Vision-realistic Rendering: Simulation of the Scanned
Foveal Image with Elimination of Artifacts due to
Occlusion and Discretization

Brian A. Barsky

Computer Science Division and School of Optometry
University of California, Berkeley, California, 94720-26, U.S.A.
bar sky@s. ber kel ey. edu
http://ww. cs. berkel ey. edu/ ~bar sky

Abstract. We introduce the concept afision-realistic rendering — the com-
puter generation of synthetic images that incorporate llagacteristics of a par-
ticular individual’s entire optical system. Specificatlyis paper develops a method
for simulating the scanned foveal image from wavefront ddtactual human
subjects, and demonstrates those methods on sample images.

First, a subject’'s optical system is measured by a Shackatdan wavefront
aberrometry device. This device outputs a measured wauefroich is sampled
to calculate an object space point spread function (OSP3IE) OSPSF is then
used to blur input images. This blurring is accomplished tBating a set of
depth images, convolving them with the OSPSF, and finallypmsiting to form
a vision-realistic rendered image.

Although processing in image space allows an increase edsplee images may
have artifacts introduced due ¢oclusion or discretization. Two approaches for
object identification to properly blur the scene are disedss

Applications of vision-realistic rendering in computeraghics as well as in op-
tometry and ophthalmology are discussed.

keywords vision-realistic rendering, optics, ray tragimgage synthesis, human
visual system, blur, optometry, ophthalmology, LASIK, puBoint Spread Func-
tion (PSF),

1 Introduction

After the development of the fundamentals of raster grapimniche 1970’s, advances
in computer graphics in the 1980’s were dominated by thetdoephotorealistic ren-
dering, and attention turned toon-photorealistic rendering in the 1990's. For the first
decade of the the 21st century, we propose to extend thisitm-realistic rendering
(VRR). VRR is the simulation of the actual human vision of atigalar subject — not
merely a model of vision, but the generation of images thadriporate characteristics
of a particular individual’'s optical system.

Such an ambitious undertaking will require the integratdmany fields of study,
beyond the traditional ones for computer graphics, suchhgsiplogical optics, human
visual perception, psychophysics of vision, visual netggiology, human color vision,
binocular vision, visual sensory mechanisms, etc.



Fig. 1. Vision-realistic rendered image simulating vision basadotual wavefront data from a
patient with keratoconus.

To embark upon this endeavor, we begin with the problem ofikiting the retinal
image formed by the optics of the eye. Since the goal is tolsitewision of an actual
human subject, not just to use a model, we need data abouptios of the subject’s
eye.

Ideally, we would like to have data about the aberrationshebé optics for each
photoreceptor across the retina. That is, given a gazetitingeve would like to trace a
ray from each photoreceptor, through the optical strustofehe eye such as the inter-
nal crystalline lens and cornea, out into the environmend, measure the aberrations
for that ray, including whatever would arise given the cotr@ccommodative state of
the crystalline lens of the eye.

Unfortunately, such capability does not exist at the presiere. That deficiency
notwithstanding, it is exciting to note that we can achiemeapproximation to such
measurements using recently-developed technology ntetiay the goal of improv-
ing laser corneal photoreactive vision correction suggesuch as LASIK (laser in-
situ keratomileusis). This technologwigsvefront aberrometry, that is, instruments that
measure the wavefront emerging from the eye and quantifgrteunt of each different
kind of optical aberration present. The limitation is tHa¢ instrument does so at only
one point in the retina.

However, that limitation is not nearly as much of a problent azay seem at “first
glance”. The reason is that the arrangement of photorecepicthe retina is not at all
the uniform structure that we are used to in raster graphierevpixels are arranged
in neat, rectangular arrays. Rather, the cones are densekeg in a small area in the
middle of the cornea, called the fovea, and are much morsslyarranged towards the
periphery. The fovea is approximately 600 microns wide armends an angle of view
of about two degrees. When one looks at an object, the eyéeisted such that light
comes to a focus in this foveal region of the retina. Consetiyéf we use wavefront



aberrometry to measure the aberrations present for vismpaint in this foveal region,
we will have a reasonable first approximation to the imagegieed by the subject.

The reason that this approximation works so well is that wheking at a scene, a
viewer naturally and involuntarily quickly scans around itene at different objects. At
any instant, the viewer is focused at only one object, usigly fesolution foveal vision.
However, by scanning around the scene, the viewer gains ibleading impression
that the entire scene has been viewed in this high resolvigion. But at any instant,
in fact, it is only the object in the center of visual field theseen in high resolution.
The periphery of the scene is really being viewed in much towsolution vision, even
though that is not evident.

Ergo, our approach is to obtain the wavefront aberrometmpfa point in the fovea,
and then to simulate the vision as if the aberrations werstenhacross the visual field.

This paper describes a pipeline to simulate the scannedfawage from wave-
front data of actual human subjects, and shows some examplges. These are the
first images in computer graphics that are generated on #is bfthe specific optical
characteristics of actual individuals.

2 Optometry and Ophthalmology Motivation

In practice poor visual performance is often attributed itopde blur; however, our
technique enables the generation of vision-realistic eesdl images and animations
that demonstrate specific defects in how a person sees. Biagfes of simulated vi-
sion could be shown to an individual’'s eye care cliniciandowey the specific visual
anomalies of the patient. Doctors and patients could besgdd@bout particular vision
disorders by viewing images that are generated using thesopftvarious ophthalmic
conditions such akeratoconus (Figure 1) andnonocular diplopia.

One of the most compelling applications is in the contextision correction using
laser corneal refractive eye surgeries such as PRK (pHodotive keratectomy) and
LASIK (laser in-situ keratomileusis). Currently, in the ithd States alone, a million
people per year choose to undergo this elective surgery. 8gsaring subjects pre-
operatively and post-operatively, our technique coulddelito convey to doctors what
the vision of a patient is like before and after surgery (Fég20 and 21). In addition,
accurate and revealing medical visualizations of predigisual acuity and of simu-
lated vision could be provided by using modeled or adjustadefront measurements.
Potential candidates for such surgery could view these @n&g enable them to make
more educated decisions regarding the procedure. Stithan@application would be
to show such candidates some of the possible visual anmsthi¢ could arise from
the surgery, such as glare at night. With the increasing lpoipgi of these surgeries,
perhaps the current procedure which has patients sign &cbftsm that can be dif-
ficult for a layperson to understand fully could be suppletedrby the viewing of a
computer-generated animation of simulated vision showliregpossible visual prob-
lems that could be engendered by the surgery.



3 Previous and Related Work

For a discussion of camera models and optical systems useariputer graphics, the
reader is referred to a pair of papers by Barsky et al. whergebhniques have been
separated into object space [1] and image space [2] techsiqu

The first synthetic images with depth of field were computedPloymesil and
Chakravarty [3] who convolved images with depth-based blters. However, they
ignored issues relating to occlusion, which Shinya [4] sujoently addressed using a
ray distribution buffer. Rokita [5] achieved depth of fieldrates suitable for virtual re-
ality applications by repeated convolution wittkx3 filters and also provided a survey
of depth of field techniques [6]. Although we are also conirghimages with blur fil-
ters that vary with depth, our filters encode the effects efehtire optical system, not
just depth of field. Furthermore, since our input consistsaaf-dimensional images,
we do not have the luxury of a ray distribution buffer. Consamtly, we handle the oc-
clusion problem by the techniques described in Section @rarmbre detail by Barsky
etal. [7] [8].

Stochastic sampling techniques were used to generate smatiedepth of field as
well as motion blur by Cook et al. [9], Dippe and Wold [10], aoek et al. [11]. More
recently, Kolb et al. [12] described a more complete camema model that addresses
both the geometry and radiometry of image formation. We assostochastic sampling
techniques for the construction of our OSPSF.

Loos et al. [13] used wavefront tracing to solve an optimaaproblem in the
construction of progressive lenses. They also generatadamof three dimensional
scenes as viewed through a simple model eye both with andwigrogressive lenses.
However, while we render our images with one point of fochsytchose to change
the accommodation of the virtual eye for each pixel to “viegathe effect of the lens
over the full field of view” [13]. Furthermore, our work doestrrely on a model of the
human optical system, but instead uses actual patientul#tte rendering process.

Light field rendering [14] and lumigraph systems [15] wergaduced in 1996.
These techniques represent light rays as a pair of interectf two parallel planes.
This representation is a reduction of the plenoptic fumgtiotroduced by Adelson and
Bergen [16]. The algorithms take a series of input imagescamdtruct the scene as a
4D light field. New images are generated by projecting thietfiigld to the image plane.
Although realistic object space techniques consume a Ergrint of time, Heidrich et
al. [17] used light fields to describe an image-based modetistic lens systems that
could attain interactive rates by performing a series oflivare accelerated perspective
projections. Isaksen et al. [18] modeled depth of field ¢ffersing dynamically re-
parameterized light fields. We also use an image-basediteehrbut do not use light
fields in our formulation.

There is a significant and somewhat untapped potential fmareh that addresses
the role of the human visual system in computer graphics. @rtee earliest con-
tributions, Upstill's Ph.D. dissertation [19], considdrihe problem of viewing syn-
thetic images on a CRT and derived post-processing tecasifjur improved display.
Spencer et al. [20] investigated image-based techniqueslaihg simple ocular and
camera effects such as glare, bloom, and lenticular halbn Bad Meyer [21] used
a perceptually-based sampling algorithm to monitor imagethey are being rendered



for artifacts that require a change in rendering technid@2-26] and others have stud-
ied the problem of mapping radiance values to the tiny fixedesupported by display
devices. They have described a variety of tone reproduop@nators, from entirely ad
hoc to perceptually based. For a further comparison of toappimg techniques, the
reader is referred to [27]. Meyer and Greenberg [28] preskatcolor space defined
by the fundamental spectral sensitivity functions of thenan visual system. They
used this color space to modify a full color image to repréaasolor-deficient view of
the scene. Meyer [29] discusses the first two stages (fund@frspectral sensitivities
and opponent processing) of the human color vision system & signal processing
point of view and shows how to improve the synthesis of réalimiages by exploiting
these portions of the visual pathway. Pellacini et al. [38jeloped a psychophysically-
based light reflection model through experimental studfesudface gloss perception.
Much of this work has focused on human visual perception @mndgived phenomena;
however, our work focuses exclusively on the human optigaiesn and attempts to
create images like those produced on the retina. Perceginalderations are beyond
the scope of this paper.

In human vision research, most simulations of vision [3] l3®e been done by
artist renditions and physical means, not by computer geapkor example, Fine and
Rubin [33, 34] simulated a cataract using frosted acetatedoce image contrast. With
the advent of instruments to measure corneal topographg@ngute accurate corneal
reconstruction, several vision science researchers haduped computer-generated
images simulating what a patient would see. Principallgytmodify 2D test images
using retinal light distributions generated with ray tragtechniques. Camp et al. [35,
36] created a ray tracing algorithm and computer model fatuation of optical per-
formance. Maguire et al. [37,38] employed these technigqoesalyze post-surgical
corneas using their optical bench software. GreivenkarBp¢Beated a sophisticated
model which included the Stiles-Crawford effect [40], difftion, and contrast sensi-
tivity. A shortcoming of all these approaches is that thegrtook the contribution of
internal optical elements, such as the crystalline lenb®glye.

Garcia, Barsky, and Klein [41-43] developed éhatUC system, which blurs
2D images to produce an approximation of how the image wopebar to a particular
individual. The system uses a reconstructed corneal stegeelton corneal topography
measurements of the individual. Since the blur filter is catag in 2D image space,
depth effects are not modeled.

The latter technique, like all those that rely on ray castaigo suffers from alias-
ing problems and from a computation time that increasesseiéme complexity. These
problems are exacerbated by the need to integrate overadindgrture as well as over
the image plane, driving computation times higher to aveibdstantial image noise.
Since our algorithms are based in image space, they obtiege issues. That notwith-
standing, the source of our input images would still needitiress these issues. How-
ever, since our input images are in sharp focus, the rendeudnl save some computa-
tion by assuming a pinhole camera and avoiding integratven the aperture.

Vision-Realistic Rendering was introduced to the compgtaphics community by
the author in [44] and [45], and is presented in more detaié he
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Fig. 2. Overview of the vision-realistic rendering algorithm.

4 Shack-Hartmann Device

The Shack-Hartmann Sensor [46] (Figure 3) is a device thedigely measures the
wavefront aberrations, or imperfections, of a subjectis gy]. It is believed that this

is the most effective instrument for the measurement of hueye aberrations [48].
A low-power 1 mm laser beam is directed at the retina of thebgymeans of a half-

silvered mirror, as in Figure 4.

The retinal image of that laser now serves as a point souraghtf From its reflec-
tion, a wavefront emanates and then moves towards the frtire eye. The wavewfront
passes through the eye’s internal optical structures thagtupil, and eventually out of
the eye. The wavefront then goes through a Shack-Hartmastetearray to focus the
wavefront onto a CCD array, which records it.

The output from the Shack-Hartmann sensor is an image difitypigints where each
lenslet has focused the wavefront. Image processing #hgasiare applied to determine
the position of each image blur centroid to sub-pixel resofuand also to compute the
deviation from where the centroid would be in for an ideal afagnt. The local slope
of the wavefront is determined by the lateral offset of thealgoint from the center of
the lenslet. Phase information is then derived from thees|dp]. Figures 5 and 6 show
the Shack-Hartmann output for eyes with and without abiemat Figure 7 illustrates
the actual output of a Shack-Hartmann sensor for a samphectefe surgery patient.

5 Algorithm

Figure 2 provides an overview of the vision-realistic reniig algorithm, comprising
three major components.

5.1 Constructing the Object Space Point Spread Function

A Point Spread Function (PSF) plots the distribution oftighergy on the image plane
based on light that has emanated from a point source and basdgtnrough an optical



Fig. 3. Measuring the specific vision characteristics of a subjettgia Shack-Hartmann wave-
front aberrometry device.

system. Thus it can be used as an image space convolutiogl kern

We introduce the object space point spread function (OSR@&Hgh is similar to
the usual image space point spread function, as descriloed gdxcept that it is defined
in object space and thus it varies with depth. The OSPSF isiincmus function of
depth; however, we discretize it, thereby defining a sequeriaepth point spread
functions (DPSF) at some chosen depths.

Since human blur discrimination is nonlinear in distancedpproximately linear
in diopters (a unit measured in inverse meters), the depthsresen with a constant
dioptric spacingAD and they range from the nearest depth of interest to theefsirth
A theoretical value ofAD can be obtained from the relatigh= pAD, wheref is the
minimum subtended angle of resolution gmi the pupil size in meters. For a human
with 20/20 visual acuityd is 1 min of arc; that is@ = 2.91x 10~4[50, 51].

The DPSFs are histograms of rays cast normal to the wavdfanire 8). To com-
pute these functions (Figure 9), we first place a grid withstant angular spacing at
each of the chosen depths and initialize counters in eadicglito zero. Then we iter-
atively choose a point on the wavefront, calculate the nbdinection, and cast aray in
this direction. As the ray passes through each grid, thdtdeliersects has its counter
incremented. This entire process is quite fast and millafialys may be cast in a few
minutes. Finally, we normalize the histogram so that its s&immity.

In general, wavefront aberrations are measured with thgestbeye focused at
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Fig. 4. A side view of a Hartmann-Shack device. A laser projects aspthe back of the cornea.
This spot serves as a point light source, originating a wamefout of the eye. This wavefront
passes through a lattice of small lenslets which focus thefsant onto a CCD sensor.

infinity. However, it is important to be able to shift focus fasion-realistic rendering.
Recent research results in optometry [52] showed that afi@ms change significantly
with accommodation. When aberrometric data is availablelfe eye focused at the
depth that will be used in the final image, our algorithm ekplthat wavefront mea-
surement.

In the situation where such data is not available, then welemas that the aberra-
tions are independent of accommodation. We can then recitideDPSFs, which is
equivalent to shifting the OSPSF in the depth dimensioneNwdt this may require the
computation of DPSFs at negative distances.

We further assume the OSPSF is independent of the imagelplzatén. In optics,
this is called the “isoplanatic” assumption and is the b&sidbeing able to perform
convolutions across the visual field. For human vision, #sisumption is valid for at
least several degrees around the fixation direction.

5.2 Fitting a Wavefront Surface to Aberrometry Data

The output of the Shack-Hartmann device comprises a ragtatien (normal vector) at
each lenslet. Current devices yield only 50 to 200 such veci@ generate the millions
of samples necessary to calculate the OSPSF (see Sectiahdé), we first generate
a smooth mathematical surface representation of the wawefirom this sparse data.
Our wavefront surface is a fifth degree polynomial bivariategface defined as a height
field whose domain is the pupil plane. This surface is deteechby a least squares fit
to the Shack-Hartmann data.
We use a particular polynomial form which was developed iB41954] by the

Dutch mathematician and physicist Frits Zernike who wasrda the Nobel Prize
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Fig. 5. Hartmann-Shack sensors measuring a perfect eye with ncatibes. Image courtesy of
Larry Thibos [53].
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Fig. 6. Hartmann-Shack sensors measuring a normal eye with somegdes. Image courtesy
of Larry Thibos [53].

in Physics 1953 for discovering the phase contrast phenomedar a discussion of
Zernkie polynomials realted to the optical aberrationsye&fse the reader is referred to
[53]. Zernike polynomials are derived from the orthogoration of the Taylor series.
The resulting polynomial basis corresponds to orthogoraadefront aberrations. The
coefficientsZy,, weighting each polynomial have easily derived relationthwiean-
ingful parameters in optics. The indexrefers to the aberration type, whitedistin-



Fig. 7. Hartmann-Shack output for a sample eye. The green overtagelés registered to corre-
spond to each lenslet in the array. Image courtesy of Davitiaivis.

guishes between individual aberrations within a harmdtoca given indexn, nranges
from —mto min steps of two. Specificallyq o is displacemen® 1 is horizontal tilt,

Z1_1 is vertical tilt, Z, g is average powet » is horizontal cylinderZ, _, is oblique

cylinder,Z3,, are four termsrf= —3,—-1,1,3) related to coma, and, , are five terms
(n=—-4,-2,0,2,4) related to spherical aberration.

5.3 Rendering Steps

Given the input image and its associated depth map, and tR&B$he vision-realistic
rendering algorithm comprises three steps: (1) create afs#¢pth images, (2) blur
each depth image, and (3) composite the blurred depth intagesm a single vision-
realistic rendered image.

Create Depth ImagesUsing the depth information, the image is separated intd afse
disjoint images, one at each of the depths chosen in thedirecsection. Ideally, the
image at depttd would be rendered with the near clipping plane sed toAD/2 and
the far clipping plane set td — AD/2. Unfortunately, this is not possible because we
are using previously rendered images and depth maps. Geateai texture synthesis
algorithms would be overkill here, since the results wilkdhgrred anyway. The follow-
ing technique is simple, fast, and works well in practice: €ach depthd, those pixels



Fig. 8. Each depth point spread function (DPSF) is a histogram & cagt normal to the wave-
front.
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Fig. 9. A simplified view: Rays are cast from a point light source oa tétina and pass through
a virtual lens, thereby creating the measured wavefroris Wavefront is sampled and rays are
cast normal to it. The DPSFs are determined by intersedtiegetrays at a sequence of depths.

from the original image that are withiaD /2 diopters ofd are copied to the depth im-
age. We handle partial occlusion by the techniques destiib8ection 6 and in more
detail by Barsky et al. [7] [8].



Blur each Depth Image.Once we have the depth images, we do a pairwise convolu-
tion: Each depth image is convolved with its correspondif$b, thereby producing a
set of blurred depth images.

Composite. Finally, we composite these blurred depth images into alesingsion-
realistic rendered image. This step is performed from fargar, using alpha-blending
following alpha channel compositing rules.

6 Elimination of Artifacts due to Occlusion and Discretization

Although processing in image space allows an increase iedsplee images may have
artifacts introduced. This can occur in two ways, which wieré¢o asocclusion and
discretization [7] [8]. The occlusion problem arises because there is sgeneetry
that is missing. This results from the finite aperture of #res| which allows more of the
scene to be visible than would be seen through an infinitdgimbole. Thus, without
additional input, the colors from parts of the scene thabatgnd objects would have
to be approximately reconstructed using the border colbvisible objects.

The discretization problem occurs from separating the amayg depth. At adja-
cent pixels in different sub-images, the calculation oftegf field is complicated.
This arises because these adjacent pixels may or may nespoimd to the same ob-
ject. An artifacts can be introduced into the image when glginbject straddles two
sub-images and the sub-images are blurred. The artifagtsanihen the far pixel is av-
eraged with neighboring colors behind the near pixel that@tomatch the far pixel's
color. The neighboring colors are often black, which is teéadlt background color.
Consequently, a black blurred band occurs at the intesedt the object with the
separation of the sub-images that it spans, as can be seigjuie EO.

7 Obiject Identification as a Solution for Image Space Artifads

To eliminate these band artifacts that arise when an okgesg¢parated into multiple
discrete sub-images, the algorithm attempts to identifirenbjects within the image.
This eliminates the artifact by avoiding the separation lgjeots across sub-images.
Instead, when a large object straddles several sub-imegels,sub-image will include
the entire object instead of only a part of that object. Cqusetly, the object will have
minimal artifacts due to blurring.

We will now consider two approaches for object identificatio properly blur the
scene; these techniques are described in more detail bioBetral. [7] [8]. Our first
approach uses the depth difference of adjacent pixels tdifd@bjects. In our second
approach, the Canny Edge Detection [55] algorithm is agpbedraw borders between
objects and hence identify them.

7.1 Edge Detection Technique for Object Identification

Our first method for identifying objects begins by using aiaatr of the Canny Edge
Detection algorithm [55]. The Canny algorithm takes as trgauintensity map for the



Fig. 10.Black bands appear at the locations where the sub-imagegpaeated.

Fig. 11. Using depth map information as input, the edge detectionrihgn identifies where
object edges lie in the image.

image, and it convolves the intensity map with the first dgiire of a Gaussian func-
tion. The algorithm then marks pixels in the resulting arsdnpse magnitude exceeds a
specified upper threshold. These marked pixels are groupe@dge curves based on
the assumption that neighboring marked pixels that haveistamt orientations belong
to the same edge.

Our technique uses a depth map as the intensity map as inhig #&dge Detection
algorithm. Figure 11 shows the result of edge detection enettample depth map.
Using this variant of the Canny algorithm to segment a saeteedistinct objects avoids
inadequacies that are common to traditional edge detemtathods. In particular, using
depth information avoids erroneous detection of edgesdhaespond to the surface
markings and shadows of objects in the scene.

Starting with the region formed by the boundary pixels incheent sub-image, the
algorithm extends that region until it is bounded by pregiguetected edges. Specif-
ically, extending the region involves taking the union of fine segments that begin
within the original region and do not intersect the deteetdge segments; this is illus-
trated in Figure 12.

The result of the Canny Edge Detection method to eliminaselartifacts is demon-
strated in Figures 13 and 14, focused on the Tin Toy in thegforend, and on the baby
in the background, respectively.
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Fig. 12. Extending the region involves taking the union of the lingments that begin within the
original region and do not intersect the detected edges.

Fig. 13. Artifacts eliminated by the Edge Detection technique foagm focused on the Tin Toy
in the foreground.

7.2 Adjacent Pixel Difference Technique for Object Identifcation

The second technique for including points from objects #pan several sub-images
assumes a surface with a given order of continuity. As inptité algorithm, we select
the order of continuity, denoted", of the surface. In addition, the bound on tfite
derivative of depth with respect to the image plane cootdmis selected such that
adjacent pixels within the bound correspond to the samecblfnce image space is a
discrete representation of continuous geometry, we usdiffieeence as the discretized
counterpart of the derivative. Figure 15 illustrates a filsgjree difference map for an
arbitrary image.

The algorithm assigns an object identifier to each pixel du@eh tgroups together
those pixels that share an object identifier. Once all objext located, it is straightfor-
ward to determine whether the neighboring colors shouldttained from objects in
front of, at, or behind, the current sub-image.

In Section 7.1, Figures 13 and 14 demonstrated the resultedfanny Edge De-
tection technique. This eliminated the artifacts illutchin Figure 10 and generated a



Fig. 14. Artifacts eliminated by the Edge Detection technique foag®a focused on the baby in
the background.
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Fig. 15. An example of a first degree difference map (right) resulfiogn applying a horizontal
difference to the first 16 digits of (left).

correctly blurred image. We will now use the Adjacent Pixéff€@ence technique to
generate a similar artifact-free blurred image, which &@ng in Figures 16 and 17,
focused on the Tin Toy in the foreground, and on the baby irbtekground, respec-
tively.

8 Sample Images

Figures 1, 19, 20, and 21 are vision-realistic renderingsrobm scene. Figure 18 is
a simulation that models ideal vision and Figures 1, 19, &6, 21 are simulations of
the vision of actual individuals based on their measured.dédtice that the nature of
the blur is different in each image. The field of view of the geas approximately 46
and the pupil size is rather large at 5.7 mm.

For Figure 18, we constructed an OSPSF from a planar wavefygrield a simu-
lation of vision for an aberration-free model eye.

The simulation of vision shown in Figure 19 is based on tha ffatm the left eye
of male patient GG who has astigmatism. Note how the blur istqp@nounced in one
direction (in this case horizontal), which is symptomafiastigmatism.

Next, we show vision-realistic rendered images based ongmé post-operative
data of patients who have undergone LASIK vision correcsiargery. Specifically, the
vision for the right eye of male patient DB is simulated indtig 20, and then Figure



Fig. 16.Artifacts eliminated by the Adjacent Pixel Difference taajue for image focused on the
Tin Toy in the foreground.

Fig. 17. Artifacts eliminated by the Adjacent Pixel Difference tatjue for image focused on
baby in the background.

Fig. 18. Simulation of vision of an aberration-free model eye.

21 simulates the vision of the left eye of male patient DR. &ach patient, the pre-
operative vision is simulated in the top image while the Ipireage simulates the post-



Fig. 19. Simulation of vision of astigmatic patient GG.

operative vision. The images demonstrating pre-operuaisien show the characteristic
extreme blur pattern of the highly myopic (near-sightedjguas who tend to be the
prime candidates for this surgery. Although, in both cafesyision has been improved
by the surgery, it is still not as good as the aberration4inedel eye. Furthermore, the
simulated result of the surgery for patient DB is slightlyeirior to that depicted for
patient DR. However, note that the patient (DB) with the iidfiesurgical result had
significantly inferior pre-operative vision compared tattbf patient DR.

Figure 1 is computed based on data measured from the leftfdigenale patient
KS who has the eye condition known lesatoconus. This image shows the distortion
of objects that is caused by the complex, irregular shap&efkeratoconic cornea.
Note how the nature of these visual artifacts is distinatfrwhat would generally be
a smooth blur that occurs in more pedestrian vision probkmh as myopia (see Fig-
ure 21(a)). This distinction is often not understood byiclams when it is articulated
by keratoconic patients. We hope our techniques could be insgptometry and oph-
thalmology for the education of students and residents dlsasdor the continuing
education of clinicians.

Our approach can also be applied to photographs (with agsdcilepth maps) of
real scenes, not only to synthetic images. For example,garEi22, the top image is
a photograph showing the Campanille at U.C. Berkeley with Bancicsco’s Golden
Gate Bridge in the background, with both the tower and bridgein sharp focus.
Constructing an OSPSF with the point of focus at the Camigaaiid then applying
our algorithm yields an image with the background blurredslzown in bottom image.

To consider the computational requirements of our techeigate that it comprises
three parts: fitting the wavefront surface, constructiothefOSPSF and the rendering
step. The computation time for the surface fitting is negligi The time to compute
the OSPSF depends on the number of wavefront samples. Fondlges in this paper,
the computation of the OSPSF, using one million samples|egzsthan half a minute.
The rendering step is dominated by the FFTs performed fovalation (our kernels



Fig. 20. Simulation of vision of LASIK patient DB based on (a) Pre-o&ve and (b) Post-
operative data.

are generally too large to convolve in the spatial domaihyusl the computation time
for the rendering step is dependent on the image size andutiéer of non-empty
depth images. The room scene has a resolution of 1280 X 72@aidimage took
about 8 minutes to render, using 11 depth images, on a Pedtiumning at 2.4 GHz,

using Matlab. This time could be significantly reduced bywaating to a C or C++

implementation with a standard FFT library.

9 Validation

An important area of future work is validation, and will ifve the establishment of
psychophysical experiments. Nonetheless, some preligaxgeriments are possible



Fig. 21. Simulation of vision of LASIK patient DR based on (a) Pre-@iive and (b) Post-
operative data.

immediately, and our initial results have been positivest-patients who have unilat-
eral vision problems can view our simulations of the visiottieir pathological eye us-
ing their contralateral eye, thereby evaluating the figl@fthe simulation. Second, con-
sider patients who have vision conditions such as myopigetgpia, and astigmatism,
that are completely corrected by spectacles or contaat$eMore precisely, in optom-
etry terms, they might have 20/20 BSCVA (best spectacleected visual acuity). Such
patients could validate the quality of the depiction of tivision in vision-realistic ren-

dered images simply by viewing them while wearing their eotive eyewear. Third,

the visual anomalies present in keratoconus are different those in more common
conditions such as myopia, and this distinction is indeed®dout in our example im-



Fig. 22. Original photograph with both Campanille and Golden Gateldgr in focus (top) and
output image with background blurred (bottom).



ages. Specifically, keratoconus can cause the appearamtiplafia (double-vision)

whereas myopia usually engenders a smooth blur around ebgied, exactly this

distinction can be observed upon close examination of aupgaimages. Fourth, se-
vere astigmatism causes more blur in one direction thareiotthogonal direction, and
this is exactly what is depicted in our sample image of astiggm. Fifth, our simula-

tions of the vision of patients with more myopia are more t@dithan those of patients
with less myopia.

10 Conclusions and Future Work

We introduced the concept ofsion-realistic rendering — the computer generation of
synthetic images that incorporate the characteristicspdrticular individual's entire
optical system. This paper took the first steps toward théd, dpy developing a method
for simulating the scanned foveal image from wavefront détectual human subjects,
and demonstrated those methods on sample images. Firfljeztgioptical system is
measured by a Shack-Hartmann wavefront aberrometry déliis device outputs a
measured wavefront which is sampled to calculate an objegtespoint spread func-
tion (OSPSF). The OSPSF is then used to blur input images. flhiring is accom-
plished by creating a set of depth images, convolving theti thie OSPSF, and finally
compositing to form a vision-realistic rendered image. Wgations of vision-realistic
rendering in computer graphics as well as in optometry ardrggdmology were dis-
cussed.

The problem of vision-realistic rendering is by no meansel Like early work
on photo-realistic rendering, our method contains seg@nmgblifying assumptions and
other limitations. There is much interesting researchdhea

The first limitations are those stemming from the method obsneement. The
Shack-Hartmann device, although capable of measuring @ védety of aberrations,
does not take into account light scattering due to such tiondi as cataracts. The
wavefront measurements can have some error, and fittingeheké polynomial sur-
face to the wavefront data can introduce more. Howeveredime wavefronts from even
pathological eyes tend to be continuous, smooth interjpolaif the Shack-Hartmann
data should not produce any significant errors. Consequeamy errors that are intro-
duced should be small and, furthermore, such small errouddimperceptible in final
images that have been discretized into pixels.

Strictly speaking, the pupil size used for vision-reatisendering should be the
same as the pupil size when the measurements are taken. efptheverror introduced
in using only part of the wavefront (smaller pupil) or extodgting the wavefront (larger
pupil) should be quite small. We have made use of three agsamsgcommonly used
in the study of human physiological optics: isoplanarihdépendence of accommo-
dation, and off-axis aberrations being dominated by os-akierrations. Although we
have argued that these assumptions are reasonable andepeogbod first-order ap-
proximation, a more complete model would remove at leastfitstetwo.

As discussed in Section 5.1, we have assumed "independéacemmmodation”
since aberrometric measurements with the eye focused defith is not usually avail-
able. However, this is not a limitation of our algorithm. Gigorithm can exploit wave-



front data where the eye is focused at the depth that will bd irsthe final image, when
such a measurement is made.

We currently do not take chromatic aberration into accobmtt,again that is not a
limitation of our algorithm. Since the data we acquire isnira laser, it is monochro-
matic. However, some research optometric colleagues hexyeirad polychromatic
data and will be sharing it with us. It is again interestingtthecent research in op-
tometry by Marcos [56] has shown that except for the low omtegrrations, most
aberrations are fairly constant over a range of wavelengths

We only compute the aberrations for one point in the foved,raot for other points
in the visual field. However, it is important to note that faneputer graphics, the
on-axis aberrations are critically important because gswmove their eyes around
when viewing a scene. If we had actually included the oftaberrations of the eye,
then the off-axis parts of the scene would have been implppérrred for a person
who is scanning the scene. The off-axis aberrations are mémtioncern even without
eye movements since the retinal sampling of cones is sparseripheral vision. The
image that we are simulating is formed by viewing the entoreng using the on-axis
aberrations because we assume that the viewer is scanrisgehe.

However, since peripheral vision does makes importantritarions to visual ap-
pearance, viewers are affected by optical distortions apperal vision. Thus, it is of
interest to extend this method to properly address thexaff effects.
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