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ABSTRACT
Parallel algorithms for sparse matrix-matrix multiplication
typically spend most of their time on inter-processor commu-
nication rather than on computation, and hardware trends
predict the relative cost of communication will only increase.
Thus, sparse matrix multiplication algorithms must mini-
mize communication costs in order to scale to large processor
counts.

In this paper, we consider multiplying sparse matrices cor-
responding to Erdős-Rényi random graphs on distributed-
memory parallel machines. We prove a new lower bound
on the expected communication cost for a wide class of al-
gorithms. Our analysis of existing algorithms shows that,
while some are optimal for a limited range of matrix den-
sity and number of processors, none is optimal in general.
We obtain two new parallel algorithms and prove that they
match the expected communication cost lower bound, and
hence they are optimal.
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1. INTRODUCTION
Computing the product of two sparse matrices is a funda-

mental problem in combinatorial and scientific computing.
Generalized sparse matrix-matrix multiplication is used as
a subroutine in algebraic multigrid [5], graph clustering [29]
and contraction [16], quantum chemistry [30], and parsing
context-free languages [23]. Large-scale data and computa-
tion necessitates the use of parallel computing where com-
munication costs quickly become the bottleneck. Existing
parallel algorithms for multiplying sparse matrices perform
reasonably well in practice for limited processor counts, but
their scaling is impaired by increased communication costs
at high concurrency.

Achieving scalability for parallel algorithms for sparse ma-
trix problems is challenging because the computations tend
not to have the surface to volume ratio (or potential for
data re-use) that is common in dense matrix problems. Fur-
ther, the performance of sparse algorithms is often highly
dependent on the sparsity structure of the input matrices.
We show in this paper that existing algorithms for sparse
matrix-matrix multiplication are not optimal in their com-
munication costs, and we obtain new algorithms which are
communication optimal, communicating less than the pre-
vious algorithms and matching new lower bounds.

Our lower bounds require two important assumptions: (1)
the sparsity of the input matrices is random, corresponding
to Erdős-Rényi random graphs [14] (see Definition 2.1) and
they are sparse enough that the output is also sparse, and (2)
the algorithm is sparsity-independent; namely, the computa-
tion is partitioned to processors independent of the sparsity
structure of the input matrices (see Definition 2.5). The sec-
ond assumption applies to nearly all existing algorithms for



general sparse matrix-matrix multiplication. While a priori
knowledge of sparsity structure can certainly reduce com-
munication for many important classes of inputs, we are not
aware of any algorithms that dynamically determine and ef-
ficiently exploit the structure of general input matrices. In
fact, a common technique of current library implementa-
tions is to randomly permute rows and columns of the input
matrices in an attempt to destroy their structure and im-
prove computational load balance [8, 9]. Because the input
matrices are random, our analyses are in terms of expected
communication costs.

We make three main contributions in this paper.

1. We prove new communication lower bounds.
While there is a previous lower bound which applies to
sparse matrix-matrix multiplication [4], it is too low to
be attainable. We use a similar proof technique but de-
vise a tighter lower bound on the communication costs
in expectation for random input matrices which is in-
dependent of the local memory size of each processor.
See Section 3 for details.

2. We obtain two new communication-optimal al-
gorithms. Our 3D iterative and recursive algorithms
(see Sections 4.3 and 4.4) are adaptations of dense ones
[13, 26], though an important distinction is that the
sparse algorithms do not require extra local memory
to minimize communication. We also improve an exist-
ing algorithm, Sparse SUMMA, to be communication-
optimal in some cases.

3. We provide a unified communication analysis
of existing and new algorithms. See Table 1 for
a summary of the expected communication costs of
the algorithms applied to random input matrices. See
Section 4 for a description of the algorithms and their
communication analysis.

2. PRELIMINARIES
Throughout the paper, we use A, B and C to denote the

input and output matrices of the computation C = A · B
over an arbitrary semiring. For sparse matrix indexing, we
use the colon notation, where A(:, i) denotes the ith column,
A(i, :) denotes the ith row, and A(i, j) denotes the element
at the (i, j)th position of matrix A. We use flops to denote
the number of nonzero arithmetic operations required when
computing the product of matrices A and B and nnz(·) to
denote the number of nonzeros in a matrix or submatrix.

We consider the case where A and B are n × n ER(d)
matrices:

Definition 2.1. An n×n ER(d) matrix is an adjacency
matrix of an Erdős-Rényi graph [14] with parameters n and
d/n, that is, a square matrix of dimension n where each
entry is nonzero with probability d/n. We assume d�

√
n.

It is not important for our analysis to which semiring the
matrix entries belong, though we assume algorithms do not
exploit cancellation in the intermediate values or output en-
tries.

The following facts will be useful for our analysis.

Lemma 2.2. Let A and B be n×n ER(d) matrices. Then

(a) the expected number of nonzeros in A and in B is dn,

(b) the expected number of scalar multiplications in A ·B
is d2n, and

(c) the expected number of nonzeros in C is d2n(1−o(1)).

Proof. Since each entry of A and B is nonzero with
probability d/n, the expected number of nonzeros in each
matrix is n2(d/n) = dn. For each of the possible n3 scalar
multiplications in A ·B, the computation is required only if
both corresponding entries of A and B are nonzero, which
are independent events. Thus the probability that any mul-
tiplication is required is d2/n2, and the expected number of
scalar multiplications is d2n. Finally, an entry of C = A·B is
zero only if all n possible scalar multiplications correspond-
ing to it are zero. Since the probability that a given scalar
multiplication is zero is (1−d2/n2) and the n possible scalar
multiplications corresponding to a single output entry are
independent, the probability that an entry of C is zero is
(1−d2/n2)n = 1−d2/n+O(d4/n2). Thus the expected num-
ber of nonzeros of C is n2(d2/n−O(d4/n2)) = d2n(1−o(1)),
since we assume d�

√
n.

Definition 2.3. The computation cube of square n × n
matrix multiplication is an n×n×n lattice V where the voxel
at location (i, j, k) corresponds to the scalar multiplication
A(i, k) · B(k, j). We say a voxel (i, j, k) is nonzero if, for
given input matrices A and B, both A(i, k) and B(k, j) are
nonzero.

Given a set of voxels V ⊂ V, the projections of the set
onto three orthogonal faces corresponds to the input entries
of A and B that are necessary to perform the multiplica-
tions and the output entries of C which the products must
update. The computation cube and this relationship of vox-
els to input and output matrix entries is shown in Figure 1.
The following lemma due to Loomis and Whitney relates
the volume of V to its projections:

Lemma 2.4. [21] Let V be a finite set of lattice points in
R3, i.e., points (x, y, z) with integer coordinates. Let Vx be
the projection of V in the x-direction, i.e., all points (y, z)
such that there exists an x so that (x, y, z) ∈ V . Define Vy

and Vz similarly. Let | · | denote the cardinality of a set.

Then |V | ≤
√
|Vx| · |Vy| · |Vz|.

Definition 2.5. A sparsity-independent parallel algo-
rithm for sparse matrix-matrix multiplication is one in which
the assignment of entries of the input and output matrices to
processors and the assignment of computation voxels to pro-
cessors is independent of the sparsity structure of the input
(or output) matrices. If an assigned matrix entry is zero,
the processor need not store it; if an assigned voxel is zero,
the processor need not perform any of the computations that
depend on it.

Our lower bound argument in Section 3 applies to all
sparsity-independent algorithms. However, we analyze a
more restricted class of algorithms in Section 4, those that
assign contiguous brick-shaped sets of voxels to each proces-
sor.



Algorithm Bandwidth cost Latency cost

Previous Lower Bound [4] d2n

P
√
M

0

Lower Bound [here] min
{

dn√
P
, d2n

P

}
1

1D
Näıve Block Row [7] dn P

Improved Block Row* [12] d2n
P

logP min{logP, dn
P
}

Outer Product* [20] d2n
P

logP logP

2D
Sparse SUMMA [7] dn√

P

√
P

Improved Sparse SUMMA [here] dn√
P

logP dn

M
√
P

3D
Iterative* [here] min

{
dn√
P
, d2n

P

⌈
log P

d2

⌉}
logP

Recursive [here] min
{

dn√
P
, d2n

P

⌈
log P

d2

⌉}
logP

Table 1: Asymptotic expected communication costs of sparsity-independent algorithms. Algorithms marked
with an asterisk make use of all-to-all communication; the logarithmic factors in the bandwidth costs can be
removed at the expense of higher latency costs, see Section 2.2.

V

B

A

C

Figure 1: The computation cube for matrix multi-
plication, with a specified subset of voxels V along
with its three projections. Each voxel corresponds
to the multiplication of its projection onto A and B,
and contributes to its projection onto C.

2.1 Communication Model
We use the parallel distributed-memory communication

model of [4]. In this model, every processor has a local mem-
ory of size M words which is large enough to store one copy
of the output matrix C distributed across the processors:
M = Ω(d2n/P ). To estimate the running time of a parallel
algorithm with random inputs, we count the expected cost
of communication in terms of number of words W (band-
width cost) and number of messages S (latency cost) along
the critical path of the algorithm. To be precise, W and
S are the maxima over all paths through the algorithm of
the expected bandwidth and latency costs, respectively. If
two pairs of processors communicate messages of the same
size simultaneously, we count that as the cost of one mes-
sage. We assume a single processor can communicate only
one message to one processor at a time. In this model, we
do not consider contention or the number of hops a message
travels; we assume the network has all-to-all connectivity.

2.2 All-to-all Communication
Several of the algorithms we discuss make use of all-to-

all communication. If each processor needs to send b dif-
ferent words to every other processor (so each processor

Figure 2: How the cube is partitioned in 1D (top),
2D (middle), and 3D (bottom) algorithms.

needs to send a total of b(P − 1) words), the bandwidth
lower bound is W = Ω(bP ) and the latency lower bound
is S = Ω(logP ). These bounds are separately attainable,
but it has been shown that they are not simultaneously at-
tainable [6]. Depending on the relative costs of bandwidth
and latency, one may wish to use the point-to-point algo-
rithm (each processor sends data directly to each other pro-
cessor), which incurs costs of W = O(bP ), S = O(P ) or
the bit-fixing algorithm (each message of b words is sent
by the bit-fixing routing algorithm), which incurs costs of
W = O(bP logP ), S = O(logP ). Both of these are optimal,
in the sense that neither the bandwidth cost nor the latency
cost can be asymptotically improved without asymptotically
increasing the other one [6, Theorem 2.9].
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Figure 3: Graphical representation of V and `Cij.

3. LOWER BOUNDS
The general lower bounds for direct linear algebra of W =

Ω(flops/(P
√
M)) [4] apply to our case and give

W = Ω

(
d2n

P
√
M

)
. (1)

This bound is highest when M takes its minimum value
d2n/P , in which case it becomes W = Ω(

√
d2n/P ). In

this section we improve (increase) this lower bound by a

factor of
√
n · min{1, d/

√
P}. For larger values of M , the

lower bound in Equation 1 becomes weaker, whereas our
new bound does not, and the improvement factor increases
to
√
M ·min{1,

√
P/d}. The previous memory-independent

lower bound of W = Ω((flops/P )2/3−nnz/P ) [2] reduces to
the trivial bound W = Ω(0).

Theorem 3.1. A sparsity-independent sparse matrix
multiplication algorithm with load-balanced input and out-
put applied to ER(d) input matrices on P processors has an
expected communication cost lower bound of

W = Ω

(
min

{
dn√
P
,
d2n

P

})
.

Proof. Consider the n3 voxels that correspond to po-
tential scalar multiplications A(i, k) · B(k, j). A sparsity-
independent algorithm gives a partitioning of these multi-
plications among the P processors. Let V be the largest set

of voxels assigned to a processor, so |V | ≥ n3

P
. For each i, j,

let `Cij be the number of values of k such that (i, j, k) ∈ V , see
Figure 3. We count how many of the voxels in V correspond
to `Cij < n

4
and divide into two cases.

Case 1: At least n3

2P
voxels of V correspond to `Cij < n

4
.

Let V ′ be these voxels, so |V ′| ≥ n3

2P
. We will analyze the

communication cost corresponding to the computation of V ′

and get a bound on the number of products computed by
this processor that must be sent to other processors. Since
the output is load balanced and the algorithm is sparsity-
independent, the processor that computes V ′ is allowed to

store only a particular set of n2

P
entries of C in the out-

put data layout. Since every voxel in V ′ corresponds to an

`Cij < n
4

, the n2

P
output entries stored by the processor cor-

respond to at most n3

4P
voxels in V ′, which is at most half

of |V ′|. All of the nonzero voxels in the remainder of V ′

contribute to entries of C that must be sent to another pro-

cessor. In expectation, this is at least d2n
4P

nonzero voxels,

since each voxel is nonzero with probability d2

n2 . Moreover,
from the proof of Lemma 2.2, only a small number of the
nonzero entries of C have contributions from more than one
voxel, so very few of the values can be summed before be-
ing communicated. The expected bandwidth cost is then
bounded by

W = Ω(d2n/P ).

Case 2: Fewer than n3

2P
voxels of V correspond to `Cij <

n
4

. This means that at least n3

2P
voxels of V correspond

to `Cij ≥ n
4

. Let V ′′ be these voxels, so |V ′′| ≥ n3

2P
. We

will analyze the communication cost corresponding to the
computation of V ′′ and get a lower bound on the amount of
input data needed by this processor. For each i, k, let `Aik be
the number of values of j such that (i, j, k) ∈ V ′′. Similarly,
for each j, k, let `Bjk be the number of values of i such that
(i, j, k) ∈ V ′′. Partition V ′′ into three sets: V0 is the set of
voxels that correspond to `Aik > n

d
and `Bjk > n

d
; VA is the

set of voxels that correspond to `Aik ≤ n
d

; and VB is the set

of voxels that correspond to `Bjk ≤ n
d

and `Aik > n
d

. At least

one of these sets has at least n3

6P
voxels, and we divide into

three subcases.
Case 2a: |V0| ≥ n3

6P
. Let pA, pB , and pC be the sizes of the

projections of V0 onto A, B, and C, respectively. Lemma 2.4

implies that pApBpC ≥ |V0|2 = n6

36P2 . The assumptions of

Case 2 implies pC ≤ |V0|
n/4

. Thus pApB ≥ n4

24P
, or

max{pA, pB} ≥
n2

√
24P

.

Since the situation is symmetric with respect to A and B,
assume without loss of generality that A has the larger pro-

jection, so pA ≥ n2
√

24P
. Since the density of A is d

n
, this

means that the expected number of nonzeros in the pro-
jection of V0 onto A is at least dn√

24P
. Since each of these

nonzeros in A corresponds to a `Aik > n
d

, it is needed to
compute V0 with probability at least

1−
(

1− d

n

)n/d

> 1− 1

e
.

Thus in expectation a constant fraction of the nonzeros of A
in the projection of V0 are needed. The number of nonzeros
the processor holds in the initial data layout is dn

P
in expec-

tation, which is asymptotically less than the number needed
for the computation. Thus we get a bandwidth lower bound
of

W = Ω(dn/
√
P ).

Case 2b: |VA| ≥ n3

6P
. Each voxel in VA corresponds to

`Aik ≤ n
d

. In this case we are able to bound the re-use of
entries of A to get a lower bound. Count how many entries
of A correspond to each possible value of `Aik, 1 ≤ r ≤ n

d
, and

call this number Nr. Note that
∑n/d

r=1 r ·Nr = |VA|. Suppose

a given entry A(i, k) corresponds to `Aik = r. We can bound
the probability that A(i, k) is needed by the processor to
compute VA as a function f(r). The probability that A(i, k)
is needed is the probability that both A(i, k) is nonzero and



one of the r voxels corresponding to A(i, k) in VA is nonzero,
so

f(r) =
d

n

(
1−

(
1− d

n

)r)
≥ rd2

2n2
,

since r ≤ n
d

. Thus the expected number of nonzeros of A
that are needed by the processor is

n/d∑
r=1

Nrf(r) ≥ d2

2n2

n/d∑
r=1

r ·Nr ≥
d2n

12P
.

This is asymptotically larger than the number of nonzeros
the processor holds at the beginning of the computation, so
we get a bandwidth lower bound of

W = Ω(d2n/P ).

Case 2c: |VB | ≥ n3

6P
. The analysis is identical to the

previous case, except we look at the number of nonzeros of
B that are required.

Since an algorithm may be in any of these cases, the over-
all lower bound is the minimum:

W = Ω

(
min

{
dn√
P
,
d2n

P

})
.

4. ALGORITHMS
In this section we consider algorithms which assign con-

tiguous bricks of voxels to processors. We categorize these
algorithms into 1D, 2D, and 3D algorithms, as shown in
Figure 2, depending on the dimensions of the brick of vox-
els assigned to each processor: 1D algorithms correspond
to bricks with two dimensions of length n (and 1 shorter),
2D algorithms correspond to bricks with one dimension of
length n (and 2 shorter), and 3D algorithms correspond to
bricks with all 3 dimensions shorter than n. Table 1 pro-
vides a summary of the communication costs of the sparsity-
independent algorithms we consider.

4.1 1D Algorithms

4.1.1 Naïve Block Row Algorithm
The näıve block row algorithm [7] distributes the input

and output matrices to processors in a block row fashion.
Then in order for processor i to compute the ith block row,
it needs access to the ith block row of A (which it already
owns), and potentially all of B. Thus, we can allow each
processor to compute its block row of C by leaving A and
C stationary and cyclically shifting block rows of B around
a ring of the processors. This algorithm requires P stages,
with each processor communicating with its two neighbors
in the communication ring. The size of each message is the
number of nonzeros in a block row of B, which is expected
to be dn/P words. Thus, the expected bandwidth cost of
the block row algorithm is dn and the latency cost is P .
An analogous block column algorithm works by cyclically
shifting block columns of A with identical communication
costs.

4.1.2 Improved Block Row Algorithm
The communication costs of the block row algorithm can

be reduced without changing the assignment of matrix en-
tries or voxels to processors [12]. The key idea is for each

processor to determine exactly which rows of B it needs to
access in order to perform its computations. For example, if
processor i owns the ith block row of A, Ai, and the jth sub-
column of Ai contains no nonzeros, then processor i doesn’t
need to access the jth row of B. Further, since the height
of a subcolumn is n/P , the probability that the subcolumn
is completely empty is

Pr [nnz(Ai(:, j)) = 0] =

(
1− d

n

)n/P

≈ 1− d

P
,

assuming d < P . In this case, the expected number of sub-
columns of Ai which have at least one nonzero is dn/P .
Since processor i needs to access only those rows of B which
correspond to nonzero subcolumns of Ai, and because the
expected number of nonzeros in each row of B is d, the ex-
pected number of nonzeros of B that processor i needs to
access is d2n/P .

Note that the local memory of each processor must be of
size Ω

(
d2n/P

)
in order to store the output matrix C. Thus,

it is possible for a processor to gather all of their required
rows of B at once. The improved algorithm consists of each
processor determining which rows it needs, requesting those
rows from the appropriate processors, and then sending and
receiving approximately d rows. While this can be imple-
mented in various ways, the bandwidth cost of the algorithm
is at least Ω

(
d2n/P

)
and if point-to-point communication

is used, the latency cost is at least Ω(min{P, dn/P}). The
block column algorithm can be improved in the same man-
ner.

4.1.3 Outer Product Algorithm
Another possible 1D algorithm is to partition A in block

columns, and B in block rows [20]. Without communica-
tion, each processor locally generates an n×n sparse matrix
of rank n/P , and processors combine their results to pro-
duce the output C. Because each column of A and row of
B have about d nonzeros, the expected number of nonzeros
in the locally computed output is d2n/P . By deciding the
distribution of C to processors up front, each processor can
determine where to send each of its computed nonzeros. The
final communication pattern is realized with an all-to-all col-
lective in which each processer sends and receives O(d2n/P )
words. Note that assuming A and B are initially distributed
to processors in different ways may be unrealistic; however,
no matter how they are initially distributed, A and B can
be transformed to block column and row layouts with all-to-
all collectives for a communication cost which is dominated
by the final communication phase.

To avoid the all-to-all, it is possible to compute the ex-
pected number of blocks of the output which actually con-
tain nonzeros; the best distribution of C is 2D, in which
case the expected number of blocks of C you need to com-
municate is min{P, dn/

√
P}. Thus for P > (dn)2/3, the

outer product algorithm can have W = O(d2n/P ) and

S = O(dn/
√
P ).

4.2 2D Algorithms

4.2.1 Sparse SUMMA
In the Sparse SUMMA algorithm [7], the brick of voxels

assigned to a processor has its longest dimension (of length
n) in the k dimension. For each output entry of C to which



it is assigned, the processor computes all the nonzero vox-
els which contribute to that output entry. The algorithm
has a bandwidth cost of O(dn/

√
P ) and a latency cost of

O(
√
P ) [7].

4.2.2 Improved Sparse SUMMA
In order to reduce the latency cost of Sparse SUMMA,

each processor can gather all the necessary input data up
front. That is, each processor is computing a product of a
block row of A with a block column of B, so if it gathers
all the nonzeros in those regions of the input matrices, it
can compute its block of C with no more communication.
Since every row of A and column of B contain about d
nonzeros, and the number of rows of A and columns of B
in a block is n/

√
P , the number of nonzeros a processor

must gather is O(dn/
√
P ). If d >

√
P , then the memory

requirements for this gather operation do not exceed the
memory requirements for storing the block of the output
matrix C, which is Ω(d2n/P ).

The global communication pattern for each processor to
gather its necessary data consists of allgather collectives
along processor columns and along processor grids. The
bandwidth cost of these collectives is O(dn/

√
P ), which is

the same as the standard algorithm, and the latency cost is
reduced to O(logP ). To our knowledge, this improvement
has not appeared in the literature before.

We might also consider applying the optimization that
improved the 1D block row (or column) algorithm. Proces-
sor (i, j) would need to gather the indices of the nonzero
subcolumns of Ai and the nonzero subrows of Bj . This re-

quires receiving Ω(dn/
√
P ) words, and so it cannot reduce

the communication cost of Sparse SUMMA.
As in the dense case, there are variants on the Sparse

SUMMA algorithm that leave one of the input matrices sta-
tionary, rather than leaving the output matrix C station-
ary [18]. When multiplying ER(d) matrices, stationary in-
put matrix algorithms require more communication than the
standard approach because the global data involved in com-
municating C is about d2n, while the global data involved
in communicating A and B is only dn.

4.3 3D Iterative Algorithm
In this section we present a new 3D iterative algorithm.

We start with a dense version of the algorithm and apply a
series of improvements in order to match the lower bound.

4.3.1 3D Algorithms for Dense Matrix Multiplica-
tion

The term “3D” originates from dense matrix multiplica-
tion algorithms [1], where the processors are organized in a
3-dimensional grid, and the computational cube is mapped
directly onto the cube of processors. In the simplest case,
the processors are arranged in a 3

√
P × 3

√
P × 3

√
P grid. Let

A be distributed across the P 2/3 processors along one face
of the cube and B be distributed across the P 2/3 processors
along a second face of the cube. Then each input matrix can
be broadcast through the cube in the respective dimensions
so that every processor in the cube owns the block of A and
the block of B it needs to compute its local multiplication.
After the computation, the matrix C can be computed via
a reduction in the third dimension of the cube, resulting in
the output matrix being distributed across a third face of
the cube.

The communication cost of this algorithm is the cost of
the two broadcasts and one reduction. The size of the local
data in each of these operations is n2/P 2/3, and the number

of processors involved is P 1/3, so the total bandwidth cost
is O(n2/P 2/3) and the total latency cost is O(logP ). These
communication costs are less than the costs of 2D algorithms
for dense multiplication [1, 11, 28]. However, because the

local computation involves matrices of size n2/P 2/3, the 3D
algorithm requires more local memory than is necessary to
store the input and output matrices.

This tradeoff between memory requirements and commu-
nication costs can be managed in a continuous way by vary-
ing the dimensions of the processor grid (or, equivalently,
the dimensions of the bricks of voxels assigned to proces-
sors) [22, 25, 27]. Instead of using a cubic 3

√
P × 3

√
P × 3

√
P

processor grid, we can use a c×
√

P/c×
√

P/c grid, where

1 ≤ c ≤ 3
√
P and c = 1 reproduces a 2D algorithm. The ap-

proach that generalizes Cannon’s algorithm [11] is presented
as “2.5D-matrix-multiply”1 as Algorithm 2 by Solomonik
and Demmel [27] and the approach that generalizes SUMMA
is presented as“2.5D-SUMMA”in Algorithm 1 by Solomonik
et al. [26]. Both approaches yields a bandwidth cost of

O(n2/
√
Pc), a latency cost of O(

√
P/c3 + log c), and local

memory requirements of O(cn2/P ).

4.3.2 Converting to Sparse Case
Näıve 3D algorithms for sparse matrix multiplication can

be devised directly from the dense versions. As in [27, 26],
we assume the data initially resides only on the one of the
c layers and gets replicated along the third dimension be-
fore the multiplications start. Then, each of those layers
executes a partial 2D algorithm (with the partial contribu-
tion to C remaining stationary), in the sense that each layer
is responsible for computing 1/c of the total computation.
Consequently, the number of steps in the main stage of the
algorithm becomes

√
P/c3. The final stage of the algorithm

is a reduction step among groups of c processors, executed
concurrently by all groups of processors representing a fiber
along the third processor dimension.

The latency cost is identical to the dense algorithm:
O(
√

P/c3 + log c). The first term comes from the main
stage and the second term comes from the initial replica-
tion and final reduction phases. The bandwidth cost can be
computed based on the number of nonzeros in each block of
A, B, or C communicated. In the initial replication phase,
blocks of A and B of dimension n/

√
P/c × n/

√
P/c are

broadcast to c different processors for a bandwidth cost of
O(cdn/P ). In the main stage of the algorithm, the same size

blocks are communicated during each of the
√

P/c3 steps for

a total bandwidth cost of O(dn/
√
Pc). The final reduction

is significantly different from a dense reduction, resembling
more closely a gather operation since the expected number
of collisions in partial contributions of C is very small for
d �

√
n. Thus, we expect the size of the output to be al-

most as large as the sum of the sizes of the inputs. The
bandwidth cost of the final phase is then O(cd2n/P ).

Thus, the straightforward conversion of the dense 3D al-
gorithm to the sparse case results in the same latency cost

1The origin of the name “2.5D” comes from the fact that
the algorithm interpolates between existing 2D and 3D al-
gorithms. We use the term 3D to describe both 3D and 2.5D
dense algorithms.



and a total bandwidth cost of O(dn/
√
Pc + cd2n/P ). Fur-

ther, this algorithm will require extra local memory, because
gathering the output matrix onto one layer of processors re-
quires Ω(cd2n/P ) words of memory, a factor of Ω(c) times
as much as required to store C across all processors. The
extra space required for C dominates the space required for
replication of A and B.

4.3.3 Removing Input Replication and Assumption
on Initial Data Distribution

In developing a more efficient 3D algorithm for the sparse
case, our first observation is that we can avoid the first phase
of input replication. This replication can also be avoided in
the dense case, but it will not affect the asymptotic commu-
nication costs.

The dense 2.5D algorithms assume that the input matrices
initially reside on one

√
P/c ×

√
P/c face of the processor

grid, and the first phase of the algorithm involves replicating
A and B to each of the c layers. One can view the distribu-
tion of computation as assigning 1/cth of the outer products
of columns of A with corresponding rows of B to each of
the c layers. In this way, each layer of processors needs only
1/cth of the columns of A and rows of B rather than the
entire matrices.

In order to redistribute the matrices across c sets of pro-
cessors in a 2D blocked layout with block size n/

√
P/c ×

n/
√

P/c, blocks of
√
c ×
√
c processors can perform all-

to-all operations, as shown in Figure 4. The cost of this
operation is W = O(dn/P log c) and S = O(log c) if the
bit-fixing algorithm is used, removing the initial replication
cost from Section 4.3.2. This optimization also removes the
extra memory requirement for storing copies of A and B.

We will see in Section 4.3.4 that the output matrix can be
returned in the same 2D blocked layout as the input matrices
were initially distributed.

4.3.4 Improving Communication of C

Our next observation for the sparse case is that the final
reduction phase to compute the output matrix becomes a
gather rather than a reduction. This gather operation col-
lects C onto one layer of processors; in order to balance the
output across all processors, we would like to scatter C back
along the third processor dimension. However, performing
a gather followed by a scatter is just an inefficient means of
performing an all-to-all collective. Thus we should replace
the final reduction phase with a final all-to-all phase. This
optimization reduces the bandwidth cost of the 3D algo-
rithm to O(dn/

√
Pc + d2n/P ). Note that the cost of repli-

cating A and B in the first phase of the algorithm would
no longer always be dominated by the reduction cost of C,
as in Section 4.3.2, but the cost of the input all-to-all from
Section 4.3.3 is dominated by the output all-to-all. By re-
placing the reduction phase with an all-to-all, we also remove
the memory requirement of Ω(cd2n/P ).

4.3.5 Improving Communication of A and B

Furthermore, we can apply the optimization described in
Section 4.2.2: to reduce latency costs in the main phase
of the 3D algorithm (which itself is a 2D algorithm), pro-
cessors can collect all the entries of A and B they need
upfront rather than over several steps. This collective op-
eration consists of groups of

√
P/c3 processors performing

allgather operations (after the initial circular shifts of Can-

A

B

C

Figure 4: Possible redistribution scheme for in-
put and output matrices for the 3D algorithm with
4× 2× 2 processor grid (c = 4). The colored regions
denote submatrices owned by a particular proces-
sor. The input matrices are initially in a 2D block
distribution, and redistribution occurs in all-to-all
collectives among disjoint sets of 4 processors. Since
each of the c layers are 2× 2 grids, the intermediate
phase consists of allgather collectives among pairs
of processors. After local computation, the output
matrix is redistributed (and nonzeros combined if
necessary) via all-to-all collectives among the same
disjoint sets of 4 processors, returning the output
matrix also in a 2D block distribution.

non’s algorithm, for example). Since the data per processor
in the allgather operation is O(cdn/P ), the bandwidth cost

of the main phase remains O(dn/
√
Pc). The latency cost is

reduced from O(
√

P/c3) to O(log(
√

P/c3)), yielding a total
latency cost (assuming the bit-fixing algorithm is used for
the all-to-all) of O(logP ). The local memory requirements

increase to Ω(dn/
√
Pc); when c ≥ P/d2, this requirement is

no more than the space required to store C.

4.3.6 Optimizing c

If d >
√
P , then d2n/P > dn/

√
P , and the communi-

cation lower bound from Section 3 is Ω(dn/
√
P ). Thus,

choosing c = 1 eliminates the d2n/P log c term, and the 3D
algorithm reduces to a 2D algorithm which is communica-
tion optimal.

However, in the case d <
√
P , which will become the case

in a strong-scaling regime, increasing c can reduce commu-
nication. In this case, the lower bound from Section 3 is
Ω(d2n/P ). Depending on the all-to-all algorithm used, in-
creasing c causes slow increases on latency costs and on the
d2n/P log c bandwidth cost term, but it causes more rapid

decrease in the dn/
√
Pc term. Choosing c = Θ(P/d2) bal-

ances the two terms in the bandwidth cost, yielding a total



bandwidth cost of O(d2n/P ), which attains the lower bound
in this case.

In summary, choosing c = min
{

1, P/d2
}

allows for a com-
munication optimal 3D sparse matrix multiplication algo-
rithm, with a slight tradeoff between bandwidth and latency
costs based on the all-to-all algorithm used. Additionally,
making this choice of c means that asymptotically no extra
memory is needed over the space required to store C.

4.4 3D Recursive Algorithm
We also present a new 3D recursive algorithm which is a

parallelization of a sequential recursive algorithm using the
techniques of [3, 13]. Although we have assumed that the
input matrices are square, the recursive algorithm will use
rectangular matrices for subproblems. Assume that P pro-
cessors are solving a subproblem of size m × k × m, that
is A is m × k, and B is k ×m, and C is m ×m. We will
split into four subproblems, and then solve each subproblem
independently on a quarter of the processor. There are two
natural ways to split the problem into four equal subprob-
lems that respect the density similarity between A and B,
see Figure 5.

1. Split m in half, creating four subproblems of shape
(m/2)× k × (m/2). In this case each of the four sub-
problems needs access to a different part of C, so no
communication of C is needed. However one half of
A and B is needed for each subproblem, and since
each quarter of the processors holds only one quarter
of each matrix, it will be necessary to replicate A and
B. This can be done via allgather collectives among
disjoint pairs of processors at the cost of O (dmk/(nP ))
words and O(1) messages.

2. Split k in quarters, creating four subproblems of shape
m× (k/4)×m. In this case each of the four subprob-
lems needs access to a different part of A and B, so
with the right data layout, no communication of A or
B is needed. However each subproblem will compute
nonzeros across all of C, so those entries need to be
redistributed and combined if necessary. This can be
done via all-to-all collective among disjoint sets of 4
processors at a cost of O(d2m2/(nP )) words and O(1)
messages.

At each recursive step, the algorithm chooses whichever
split is cheapest in terms of communication cost. Initially,
m = k = n so split 1 costs O(dn/P ) words and is cheaper
than split 2, which costs O(d2n/P ) words. There are two
cases to consider.

Case 1: If P ≤ d2, the algorithm reaches a single processor
before split 1 becomes more expensive than split 2, so only
split 1 is used. This case corresponds to a 2D algorithm,
and the communication costs are

W =

log4 P−1∑
i=0

O

(
d(n/2i)n

P/4i

)
= O

(
dn√
P

)
and

S = O(logP ).

Case 2: If P > d2, split 1 becomes more expensive than
split 2 after log2 d steps. After log2 d steps, the subproblems

A B C
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k

k m

m

m

1 2

3 4
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3,4
1,3 2,4
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1 2 43
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k

k m

m

m

Figure 5: Two ways to split the matrix multiplica-
tion into four subproblems, with the parts of each
matrix required by each subproblem labelled. On
the left is split 1 and on the right is split 2.

have dimensions (n/d)× n× (n/d) and there are P/d2 pro-
cessors working on each subproblem. The first log2 d steps
are split 1, and the rest are split 2, giving communication
costs of

W =

log2 d−1∑
i=0

O

(
d(n/2i)n

P/4i

)
+

log4 P∑
i=log2 d

O

(
d2n

P

)

= O

(
d2n

P

⌈
log

P

d2

⌉)
,

and

S = O(logP ).

This case corresponds to a 3D algorithm.
In both cases, the communication costs match the lower

bound from Section 3 up to factors of at most logP . Only
layouts that are compatible with the recursive structure of
the algorithm will allow these communication costs. One
simple layout is to have A is block-column layout, B in
block-row layout. Then C should have blocks of size n/d×
n/d, each distributed on a different dP/d2e of the processors.

5. RELATED WORK
The classical serial algorithm of Gustavson [19], which is

the algorithm currently implemented in Matlab [15], does
optimal work for the case of flops � nnz, n. Yuster and
Zwick [31] gave a O(nnz0.7n1.2 + n2+o(1)) time serial al-
gorithm for multiplying matrices over a ring, which uses
Strassen-like fast dense rectangular matrix multiplication as
a subroutine. Their algorithm is theoretically close to opti-
mal for the case of nnz(C) = Θ(n2), an assumption that does
not always hold and in particular is not true when d�

√
n.

They did not analyze communication cost.
The 1D improved block-row algorithm is due to Challa-

combe [12], who calls the calculation of required indices of
B the “symbolic” phase. His algorithm uses the allgather
collective for the symbolic phase and point-to-point com-
munication for the subsequent numerical phase. Challa-
combe, however, did not analyze his algorithm’s commu-
nication costs. Kruskal et al. [20] gave a parallel algorithm



based on outer products, which has

O((flops/P ) logn/ log(flops/P ))

cost in the EREW PRAM model, which does not include
communication costs.

Sparse SUMMA and its analysis is due to Buluç and
Gilbert [7], who also analyzed the 1D näıve block-row algo-
rithm. Their follow-up work showed that Sparse SUMMA
provides good speedup to thousands of cores on various dif-
ferent input types, but its scaling is limited by the commu-
nication costs that consume the majority of the time [9].
Recent work by Campagna et al. [10] sketches a parallel al-
gorithm that replicates the inputs (but not the output) to all
the processors to avoid later communication. In our model,
their algorithm has bandwidth cost W = O(dn).

Grigori et al. [17] gave tight communication lower and
upper bounds for Cholesky factorization of sparse matri-
ces corresponding to certain grids. Pietracaprina et al. [24]
gave lower bounds on the number of rounds it takes to com-
pute the sparse matrix product in MapReduce. Their lower
bound analysis, however, is not parametrized to the den-
sity of the inputs and uses the inequality flops ≤ nnz ·
min(nnz, n). While it is true that there exist assignment
of input matrices for which the inequality is tight, the lower
bound does not hold for input matrix pairs for which the
inequality is not tight. By parametrizing the density of in-
puts, we show that our algorithms are communication opti-
mal over all ER(d) matrices.

6. DISCUSSION
While many ideas from dense matrix multiplication trans-

late directly to sparse input matrices, there are two key dif-
ferences in the sparse case. First, for the nonzero density
we consider in this paper (i.e., d �

√
n), the possible data

re-use is much more limited than in the dense case. Sec-
ond, because C is denser than A and B, the communication
costs of sparse algorithms are skewed towards C; dense mul-
tiplication of square matrices enjoys a symmetry among the
three matrices.

The first difference leads to new, tighter lower bounds.
In the dense case, there is (in principle) an opportunity for
O(n) re-use since each entry of A, B, and C is involved
in n scalar multiplications. The general lower bound of [4]
implies that the best possible data re-use for matrix com-
putations is only O(

√
M). In the sparse case, for d �

√
n,

we cannot hope to attain that amount of re-use. Given that
there are Θ(d2n/P ) flops performed on each processor, is
it possible to get better than constant re-use? Because the
size of the output is Θ(d2n/P ), we cannot hope to get bet-
ter than constant re-use of output entries; thus, to commu-
nicate fewer than Θ(d2n/P ) words, we should try to avoid
communicating output entries. There is (in principle) an
opportunity for O(d) re-use of input entries since each is in-
volved in that many scalar multiplications. The lower bound
proved in Section 3 shows that if we avoid communicating
output entries, the best possible re-use of input entries is
only O(d/

√
P ), requiring reading Ω(dn/

√
P ) words. This

amount of communication is less than Θ(d2n/P ) if d >
√
P ;

otherwise, communicating Ω(d2n/P ) words is the best an al-
gorithm can do. Thus, the lower bound becomes a minimum
of the two quantities Ω(dn/

√
P ) and Ω(d2n/P ).

Table 1 summarizes the communication costs of the vari-
ous algorithms analyzed in Section 4. It shows that ignoring

logarithmic factors, there exist 1D algorithms that attain the
lower bound when O(d2n/P ) is the smaller of the two expres-
sions, and there exists a 2D algorithm that attains the lower
bound when O(dn/

√
P ) is the smaller of the two. The 2D

algorithm, which attains better than constant re-use, does
so by not communicating C and attaining O(d/

√
P ) re-use

of A and B entries. Both of the 3D algorithms provide a
unified approach to matching either bound and attaining
communication optimality.

There are many possible extensions of the algorithms and
analysis presented in this paper. The new algorithms have
not yet been benchmarked and compared against previous
algorithms. We plan to extend recent performance studies
[9] to include all of the algorithms considered here. Addi-
tionally, we hope that our analysis can be extended to many
more types of input matrices, including those with rectangu-
lar dimensions, different nonzero densities (e.g., multiplying
an ER(dA) matrix by an ER(dB) matrix with dA 6= dB ,
or considering d ≥

√
n), and different sparsity structures

(e.g., corresponding to grids, planar graphs, or expanders).
We are especially interested in sparsity structures corre-
sponding to applications which are currently bottlenecked
by sparse matrix-matrix multiplication, such as the triple
product computation within algebraic multigrid. In the
case of matrix multiplication, we have shown how to ap-
ply ideas from dense algorithms to obtain communication-
optimal sparse algorithms. Perhaps similar adaptions can
be made for other matrix computations such as direct fac-
torizations.
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