x) = \prod_{v \in V} \mu_v(x_v) \prod_{\{u,v\} \in E} \frac{\mu_{u,v}(x_u, x_v)}{\mu_u(x_u) \mu_v(x_v)}.$$

So for a tree, we can write the entropy as

$$H(\mu) = -\sum_x p(x) \log p(x)$$

$$= \sum_{v \in V} H_v(\mu_v) - \sum_{\{u,v\} \in E} I_{u,v}(\mu_{u,v})$$

$$= H_{\text{Bethe}}(\mu).$$
Bethe Variational Problem

1. Approximate the marginal polytope \mathcal{M} with a tree-based outer bound $\tilde{\mathcal{M}}$,

2. Approximate the entropy $-A^*(\mu)$ with something tractable (the Bethe approximation).

$$\max_{\tau \in \tilde{\mathcal{M}}} \left(\langle \theta, \tau \rangle + \sum_{v \in V} H_v(\mu_v) - \sum_{\{u,v\} \in E} I_{u,v}(\tau_{u,v}) \right).$$
Variational Interpretation

1. Approximate the marginal polytope \mathcal{M} with a tree-based outer bound $\hat{\mathcal{M}}$,

2. Approximate the entropy $-A^*(\mu)$ with something tractable (the Bethe approximation),

3. Iteratively update variables to find stationary points of the Lagrangian.
Marginalization constraints:

\[C_{u,v}(x_v) := \tau_v(x_v) - \sum_{x_u} \tau_{u,v}(x_u, x_v). \]

Lagrangian:

\[\mathcal{L}(\tau; \lambda) = \langle \theta, \tau \rangle + \sum_{v \in V} H_v(\mu_v) - \sum_{\{u,v\} \in E} I_{u,v}(\tau_{u,v}) \]

\[+ \sum_{\{u,v\} \in E} \left(\sum_{x_v} \lambda_{u,v}(x_v) C_{u,v}(x_v) + \sum_{x_u} \lambda_{v,u}(x_u) C_{v,u}(x_u) \right) \]
Lagrangian Formulation

Taking partial derivatives w.r.t. τ_v and $\tau_{u,v}$, and setting to 0 gives

$$\tau_v(x_v) \propto \exp(\theta_v(x_v)) \prod_{u \in N(v)} \exp(\lambda_{u,v}(x_v))$$

$$\tau_{u,v}(x_u, x_v) \propto \exp(\theta_u(x_u) + \theta_v(x_v) + \theta_{u,v}(x_u, x_v))$$

$$\times \prod_{w \in N(u) \setminus \{v\}} \exp(\lambda_{w,u}(x_u)) \prod_{z \in N(v) \setminus \{u\}} \exp(\lambda_{z,v}(x_v))$$

Consider the messages $m_{v,u}(x_u) = \exp(\lambda_{v,u}(x_u))$, set $C_{v,u}(x_u) = 0$, and solve to obtain the loopy belief propagation update rule.
Lagrangian Formulation

Messages $m_{v,u}(x_u) = \exp(\lambda_{v,u}(x_u))$ are updated via

$$m_{v,u}(x_u) := \sum_{x_v} \exp(\theta_v(x_v) + \theta_{u,v}(x_u, x_v)) \prod_{w \in N(v) \setminus \{u\}} m_{w,v}(x_v).$$

This is loopy belief propagation.
Key ideas of this lecture

- Variational approach: Inference as optimization.
- Mean field algorithm.
 - Approximate \mathcal{M} with smaller set $\hat{\mathcal{M}}$.
 - Coordinate ascent is mean field algorithm.
 - $\hat{\mathcal{M}}$ is not convex.
 - Equivalent to finding closest (KL) μ in $\hat{\mathcal{M}}$.
 - Example: Gaussian mean field.
- Loopy belief propagation.
 - Approximate \mathcal{M} with larger tree-based $\hat{\mathcal{M}}$.
 - Approximate $H(\mu)$ with $H_{\text{Bethe}}(\mu)$.
 - Updates to find stationary points of Lagrangian: Loopy belief propagation.
Announcements

- Poster sessions will be on Tue Dec 1 (Stat241A) and Thu Dec 3 (CS281A), here, 11-12:30. Please attend both sessions.

- Project reports are due at 5pm on Friday December 4. In the box outside 723 SD Hall. This deadline is firm.