diBELLA: Distributed Long Read to Long Read Alignment

Marquita Ellis'*?, Giulia Guidi'*?, Aydin Buluc¢!?, Leonid Oliker?, Katherine Yelick!-?

1University of California at Berkeley

2Lawrence Berkeley National Laboratory

{mellis,gguidi,abuluc,loliker,yelick}@Ibl.gov

ABSTRACT

We present a parallel algorithm and scalable implementation for
genome analysis, specifically the problem of finding overlaps and
alignments for data from “third generation” long read sequencers
[29]. While long sequences of DNA offer enormous advantages
for biological analysis and insight, current long read sequencing
instruments have high error rates and therefore require different
approaches to analysis than their short read counterparts. Our
work focuses on an efficient distributed-memory parallelization
of an accurate single-node algorithm for overlapping and aligning
long reads. We achieve scalability of this irregular algorithm by
addressing the competing issues of increasing parallelism, mini-
mizing communication, constraining the memory footprint, and
ensuring good load balance. The resulting application, diBELLA,
is the first distributed memory overlapper and aligner specifically
designed for long reads and parallel scalability. We describe and
present analyses for high level design trade-offs and conduct an
extensive empirical analysis that compares performance character-
istics across state-of-the-art HPC systems as well as a commercial
cloud architectures, highlighting the advantages of state-of-the-art
network technologies.

KEYWORDS

genomics, bioinformatics, high performance computing, perfor-
mance analysis, distributed data structures, cloud computing

ACM Reference Format:

Marquita Ellis2, Giulia Guidi®>?, Aydin Bulug’2, Leonid Oliker?, Katherine
Yelick’2. 2019. diBELLA: Distributed Long Read to Long Read Alignment.
In 48th International Conference on Parallel Processing (ICPP 2019), August
5-8, 2019, Kyoto, Japan. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3337821.3337919

1 INTRODUCTION

The improved quality, cost, and throughput of DNA sequencing
technologies over the past decades has shifted the primary bio-
logical challenge from measuring the genome to analyzing the
explosion in genomic data, which has far exceeded the growth in
computing capabilities. Yet some of the most complex algorithms
for genome analysis are typically run on shared memory machines,
limiting parallel scalability, and can run for days or even weeks
on large data sets. Here we present a parallel algorithm and imple-
mentation for one such problem involving the latest sequencing
technologies and a variety of parallel platforms.

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6295-5/19/08....$15.00
https://doi.org/10.1145/3337821.3337919

Because DNA sequencing technologies are unable to read the
whole genome in a single run, they return a large amount of short
DNA fragments, called reads. A read set contains redundant infor-
mation as each region of the genome is sequenced multiple times
(referred to as depth, or coverage) to account for sequencer errors.
These reads are typically assembled together to form longer ge-
nomic regions. Current sequencing technologies can be divided
in two main categories based on the read length: “short-read” and
“long-read” sequencers. Short-read technologies have very low error
rates (well under 1%) but the reads are only 100 to 300 base pairs
and they cannot resolve repeated regions of the genome longer
than those reads [28, 31]. Long-read technologies, including Pacific
Biosciences and Oxford Nanopore, generate reads with an average
length over 10, 000 base pairs (bps), but they have error rates from
5% to 35%.

One of the biggest challenges for the analysis of sequencing
data is de novo assembly [36], which is the process of eliminating
errors and assembling a more complete version of the genome. This
is especially important for plants, animals, and microbial species
in which no previously assembled high quality reference genome
exists. The different error rates between short and long reads lead
to different approaches to assembly. For long reads, the first step
is typically to find pairs of reads that overlap and resolve their
differences (due to errors) by computing the alignments, i.e., the
edits required to make the overlapping regions identical [6, 7, 16,
20, 24]. The read-to-read alignment computation is not limited
to genome assembly, and is widely used in various comparisons
across or within genomic data sets to identify regions of similarity
caused by structural, functional or evolutionary relationships [26].
Consequently, highly parallel long-read to long-read alignment
would significantly improve the efficiency of these techniques, and
enable analysis at unprecedented scale.

In this paper, we focus on this computationally challenging prob-
lem of finding overlapping reads and computing their alignment. We
introduce diBELLA, the first long-read parallel distributed-memory
overlapper and aligner. diBELLA uses the methods in BELLA [14],
an accurate and efficient single node overlapper and aligner that
takes advantage of the statistical properties of the underlying data,
including error rate and read length to efficiently and accurately
compute overlaps. BELLA is based on a seed-and-extend approach,
common to other aligners [2], which finds read pairs that are likely
to overlap using a near-linear time algorithm and then perform-
ing alignments on those pairs. BELLA parses each read into all
fixed-length substrings called k-mers (also called seeds in this con-
text), hashing those k-mers and then finding pairs with at least
one common k-mer. Unlike short read aligners or those that align
to a well-established reference, the high error rate in long reads
means that BELLA’s k-mers must be fairly short (17-mers are typi-
cal); this in turn means that some k-mers will appear many times

https://doi.org/10.1145/3337821.3337919
https://doi.org/10.1145/3337821.3337919
https://doi.org/10.1145/3337821.3337919

ICPP 2019, August 5-8, 2019, Kyoto, Japan

in the underlying genome and can therefore create multiple extra-
neous overlaps. diBELLA adopts the innovations from BELLA and
parallelizes the seed-and-extend approach by storing k-mersin a
distributed hash tables, using that to compute read pairs with a
common seed, and then distributing the read pairs for load balanced
pairwise alignment.

diBELLA takes advantage of distributed-memory on high per-
formance computing (HPC) systems as well as commercial cloud
environments. Significant challenges of diBELLA’s parallelization
include addressing irregular communication, load imbalance, dis-
tributed data structures (such as Bloom filters and hash tables), mem-
ory utilization, and file I/O overheads. We demonstrate our scalable
solution and detailed performance analysis, across four different
parallel architectures, with significantly different architectural de-
sign tradeoffs. In addition, we present communication bounds in
terms of input data (genome) and expected characteristics from
real data sets. Our work not only provides a distributed-memory
solution for one of the most computationally expensive pieces of
the analysis of third-generation sequencing data, it also provides
an alternative workload for future architectural developments.

Following some background on the alignment problem in Sec-
tion 2- 3, we give a high-level overview of the diBELLA pipeline
in Section 4 and then each of the parallel stages in Sections 6-9.
In each case, we describe the parallelism opportunities and load
balancing challenges with respect to the computation and commu-
nication patterns and data volumes. We also show scaling numbers
for each stage of the pipeline on the architectures and experimen-
tal settings detailed in Section 5. The architectures include AWS
and 3 Cray HPC systems (Edison and Cori at NERSC, and Titan at
OLCF). We discuss the overall pipeline performance in Section 10,
and conclude with a review of related work in Section 11, and a
summary of our conclusions in Section 12.

2 READ-TO-READ ALIGNMENT

diBELLA computes read-to-read alignment on long-read data to
detect overlapping sequences. Formally, a pairwise alignment of
sequences s and t over an alphabet 3 is defined as the pair (s’,t)
such that s’,# € X U {-} and the following properties hold:

M) 15 = 1¥'
@ VIl s —ort/ % -
@ VLS s -AND 2 - = si=1

(4) Deleting all “~” from s’ yields s, and deleting all “-” from ¢’
yields ¢.

Equivalently, we can fix one sequence, s, and edit ¢ via insertions
and deletions of characters to match s. One is generally interested
in only high quality alignments as defined by some scoring scheme
that rewards matches and penalizes mismatches, insertions, and
deletions. Finding an optimal alignment is attainable via a dynamic
programming algorithm such as Smith-Waterman and is an O(Js| -
|t|]) computation [32].

Pairwise alignment can be extended to sets: given sets of se-
quences S and T, find the best alignment of alls € Stoall t € T.
As a step in de novo genome assembly, S and T would both corre-
spond to the same set of reads and the pairwise alignment of these
two sets would therefore find reads that overlap with each other.
Done naively, set alignment requires O(|S| - |T| - L?) operations for

Ellis et al.

sequences of length L, which becomes intractable for large data
sets. However, there are two main improvements possible when
performing read-to-read alignment that focus on only high quality
outcomes. First, in place of full dynamic programming for pairwise
alignment, one can search only for solutions with a limited num-
ber of mismatches (banded Smith-Waterman) and terminate early
when the alignment score drops significantly (x-drop) [37]. This
makes pairwise alignment linear in L. diBELLA performs each pair-
wise alignment on a single node using an x-drop implementation
from the SeqAn library [9]. The second improvement involves effi-
ciently finding sequences in S and T that are likely to match before
computing the expensive pairwise alignment. This is accomplished
by finding pairs of reads in the input sets that share at least one
identical substring.

Each read in S, T is parsed into substrings of fixed length k, k-
mers, which overlap by k — 1 characters and are stored in a hash
table. Figure 1 illustrates this idea by showing three shared 4-mersin

ACCCA-[Gf -GAA--TT
AC-CAT AA-GAAGC-~TGAC

Figure 1: Pairwise alignment of two sequences with 3 com-
mon k-mers of length 4.

a given pair of sequences. Given that long-read data contains errors,
the choice of the k-mer length is crucial to maximize the detection
of true overlapping sequences while minimizing the number of
attempted pairwise alignments. Quantitatively analyzed in [14],
k should be short enough to identify at least one correct shared
k-mer between two overlapping sequences, but long enough to
minimize the number of repeated k-mers in the genome, which
could lead to either spurious alignments or redundant information.
For example, given the two reads in the example in Figure 1, a k-mer
length of 5 would fail to find an overlap. Based on the error rate
and depth of a given data set, BELLA and diBELLA compute the
optimal k-mer length to ensure that a pair of overlapping reads will
have with high probability at least one correct k-mer in common.
A typical k-mer length for long read data sets is 17-mers based on
extensive analysis in [14], whereas it is common to use 51-mers for
short read aligners. Note that not all k-mers are useful for detecting
overlaps. k-mers that occur only a single time across S and T, called
singletons, are ignored as they are likely erroneous. Even if it wasn’t
an error, a singleton cannot be used to detect an overlap between
two strings since it only occurs in one string. Conversely, k-mers
that occur with very high frequency across the data set are likely
from repeated regions of the underlying genome, and can lead to
unnecessary or incorrect alignments. diBELLA therefore eliminates
high frequency k-mers over a threshold m, which is calculated via
the approach presented in BELLA [14], using the error rate and
other characteristics of the input data set. The k-mers that remain
after this filtering, we refer to as retained k-mers and will be used
to detect the overlapping reads on which pairwise alignment is
performed. This k-mer filtering is specifically for the alighment of
long reads to long reads with their high error rates and will affect
our parallelization strategy.

diBELLA: Distributed Long Read to Long Read Alignment

ICPP 2019, August 5-8, 2019, Kyoto, Japan

R1 CCATGGACATAGCAC
R2 | AACCTTGCACATAG

R3 CCTTGGACATTGCA
R4 | ACC_TGGACATAGCAC

CCA,CAT,ATG, TGG,GGA.. || CCT |R2,R3
AAC,ACC,CCT,CTT, TTG, TGC,GCA.. || CTT |R2,R3
CCT,CTT, TTG, TGG,GGA... || TTG | R2,R3

ACC,CC_T,C TG, TGG,GGA..||TGG |R1,R3,R4

ACC |R2,R4 R2,R4 (1 seed)

R2,R3 (3 seeds)
R1,R3 (2 seeds)
R1,R4 (2 seeds)
R3,R4 (2 seeds)

GGA [R1,R3,R4

(a) Raw read data with errors (red)

(b) k-mers parsed from reads

(c) k-mer hash table (d) Read pairs to align

Figure 2: Overview of diBELLA’s pipeline, using k = 3 as example: (a) raw input data, (b) k-mer extraction, (c) k-mer hash table
and associated read list, and (d) read pair alignment using the seed-and-extend paradigm.

3 COMPUTATIONAL COST

To approximate the computational cost, we first note that the size of
the long read input data set N from a given genome is determined
by two variables, the size of the underlying genome G and the
average depth of per base coverage d (equation 1).

N=G-d 1)

If L is the average length of sequences in the input, then the size of
the read setis R = G-d/L. The computation extracts k-mers starting
at every location in each read of the input set. Thus a read of length
L has L — k + 1 k-mers (although not necessary unique ones). For
long-read data, L is generally in the range 1,000 — 100, 000 and k is
in the range 11 — 21 so we approximate the number of k-mer’s per
read as L. The number of the k-mers parsed from the input (i.e., the
bag of k-mers, which may have duplicates) is thus approximately
G-d.
G-d-(L-k+1)
L

Therefore, the total volume of k-mers from the inputis k - G -
d characters. Each k-mer character from the four letter alphabet
{A,C,T,G} can be represented with 2 bits. To support varying
values of k with efficient memory storage and alignment, we provide
compile time parameters for the k-mer representation (typically set
to 32 bits or the nearest larger power of two). In general, we avoid
storing the entire k-mer bag in memory at once, unless sufficient
distributed memory resources happen to be available. For example,
the k-mer bag size of two PacBio E. coli data sets, with 30x and 100x
coverage respectively, is nearly 3 billion and 11 billion k-mers.

diBELLA operates predominately on the much smaller set of
distinct k-mers, although we retain some information about each
instance of a k-mer, such as its locations within different reads. We
further reduce the size of the retained k-mer set (as described in
Section 2) by eliminating singletons and high-frequency k-mers.
Assuming a properly chosen value of k, the set of filtered k-mers is
approximately the size of the final assembled genome G.

~G-d (2)

4 diBELLA OVERVIEW

Our distributed-memory diBELLA design is a multi-stage parallel
pipeline. k-mers are first extracted from files of reads and filtered
by frequency, as described in Section 2. Each processor manages
a subset of the reads and a subset of the k-mers. Note that there is
no inherent locality in the order of the reads from the input files
(called FASTQ) with respect to their overlap. The first phase builds a
distributed Bloom filter[11] to identify and eliminate most singleton

k-mers. The second phase builds a hash table of non-singleton k-
mers (as approximated by the Bloom filter), and further filters k-mers
exceeding the high occurrence threshold, m (see Section 2). The
remaining hash table represents a graph with reads (represented
by identifiers) as vertices and reliable k-mers as edges. That is, two
vertices (long reads) are connected if they share a common k-mer
that was retained after filtering. The next stage forms all pairs of
read IDs that share a retained k-mer and tracks their location within
the reads. The final stage performs alignment on these read pairs
using the shared k-mer as the starting position (seed) for pairwise
alignment.

Our distributed memory design is a four-stage pipeline, with an
example shown in Figure 2 :

(1) Extract k-mers from files of reads and store in a distributed
Bloom filter to eliminate singleton k-mers. Initialize the hash
table with non-filtered k-mers.

(2) Extract k-mers and their location metadata from the files
again. Insert into the distributed hash table only if the k-mer
is already resident. After this is done, remove singleton k-
mers that were missed by the Bloom filter and those that
exceed the high occurrence threshold, m.

(3) For each k-mer in the hash table, take the associated list of
read IDs (and positions) and form all pairs of reads, assigning
each pair to one processor.

(4) Redistribute and replicate reads (the original strings) to
match read-pair distribution and perform pairwise align-
ment on each pair locally.

The algorithm makes two passes over the data in order to not
store all the parsed k-mers in main memory; diBELLA executes in
a streaming fashion with a subset of input data at a time to limit
the memory consumption.

The Bloom filter, hash table, and list of read pairs are all dis-
tributed across the nodes, and the predominate communication
pattern, common to each stage, is irregular all-to-all exchanges.
The first two stages exchange k-mers for counting and for initial-
izing the hash table with k-mers and respective source locations.
The k-mers are mapped to processors uniformly at random via
hashing, such that each processor will own roughly the same num-
ber of distinct k-mers, as in [11]. Further details for these stages
follow in Sections 6-7. The third phase consolidates read-pairings
(overlaps), and their lists of shared k-mer positions, which repre-
sent alignment tasks. The details of the parallelization and task
redistribution are provided in Section 8. The final stage computes
all pairwise alignments. Because the pairwise alignments require

ICPP 2019, August 5-8, 2019, Kyoto, Japan

the full reads, any non-local reads are requested and received by
the respective processor. This last stage is described in detail in
Section 9. Overall, our design employs Bulk Synchronous Process-
ing [34] throughout, with the communication implemented via
MPI Alltoall and Alltoallv functions. Note that a load imbalance
can result from the data characteristics, including highly repetitive
genome regions. The current diBELLA implementation makes par-
ticular design choices for data layout, communication aggregation,
and synchronization, and we evaluate their effectiveness through
extensive cross-platform performance analysis while identifying
opportunities for future optimizations within the general frame-
work. The specific techniques for k-mer length selection, filtering
and local alignment are based on those in BELLA, but the paral-
lelization approach is applicable to this general style of long read
aligner based on k-mer filtering and hashing.

5 EXPERIMENTAL SETUP

Our experiments were conducted on four computing platforms,
which include HPC systems with varying balance points between
communication and computation, as well as a commodity AWS
cluster. This gives us performance insights into tradeoffs between
extremes of network capabilities. Evaluated platforms include the
Cori Cray XC40 and Edison Cray XC30 supercomputers at NERSC,
the Cray XK7 MPP at the Oak Ridge National Lab, and an Amazon
Web Services (AWS) c3.8xlarge cluster. Details about each architec-
ture are presented in Table 1. Titan has GPUs and CPUs on each
node, but we use only the CPUs with total 16 (integer) cores per
node. AWS does not reveal specifics about the underlying node
architecture or interconnect topology, other than an expected 10
Gigabit injection bandwidth. Based on our measurements, the AWS
node has similar performance to a Titan CPU node. Both data sets
are small enough to fit in the memory of a single node, and in all
experiments, MPI Ranks are pinned to cores.

To highlight cross-network performance and communication
bottlenecks, most of our experiments use an input data set and
runtime parameters that result in low computational intensity. This
data is from E. coli bacteria with a depth of 30%, which consists of
16, 890 long reads from the from Escherichia coli MG1655 strain,
resulting in a 266 MB input file; it has been sequenced using PacBio
RS II P5-C3 technology and it has an average read length of 9, 958
bp. The second data set, E. coli 100X, was sequenced using PacBio
RS II P4-C2 and uses a depth of 100. It consists of 91,394 long reads
from the same strain with an average read length of 6,934 bps,
resulting in a 929 MB input file. diBELLA’s overlap detection step
identifies 2.27M read pairs for the first data set and 24.87M for the
second one.

Computational intensity is most affected by the number of align-
ments performed for each pair of reads, since each pair might share
varying numbers of seeds. Some of these seeds reflect a shifted
version the same overlapping region, whereas others may be inde-
pendent (and ultimately incorrect) overlaps. We use three different
options to provide a range of computational intensity. At the two
extremes, the one-seed option computes pairwise alignment on
exactly one seed per pair, while the all-seed option computes pair-
wise alignment on all the available seeds separated by at least the
k-mer length. As an intermediate point we consider only seeds

Ellis et al.

separated by 1,000 bps. The analysis associated with the design
of BELLA [14], shows that even 1,000 bp separation can be used
without significantly impacting quality.

Both data sets are sufficiently small that the working set size
fits on a single node across the platforms in our comparison. This
choice enables us to show the performance impact of intra-node
to inter-node communication on the overall pipeline performance
and highlight scaling bottlenecks, and to explore strong scaling on
a modest number of nodes, important for comparison with AWS.

6 BLOOM FILTER CONSTRUCTION

Given that singleton k-mers constitute the majority of the k-mer
data set, retaining them is memory inefficient since it would require
storage k times larger than the input size. Therefore the goal of
this stage is to build a distributed Bloom filter to identify (with
high probability) singleton k-mers, which can be ignored. It also
enables the initialization of a distributed hash table containing the
unfiltered k-mers. Briefly, a Bloom filter is an array of bits that uses
multiple hash functions on each element to set bits in the array.
Due to collisions, a value may not be in the array even if its hash
bits are set, but a value with at least one zero is guaranteed to be
absent from the set [4] (i.e. it may allow false positives, but does
not contain false negatives). We follow the methodology of the
HipMer short read assembler [13] for this stage, but note that the
Bloom filter is even more effective for long reads due to their higher
error rate — up to 98% of k-mers from long reads are singletons
vs. 60 — 85% for short reads. Minimizing the Bloom filter false
positive rate depends on the (unknown a priori) cardinality of the
k-mer set. In our experiments thus far, we have not encountered a
case where approximating the k-mer cardinality using equation 2
and typical ratios of singleton k-mers to all k-mers across data
sets did not provide a sufficiently accurate estimate, such that the
more expensive HyperLogLog algorithm in HipMer was required.
However, we suspect that for extremely large (tens of trillions of
base pairs) and repetitive genomes that we may encounter the same
issues that led to this optimization in HipMer.

As mentioned, the input reads are distributed roughly uniformly
over the processors using parallel I/O, but there are is no locality
inherent in the input files. Each rank in parallel parses its reads into
k-mers, hashes the k-mers, and eventually sends them to a processor
indicated by the hash function. The hash function ensures that each
rank is assigned roughly the same number of k-mers. On the remote
node, the received k-mers are inserted into the local Bloom filter
partition. If a k-mer was already present, it is also inserted into
the local hash table partition. Although all G - d k-mers are to be
computed, this process is performed in stages since only a subset of
k-mers may fit in memory at one time. The Bloom filter construction
communicates nearly all (roughly (P — 1)/P) of the k-mer instances
to other processors in a series of bulk synchronous phases. The
total number of phases depends on the size of the input, and the
irregular all-to-all exchange is implemented with MPI Alltoall and
Alltoallv. After the hash table is initialized with k-mer keys, the
Bloom filter is freed.

Figure 3, shows strong scaling performance (including commu-
nication) of the Bloom filter phase across the four platforms in
our study, measured in millions of k-mers processed per second.

diBELLA: Distributed Long Read to Long Read Alignment

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Table 1: Evaluated platforms. *128 byte Get message latency in microseconds. TUsing the optimal number of cores per node.
fMeasured over approx. 2K cores or maximum (128 for ethernet cluster). SMB/s with 8K message sizes. “CPU nodes only.

Processor Cori I Cray XC40 Edison Cray XC30 Titan Cray XK7%
Intel Xeon (Haswell) Intel Xeon (Ivy Bridge) AMD Opteron 16-Core
Freq (GHz) 23 24 2.2
Cores/Node 32 24 16
Intranode LAT*" 2.7 0.8 1.1
BW/Node 3 113.0 436.2 99.2
Memory (GB) 128 64 32
Network and Topology Aries Dragonfly Aries Dragonfly Gemini 3D Torus
600 Bloom Filter Performance Bloom Filter Efficiency on AWS
1| == Cori (XC40 2-0{ Packing Efficiency
’g 500 = Eu'iac()ll \}\U)OU) /\\///‘ 1T EXChla;ging—Ef‘ﬁCieIEnf?y'
S Titan (XK7) 1 5] L= Overal Sttty -
= 400 >)
£ AWS s > 1
< 300 /‘5/ .
3 S 1.0 % —— —
200 1 '// IR RN \
9] —] ~ \
€ ,//‘ 0.5 S
£ 100+] “ae \
1 10 T e——n L ST \
0 T T T 0 1 T Bhhl TTEERPES 4

T T
1 2 4 8
nodes (16-32 cores/node)

16 32

Figure 3: Bloom Filter cross-architecture performance in
millions of k-mers processed / sec, given E.coli 30x one-seed.

Note that on Titan (Cray XK7), 1 MPI Rank is assigned to each
Integer Core/L1 Cache, and the GPU are not utilized. Each node of
Titan contains 16 Integer Cores, the overall computational peak of
which is significantly lower than Cori and Edison (which contain 32
and 24 more powerful cores per node, respectively). Titan’s k-mer
processing rate is most similar to the AWS cluster (which contains
16 cores per node), and surpasses AWS performance only when
communication becomes the dominant bottleneck at 16-32 nodes.
Figure 4 presents a detailed breakdown of the strong scaling
efficiency on AWS. Note that the Local Processing (hashing and
storing k-mers) speeds up superlinearly, since more of the input fits
in cache for this strong scaling experiment. On the other hand, the
Exchanging efficiency, computed relative to the single (intra) node
communication, degrades significantly with increased concurrency,
and eventually overwhelms the overall runtime. More detailed
measurements (not shown) reveal that some of the poor scaling
in Exchanging is only in the first call to MPI’s Alltoallv routine.
The overhead is assumably from the MPI implementation’s internal
data structure initialization, related to process coordination and
communication buffers setup for subsequent calls.

7 HASH TABLE CONSTRUCTION

In order to identify reads with at least one common k-mer, the
next phase builds a hash table of k-mers and the lists of all read ID
(RID) and locations at which they appeared. In this stage all reads
are again parsed into k-mers, hashed, and sent to the processor
owning that k-mer, and if the k-merkey exists in the hash table (not

16 32

nodes (16 MPI ranks per node)

Figure 4: Bloom Filter efficiency on AWS within a 32 node
placement group, 1 MPI Rank per core, 16 per node, strong
scaling with E.coli 30x one-seed.

a singleton), it is inserted with its RID and location and its count
incremented. The same strategy for load balancing k-mers as in the
Bloom filter construction stage (Section 6) is employed here; the k-
mers are hashed to the same distributed memory location that they
were in the previous stage. At the end of this process, the local hash
table partitions are traversed independently in parallel to remove
any k-mers that occur more times than the maximum frequency, and
any false-positive singletons. The remaining k-mers are referred to
as retained k-mers. This extra RID and location information makes
the hash table different than other tools intended for de Bruijn graph
construction of short reads (such as HipMer [13]) or those used to
analyze read data directly by counting k-mers (such as Jellyfish [25]).
The communication is again done in a memory-limited set of bulk-
synchronous phases, where the irregular all-to-all exchange of
k-mers and associated data is implemented with MPI Alltoall and
Alltoallv. Note that while the communication volume of this stage is
2.5x larger than the Bloom filter stage, the amount of computation
is also higher due to the RID and location handling, as well as the
hash table traversal. This difference is apparent in the strong scaling
performance comparison between Bloom filtering in Figure 3 and
hash table construction in Figure 5. Although the trends are similar
across stages and platforms, the computation rate of the hash table
stage is roughly double that of the Bloom filter stage. Once again
improved cache behavior results in superlinear speed up for this
strong scaling computation.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Hash Table Construction Performance

| [cori (xc4o) _—
1000 :
) | | = Edison (XC30) —
s Titan (XK7) /
= 800 AWS
€]
£ 600 /‘\\

k-mers/sec
e
o
o

,/}/A]

T
1 2 4 8 16 32
nodes (16-32 cores/node)

N
o
o

o

Figure 5: Hash Table stage, cross-architecture performance
in millions of k-mers/second given E.coli 30x one-seed.

8 OVERLAP

Once the distributed hash table is computed, which maps reliable
k-mers to source locations (RIDs and positions), the overlap com-
putation is straightforward. Rather than constructing the matrix
explicitly as in BELLA, we avoid the associated overhead and com-
pute overlaps directly from hash table partitions, independently in
parallel in diBELLA. Further exploration of the associated design
tradeofs is part of ongoing work. Algorithm 1 illustrates this sim-
ple, direct computation of set of all pairs of reads represented by
identifiers (rg4, rp), where r, and ry, share reliable k-mer (s). Each
k-mer “contributes” to the discovery of [2, m(m — 1)/2] read pairs
where m is the maximum frequency of reliable k-mers in diBELLA,
or simply the maximum frequency of retained k-mers in general.
Each of these represents an alignment task for the next stage. How-
ever, the owner of the k-mer matching (r4, r;,) may not be the owner
of either involved read. To maximize locality in the alignment stage
(minimize the movement of reads) each task is buffered for the
owner of rq or rp, (which may be the same owner), according to the
simple odd-even heuristic in Algorithm 1. Recall, reads in the input
are unordered and partitioned uniformly. The hash table values
(RID lists) are also unordered. Hence, for fairly uniform distribu-
tions of reliable k-mers in the input, we expect this heuristic to
roughly balance the number of alignment tasks assigned to each
processor. Load balancing by number of tasks is however imper-
fect, since individual pairwise alignment tasks may have different
costs in the alignment stage. The computational impact of various
features, such as read lengths and k-mer similarity, could be used
for estimating the cost changes with the pairwise alignment kernel.
We leave further analysis of the relationship between the choice
of pairwise alignment kernel and overall load balancing to future
work. Our expectations of the general load balancing strategy are
discussed further with empirical results in the context of the align-
ment stage description, Section 9. The final steps of the overlap
stage are the irregular all-to-all communication of buffered tasks,
implemented with MPI_Alltoallv, and the (optional) output of the
overlaps.

Neither the number of overlapping read pairs nor the number
of retained k-mers common to each can be determined for a given
workload until runtime. However, we provide generalizable bounds

Ellis et al.

Algorithm 1: Parallel (SPMD) hash table traversal

Result: All pairs of reads sharing at least 1 retained k-mer in
hash table partition, H, and corresponding k-mer
positions (elided) are composed into alignment tasks.
Each task, with read identifiers (rq, rp), is stored in a
message buffer for the owner of r, or rp,.

for each k-mer key ky, o5, in hash table H do

for i = 0to m-2 do

for j=i+1to m-1do

(ra,rp) = task(H[kpasp][], H{kpasnllil.-)

if 74%2=0ANDrq > rp + 1 then

| buffer[owner(rq)]« (ra,rp)

else if r;%2 # 0 ANDr, < rp + 1 then

| buffer[owner(rq)]« (ra,rp)

else
| buffer[owner(rp)]« (ra,rp)
end
end
end
end

on the computation and communication from a few basic observa-
tions. Recall from Section 2 that the total number of k-mers parsed
from the input is one order of magnitude larger than the num-
ber of characters in the input. However, only a small fraction of
these are stored, those that are distinct, and with frequency in
[2, m]. Let the fraction of retained k-mers to the total number of
(input) k-mers (Kinput) be tinpys, and the fraction of retained k-
mers to the size of the k-mer set, |Kset| be iser. The importance
of the distinction is that |Kge;| cannot be known until the end of
the k-mer analysis stage, whereas Kinpy: is known a priori. Fur-
ther, |Kset| < Kinput, and thus i5¢; > tinput. In our cross-genome
analysis, iger € [0.04,0.12]. This analysis is useful for estimating
the overlap computation and communication costs, and applicable
beyond our particular implementation.

An upper bound on the total (global) number of overlaps follows
in Equation (3). The lower bound (Equation (4)) follows from the
fact that retained k-mers must occur in at least two distinct reads
(identifying at least one overlap) or they are discarded. The parallel
computational complexity of Algorithm 1’s overlap detection (with
P parallel processors) is shown in Equation (5), which assumes
constant-time storage of read pair identifiers. The hidden constant
in Equation (5) is halved by exploiting asymmetry.

O(1set X Kser X mZ) < O(linput ><Kinput X mZ) ®3)
O(iset X Kser) < O(linput X Kinput) (4)

K 2
o(lset Is)etm))

Ignoring the constant for the size of the overlap representation
(a pair of read identifiers and positions in our case), the aggregate
communication volume is also bounded above by Equation 3, and
below by Equation 4.

As a last computational step, after the overlaps are computed
and communicated (and lists of common k-mers consolidated), the

diBELLA: Distributed Long Read to Long Read Alignment

Overlap Performance

~e- Cori (XC40)
150 Edison-(XC3
] Titan (XK7)

AWS

100

50 (/ /

0 T i T T T
1 2 4 8 16 32

nodes (16-32 cores/node)

retained k-mers/sec (in millions)

Figure 6: Cross-architecture Overlap stage performance in
millions of retained k-mers/second given E.coli 30x one-seed.

lists may be filtered further depending on certain runtime param-
eters. That is, some subset of all k-mers per overlapping read pair
will be used to seed the alignment in the next stage; the subset
is determined by the shared retained k-mers total (simply all may
be used) and also by certain runtime parameters which can be
thought of as “exploration” constraints. These include the mini-
mum distance between seeds, and the maximum number of seeds
to explore per overlap. A discussion of these settings in relation to
alignment accuracy versus computational cost is presented in the
BELLA analysis[14]. In general, increasing the number of seeds to
explore per overlap increases computational cost of the alignment
stage (not necessarily linearly), depending on the pairwise align-
ment kernel employed. We present results varying the number of
seeds Section 9.

Strong scaling results for the overlap stage are shown in Figure
6. These are presented across our evaluated platforms in terms of
millions of retained k-mers processed per second, and show similar
computational behavior as the previous stages. One unexpected
feature of this graph is the dip Cori’s performance trend at 16
nodes, due to an unexpected spike in the communication exchange
time that does not continue to 32 nodes. The absolute time is short
enough to have been caused by interference in the network, but
the spike nonetheless brings the Cori performance down to Titan
and AWS’s at 16 nodes.

9 ALIGNMENT

The k-merload balancing strategy described in sections 6-7 enables
uniform k-mer load balancing and complete parallel overlap de-
tection. The rebalancing of overlapping reads, however, is left for
the alignment stage. Recall, that the input reads are not ordered,
and our algorithm partitions them as uniformly as possible at the
beginning of the computation (by the read size in memory). Only
k-mers and read identifiers (not the actual reads) are communicated
in the initial stages of the pipeline. After the overlap stage com-
munication, each overlap identifier together with the associated
list of share k-mer positions, are stored in the appropriate owners
location. Note, the k-mer positions are retained rather than recom-
puted because they are the locations of (globally) rare k-mers (see

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Section 2). Computing the alignment of any overlapping pair of
reads, however, requires both of the respective input reads.

The properties of the overlap graph underpin the communica-
tion design of our application. The size of the retained k-mer set
determines the size (and sparsity) of the overlap graph. From our
filtering steps, we expect this graph to be sparse; from empirical
observations across data sets, the filtering typically reduces the
k-mer set size by 85-98%.

To effectively maximize locality and bandwidth utilization un-
der these conditions, we first explore the performance of a bulk
synchronous exchange implemented via MPI_Alltoallv. Note that
once the reads are communicated, the alignment computation can
proceed independently in parallel. We expect that speedups from
the subsequently embarrassingly parallel alignment computations
(which are quadratic for exact pairwise alignment and at least lin-
ear in the length of the long reads for approximate alignments)
will compensate for inefficiencies in the communication to some
workload-dependent degree of parallelism.

Each overlap shares an unknown a priori number of retained
k-mers that are used as alignment seeds. Anywhere between one
or all of these seeds will be explored in application runs, depend-
ing on the user’s objectives and runtime settings. Figure 7 shows
performance (alignments per second) across our evaluated plat-
forms machines using the (computationally worst-case) one seed
per alignment. Here, the number and speed of the cores per node
determine the relative performance ranking (see Table 1), with
Cori’s 32 cores/node clearly surpassing the other systems.

The load balancing strategy described in Sections 8-9 produces
near perfect load balancing in terms of the number of alignments
computed per parallel process, but imperfect load balancing in terms
of time to exchange and compute all alignments. Figure 8 shows the
latter load imbalance, calculated as maximum per rank alignment
stage times over average times across ranks (1.0 is perfect). There
are two reasons for this load imbalance in terms of compute and
exchange costs: (1) reads have different lengths, which effect both
the exchange time and the pairwise alignment time, (2) the x-drop
algorithm returns much faster when the two sequences are diver-
gent because it does not compute the same number of cell updates.
A smarter read-to-processor assignment could optimize for variable
read lengths, eliminating the exchange imbalance. However, the
imbalance due to x-drop can not be optimized statically as it is not
known before the alignment is performed. To mitigate the impact
of (2), one would need dynamic load balancing, which is known to
be high-overhead in distributed memory architectures. The load
imbalance in terms of the number of alignments performed per
processor is less than 0.002% across all machines and scales. Future
work should consider not only the number of alignments per pro-
cessor but other kernel-dependent characteristics affecting the cost
of each pairwise alignment.

10 PERFORMANCE ANALYSIS

The performance rates on each stage show similar results across
machines, with the more powerful Haswell CPU nodes and network
on Cori (XC40) giving superior overall performance. As expected,
all-to-all style communication scales poorly on all networks, with

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Alignment Performance

% 5.||= Cori(xc4o) A
IS | | = Edison (XC30) I//
% 4| == Titan (XK7) //‘/
s |l AWS /
g ° — //
£ o
° o 54/

1 2 4 8 16 32

nodes (16-32 cores/node)

Figure 7: Cross-architecture Alignment stage strong scaling
in millions of alignments / second given E.coli 30x one-seed.

Alignment Stage Load Imbalance

N
o

AWS =
m Titan (XK7)
M Edison (XC30) |-
m Cori (XC40) [

=
00

T

=
o))

g
i

=
N

load imbalance (perfect = 1.0)

1 2 4 8 16 32
no. of nodes (16-32 cores per node)

=
o

Figure 8: Alignment stage load imbalance on E.coli 30x one-
seed, calculated using maximum over average stage times
across ranks (1.0 is perfect).

but especially the commodity AWS network. Somewhat more sur-
prising is the high level of superlinear speedup on some stages once
the data fits in cache or other memory hierarchy level. The question
for overall performance is how these two effects trade off against
one another and how the stages balance out. Figure 11 shows di-
BELLA’s overall pipeline efficiency on Cori, varying workloads and
computational intensity. Two data sets are used, E. coli 30x and E.
coli 100x, and 3 seed constraints, one-seed, all seeds separated by
1Kbps, and all seeds separated by k = 17 bps. Clearly, increasing the
computational intensity with larger inputs and seed counts does
not alone determine overall efficiency. While the computational
efficiency increases with higher computational intensity, the overall
efficiency is significantly impacted by the degrading efficiency of
exchanges. Figures 9 and 10 respectively show runtime breakdown
by stages on Cori for E. coli 30X exploring 1 seed per overlapping
pair of reads, and E. coli 100X, using all seeds with a minimum of
1Kbps-distant from each other. These represent two extremes in
terms of computational intensity, the former being minimal, the
latter being much higher, but still a realistic point of comparison
for the same input genome. The communication time is broken
out for each stage. The stages are fairly evenly balanced, although
alignment is more expensive computationally than the others (and

Ellis et al.

Cori (XC40) Runtime Breakdown E. coli 30X

Alignment
Exchange

Overlap

F Overlap ==
—

] Exchange
Hash Table
40 - ¢
ge

| BT

HT)
Bloom Filter Exchange
(BT)

1 2 4 8 16 32
nodes (32 cores,1 MPI rank per node)

time (%)

Figure 9: Runtime breakdown on Cray XC40 with minimum
computational-intensity workload (E.coli 30x single seed).

Cori (XC40) Runtime Breakdown E. coli 100X

Alignment

Alignment
Exchange

time (%)

20 Hash Table
e Overiap Exchange

Bloom Filter HT Exchange

(BT)

BT Exchange

1 2 4 8 16 32
nodes (32 cores,1 MPI rank per node)

Figure 10: Runtime breakdown on Cray XC40 with higher
computational-intensity workload (E.coli 100x, all seeds).

dominates to 32 nodes in the more computationally intense work-
load). Focusing on Figure 9, the communication time in the Bloom
Filter stage is surprisingly higher than in the Hash Table stage
where the volume is 2.5x higher, and the communication pattern
and number of messages is identical. Further investigation revealed
that the problem is the first call to the MPI Alltoallv routine, which
is almost twice as expensive the first time as the second, so the
Hash Table stage benefitted from whatever internal data structure
and communication initialization happened in the Bloom Filter
stage. This effect was visible to varying degrees on all 4 platforms.
This kind of behavior is most noticeable for workloads with lowest
computational intensity.

To further drill down on network and processor balance, Fig-
ure 12 shows the efficiency across all 3 HPC networks over the
overall pipeline and the exchange time on each. From an efficiency
standpoint, the Cray XK7 using only the CPU features on each node
gives the best network balance for this problem, even though the
network is an older generation than on the XC30 and XC40.

From a performance standpoint, the higher spee