High-Productivity and High-Performance Analysis of Filtered Semantic Graphs

Aydın Buluç
Lawrence Berkeley National Laboratory
February 20, 2014
SIAM PP, Portland
Graph abstractions in Computer Science

Compiler optimization:
Control flow graph: graph dominators
Register allocation: graph coloring

Scientific computing:
Preconditioning: support graphs, spanning trees
Sparse direct solvers: chordal graphs
Parallel computing: graph separators

Computer Networks:
Routing: shortest path algorithms
Web crawling: graph traversal
Interconnect design: Cayley graphs
Large graphs are everywhere

Internet structure
Social interactions

Scientific datasets: biological, chemical, cosmological, ecological, …

WWW snapshot, courtesy Y. Hyun

Yeast protein interaction network, courtesy H. Jeong
A few biological graph analysis problems

• Connective abnormalities in schizophrenia [van den Heuvel et al.]
 – Problem: understand disease from anatomical brain imaging
 – Tools: betweenness centrality, shortest path length
 – Results: global statistics on connection graph correlate w/ diagnosis

• Genomics for biofuels [Strnadova et al.]
 – Problem: scale to millions of markers times thousands of individuals
 – Tools: min spanning tree, customized clustering
 – Results: using much more data leads to much better genomic maps

• Alignment and matching of brain scans [Vogelstein et al.]
 – Problem: match corresponding functional regions across individuals
 – Tools: graph partitioning, clustering, and more. . .
 – Results: in progress
The Combinatorial BLAS implements these, and more, on arbitrary semirings, e.g. $(\times, +)$, (and, or), $(+, \text{min})$.
Many irregular applications contain coarse-grained parallelism that can be exploited by abstractions at the proper level.

<table>
<thead>
<tr>
<th>Traditional graph computations</th>
<th>Graphs in the language of linear algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data driven, unpredictable communication.</td>
<td>Fixed communication patterns</td>
</tr>
<tr>
<td>Irregular and unstructured, poor locality of reference</td>
<td>Operations on matrix blocks exploit memory hierarchy</td>
</tr>
<tr>
<td>Fine grained data accesses, dominated by latency</td>
<td>Coarse grained parallelism, bandwidth limited</td>
</tr>
</tbody>
</table>
Multiple-source breadth-first search

- Sparse array representation => space efficient
- Sparse matrix-matrix multiplication => work efficient
- Three possible levels of parallelism: searches, vertices, edges
- Highly-parallel implementation for Betweenness Centrality*

*: A measure of influence in graphs, based on shortest paths
Multiple-source breadth-first search

- Sparse array representation => space efficient
- Sparse matrix-matrix multiplication => work efficient
- Three possible levels of parallelism: searches, vertices, edges
- Highly-parallel implementation for Betweenness Centrality*

*: A measure of influence in graphs, based on shortest paths
Parallel Graph Analysis Software

- Discrete structure analysis
- Graph theory
- Computers
Parallel Graph Analysis Software

Knowledge Discovery Toolbox (KDT)

Distributed Combinatorial BLAS

Shared-address space Combinatorial BLAS

Communication Support (MPI, GASNet, etc)

Threading Support (OpenMP, Cilk, etc)

Domain scientists

Graph algorithm developers

HPC scientists and engineers

Discrete structure analysis

Graph theory

Computers
Parallel Graph Analysis Software

Knowledge Discovery Toolbox (KDT)

Distributed Combinatorial BLAS

Shared-address space Combinatorial BLAS

Communication Support (MPI, GASNet, etc)

Threading Support (OpenMP, Cilk, etc)

Domain scientists

Graph algorithm developers

HPC scientists and engineers

Discrete structure analysis

Graph theory

Computers

- KDT is higher level (graph abstractions)
- Combinatorial BLAS is for performance
A useless binary graph

Good for benchmarking though (i.e. Graph500)
A useful semantic graph

class edge_attr:
 isText
 isPhoneCall
 weight
G.addEFilter(lambda e: e.weight > 0)
G.addEFilter(lambda e: e.weight > 0)
G.addEFilter(lambda e: e.isPhoneCall)

class edge_attr:
 isText
 isPhoneCall
 weight
Attributed semantic graphs and filters

Example:
- Vertex types: Person, Phone, Camera, Gene, Pathway
- Edge types: PhoneCall, TextMessage, CoLocation, Sequence Similarity
- Edge attributes: StartTime, EndTime
- Calculate centrality just for emails among engineers sent between times sTime and eTime

```python
def onlyEngineers(self):
    return self.position == Engineer

def timedEmail(self, sTime, eTime):
    return ((self.type == email) and
             (self.Time > sTime) and
             (self.Time < eTime))

start = dt.now() - dt.timedelta(days=30)
end = dt.now()

# G denotes the graph
G.addVFilter(onlyEngineers)
G.addEFilter(timedEmail(start, end))

# rank via centrality based on recent email transactions among engineers
bc = G.rank('approxBC')
```

Filter options and implementation

- Filter defined as unary predicates, checked in order they were added
- Each KDT object maintains a stack of filter predicates
- All operations respect filters, enabling filter-agnostic algorithm design

<table>
<thead>
<tr>
<th>On-the-fly filters</th>
<th>Materialized filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edges are retained</td>
<td>Edges are pruned on copy</td>
</tr>
<tr>
<td>Check predicate on each</td>
<td>Check predicate once on materialization</td>
</tr>
<tr>
<td>edge/vertex traversal</td>
<td></td>
</tr>
<tr>
<td>Cheap but done on each run</td>
<td>Expensive but done once</td>
</tr>
</tbody>
</table>
Problems with Customizing in KDT

- Filtering on attributed semantic graphs is slow
 - In plain KDT, filters are pure Python functions.
 - Requires a per-vertex or per-edge upcall into Python
 - Can be as slow as 80X compared to pure C++

- Adding new graph algorithms to KDT is slow
 - A new graph algorithm = composing linear algebraic primitives + customizing the semiring operation
 - Semirings in Python; similar performance bottleneck
Review: Selective Embedded Just In Time Specialization (SEJITS)

Catanzaro, Kamil, Lee, Asanovic, Demmel, Keutzer, Shalf, Yelick, Fox. SEJITS: Getting productivity and performance with selective embedded JIT specialization. PMEA, 2009
SEJITS for filter/semiring acceleration

Standard KDT

Python

KDT Algorithm

Semiring (Py)

Filter (Py)

C++

CombBLAS Primitive

for filter/semiring acceleration
SEJITS for filter/semiring acceleration

Embedded DSL: Python for the whole application
• Introspect, translate Python to equivalent C++ code
• Call compiled/optimized C++ instead of Python

B., Duriakova, Gilbert, Fox, Kamil, Lugowski, Oliker, Williams. High-Performance and High-Productivity Analysis of Filtered Semantic Graphs, IPDPS, 2013
Details about the experimental setting

- Filtered breadth-first search and maximal independent set
- Edge values are generated to guarantee a particular filter permeability by weighting the random number generator.

```c
struct TwitterEdge {
  bool follower;
  time_t latest; // set if count > 0
  short count; // number of retweets
};
```

The edge filter written in Python:
(Translated to C++ on the fly by SEJITS)

```python
class MyFilter(PcbFilter):
    def __init__(self, target_date):
        self.target = strtoftime(target_date)

    def filter(e):
        # if it is a retweet edge
        if (e.count > 0 and
            # and it is before the target date
            e.latest < self.target):
            return True
        else:
            return False
```
SEJITS+KDT multicore performance

- MIS = Maximal Independent Set
- 36 cores of Mirasol (Intel Xeon E7-8870)
- Erdős-Rényi (Scale 22, edgefactor=4)

Synthetic data with weighted randomness to match filter permeability
Notation: [semiring impl] / [filter impl]
SEJITS+KDT real graph performance

Breadth-first search
16 cores of Mirasol
(Intel Xeon E7-8870)

Sizes (vertex and edge counts) of different combined Twitter graphs.

<table>
<thead>
<tr>
<th>Label</th>
<th>Vertices (millions)</th>
<th>Edges (millions)</th>
<th>Tweet</th>
<th>Follow</th>
<th>Tweet&follow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>0.5</td>
<td>0.7</td>
<td>65.3</td>
<td>4.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Medium</td>
<td>4.2</td>
<td>14.2</td>
<td>386.5</td>
<td>4.8</td>
<td>16.0</td>
</tr>
<tr>
<td>Large</td>
<td>11.3</td>
<td>59.7</td>
<td>589.1</td>
<td>12.5</td>
<td>59.7</td>
</tr>
<tr>
<td>Huge</td>
<td>16.8</td>
<td>102.4</td>
<td>634.2</td>
<td>15.6</td>
<td>160.8</td>
</tr>
</tbody>
</table>

Statistics about the largest strongly connected components of the Twitter graphs.

<table>
<thead>
<tr>
<th>Label</th>
<th>Vertices</th>
<th>Edges traversed</th>
<th>Edges processed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>78,397</td>
<td>147,873</td>
<td>29.4 million</td>
</tr>
<tr>
<td>Medium</td>
<td>55,872</td>
<td>93,601</td>
<td>54.1 million</td>
</tr>
<tr>
<td>Large</td>
<td>45,291</td>
<td>73,031</td>
<td>59.7 million</td>
</tr>
<tr>
<td>Huge</td>
<td>43,027</td>
<td>68,751</td>
<td>60.2 million</td>
</tr>
</tbody>
</table>
SEJITS+KDT cluster performance

A roofline model for shows how SEJITS moves KDT analytics from being Python compute bound to being bandwidth bound.

- Breadth-first search
- 576 cores of Hopper (Cray XE6 at NERSC with AMD Opterons)
- R-MAT (Scale 25, edgefactor=16, symmetric)
SEJITS does not impede scaling

As the compute limitations are lifted, parallel scaling gets **harder** due to higher bandwidth/sec requirements of the computation.
Roofline analysis: Why SEJITS+KDT works?

Even with SEJITS, there are run-time overheads with function calls via pointers.

How is it so close to the Combinatorial BLAS performance?

Because once we are bandwidth bound, additional complexity does not hurt.
Cache effects of SEJITS

10% permeability
Main contribution

- Both Boost Graph Library (BGL) and Parallel Boost Graph Library (PBGL) implement the filtered graph abstraction.
- Why do we re-invent the wheel?

✓ High-productivity programming
✓ Targeting domain scientists

```python
# bigG contains the input graph
comp = bigG.connComp()
giantComp = comp.hist().argmax()
G = bigG.subgraph(comp==giantComp)

clus = G.cluster('Markov')

clusNedge = G.nedge(clus)

smallG = G.contract(clus)

# visualize
```
Targeting “domain experts”

KDT's semantic graphs

Performance

Conceptual simplicity

Customizability

Combinatorial BLAS

KDT with just in time compilation

KDT with just in time compilation

KDT’s non-semantic graphs

KDT’s semantic graphs
Conclusions

• **KDT + Combinatorial BLAS**: Making parallel graph analysis accessible to domain scientists.

• Layered *software architecture* allows concurrent advances in performance and functionality.

• High-performance *filtered semantic graph processing* is possible without changes from the graph algorithm developer.

• Possible to write callbacks in high-level language while retaining low-level language performance

• Possible to define datatypes at runtime * [JPDC submission]
Key contributors, past and present:

• Erika Duriakova (University College Dublin)
• Armando Fox (UC Berkeley)
• John Gilbert (UC Santa Barbara)
• Shoaib Kamil (MIT)
• Adam Lugowski (UC Santa Barbara)
• Lenny Oliker (Berkeley Lab)
• Steve Reinhardt (Cray Inc / YarcData)
• Sam Williams (Berkeley Lab)