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Abstract
Recent advances in long-read sequencing allow characteriza-
tion of genome structure and its variation within and be-
tween species at a resolution not previously possible. Detec-
tion of overlap between reads is an essential component of
many long read genome pipelines, such as de novo genome
assembly. Longer reads simplify genome assembly and im-
prove reconstruction contiguity, but current long read tech-
nologies are associated with moderate to high error rates.

In this work, we present Berkeley Efficient Long-Read to
Long-Read Aligner and Overlapper (BELLA), a novel over-
lap detection and alignment algorithm using sparse matrix-
matrix multiplication. In addition, we present a probabilis-
tic model that demonstrates the feasibility of using k-mers
for overlap candidate detection and shows its flexibility when
applied to different k-mer selection strategies. Based on such
a model, we introduce a notion of reliable k-mers. Combin-
ing reliable k-mers with our binning mechanism increases
the computational efficiency and accuracy of our algorithm.
Finally, we present a new method based on Chernoff bounds
to separate true overlaps from false positives by combining
alignment techniques and probabilistic modeling. Our goal
is to maximize the balance of precision and recall.

For both real and synthetic data, BELLA is among the
best F1 scores, showing a stability of performance that is
often lacking in competing software. BELLA’s F1 score is
consistently within 1.7% of the top performer. In particular,
we show improved de novo assembly quality on synthetic
data when BELLA is coupled with the miniasm assembler.

1 Introduction

Recent advances in long-read sequencing technologies
have enabled characterization of genome structure and
its variation between and within species that was not
previously possible. However, post-sequencing data
analysis remains a challenging task. One of the most
challenging aspects of analyzing DNA fragments from
high-throughput sequencing, namely reads, is whole-
genome assembly [32], i.e., the process of aligning and
assembling DNA fragments to reconstruct the original
sequence. More specifically, de novo genome assembly
reconstructs a genome from redundantly sampled reads
without prior knowledge of the genome, enabling the
study of previously uncharacterized genomes [30].

Long-read technologies [11, 14] generate long reads

with an average length often exceeding 10,000 base pairs
(bp). These allow resolution of complex genomic repeats
and enable more accurate ensemble views that were not
possible with previous short-read technologies [28, 25].
However, the improved read length of these technologies
is accompanied by lower accuracy, with error rates from
0.5% to 15%. Nevertheless, the error distribution for
Pacific Biosciences long reads [13] is more random and
uniform compared to short-read technologies.

A long read assembler typically uses the Overlap-
Layout-Consensus (OLC) assembly paradigm [2]. The
first step in OLC assembly is to detect overlaps between
reads to create an overlap (or string) graph. The OLC
paradigm benefits from longer reads, as significantly
fewer reads are needed to cover the genome, limiting
the size of the overlap graph. Highly accurate overlap
detection is a major computational bottleneck in OLC
assembly [24], mainly due to the computationally inten-
sive nature of pairwise alignment.

Currently, several algorithms are capable of over-
lapping error-prone long read data with varying accu-
racy. The prevailing approach is to use an indexing data
structure, such as a k-mer index table (i.e., substrings of
fixed length k) or suffix array, to identify a set of initial
candidate read pairs, thereby reducing the high cost of
computing pairwise alignments in a second step [8].

The process of identifying a set of initial candi-
date read pairs, sometimes referred to simply as “over-
lap”, affects both the accuracy and runtime of the al-
gorithm. Accurate identification of initial candidate
read pairs minimizes the runtime of pairwise align-
ment, while retaining all pairs that truly overlap in the
genome. Computationally efficient and accurate over-
lapping and alignment algorithms have the potential to
improve existing long-read assemblers, enabling de novo
reference assemblies, detection of genetic variations of
higher quality, and accurate metagenome classification.

Our main contributions are:
1. Using a Markov chain model [22], we show that a
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k-mer seed-based approach is useful for accurately
identifying overlap candidates. Our model is gen-
eral enough to be applicable to different types of
sequencing data and k-mer selection strategies.

2. To increase computational efficiency without loss
of accuracy, we develop a simple procedure for
pruning k-mers and prove that it preserves almost
all true overlaps with high probability.

3. To take advantage of high performance techniques,
we reformulate the problem of overlap detection
in terms of sparse matrix-matrix multiplication
(SpGEMM), which has not been previously applied
in the context of long-read overlap and alignment.
This approach is flexible and can be implemented
independently of the k-mer selection strategy.

4. By coupling our overlap detection with our newly
developed seed-and-extend alignment algorithm,
we present a novel method to separate true align-
ments from false positives.

2 Related Work

The increasing popularity of long read sequencing data
has led to many efforts in the literature to perform
accurate overlap detection. In the context of long read
overlap detection, we can distinguish between “base-
level alignment” and “overlap-only” strategies below.
Base-Level Alignment: DALIGNER [24] uses k-mers
to find overlap candidates and then perform alignment.
It parses the sequences in k-mers, sorts them, and finds
overlapping sequences with a merge operation. To filter
out spurious overlap candidates, a pairwise alignment is
performed using a linear expected-time heuristic based
on the difference algorithm [23]. BLASR [6], originally
developed to align noisy long-read sequencing data to
reference genomes, later became popular as a read-
to-read aligner. It too first uses k-mers to detect
initial overlap candidates and then filters them using
alignment. In addition to the aligner itself, Chaisson
and Tesler [6] presented a mathematical model that
proved the feasibility of using a k-mer seed to find a
match between a noisy long-read sequence and a correct
reference sequence. In this paper, we make a similar
contribution by presenting a different model that proves
the feasibility of using a k-mer seed to find a match
between two noisy long-read sequences, and that is not
restricted to regular k-mer selection strategies.
Overlap Only: Li’s minimap2 [19] also uses seeds
to find matches. However, it uses a different kind of
k-mer, called a minimizer, which reduces the number
of seeds because it selects only one minimizer in a
window w whose value is the minimum according to
a function. It does not perform any alignment. Instead,
it computes an approximate alignment score based

on the location of the minimizers on the sequences
and excludes those whose quality is below a defined
threshold. MECAT [31] identifies overlap candidates
using k-mers and introduces a pseudo-linear alignment
scoring algorithm to filter excessive candidates using
a distance difference factor to score k-mer matches.
MHAP [2] is a probabilistic algorithm for sequence
overlap detection. It estimates Jaccard similarity by
compressing sequences to their representative identity
composed of min-mers, filtering out false candidates.

SpGEMM is a relatively unknown primitive in
genomics. Most notably, Besta et al. [3] used SpGEMM
to compute similarity between genomes in distributed
memory, after the appearance of our preprint [15].

3 Proposed Algorithm

In this paper, a computationally efficient and accurate
overlap detection and alignment algorithm for long read
genomic pipelines is developed and implemented in a
software package called BELLA.

BELLA uses a seed-based approach to detect over-
laps in the context of long read applications. Such an
approach parses reads into k-mers (i.e., substrings of
fixed length k), which are then used as feature vectors
to identify overlaps between all reads. Using a Markov
chain model, we demonstrate the feasibility of a k-mer
seed-based approach for long read overlap detection.
The descriptiveness of our model allows us to model the
probability of finding a correct common seed between
two sequences even when k-mer strategies other than
ours are used, such as minimizers [19] and syncmers [10].

Importantly, not all k-mers are equal in terms of
their usefulness for overlap detection. For example, the
vast majority of k-mers that occur only once in the
dataset are errors (and are also not useful for detecting
overlaps between read pairs). Similarly, k-mers that
occur more frequently than one would expect given
the sequencing depth and error rate are likely from
repetitive regions. It is a common practice to prune
the k-mer space using various methods [18, 21, 5].

BELLA implements a novel method for filtering out
k-mers that are likely to either contain errors or origi-
nate from a repetitive region. The k-mers retained by
BELLA are considered reliable, where the reliability of
a k-mer is defined as its probability of originating from
a unique (non-repetitive) region of the genome. Our
reliable k-mer detection maximizes retention of k-mers
from unique regions of the genome using probabilistic
analysis given error rate and sequencing depth.

BELLA uses a sparse matrix to represent its data
internally, where the rows are reads, the columns are
reliable k-mers, and a nonzero A(i, j) 6= 0 is the position
of the j-th k-mer within the i-th read. The construction
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of this sparse matrix requires efficient k-mer counting.
Overlap detection is implemented in BELLA us-

ing SpGEMM, which allows our algorithm to achieve
fast overlap without using approximate approaches.
SpGEMM is a highly flexible and efficient paradigm that
allows for better organization of computation and gener-
ality, as it can manipulate complex data structures, such
as those used to perform overlap detection using com-
mon k-mers. Our k-mer selection can be easily replaced
by other selection strategies without compromising the
SpGEMM-based overlap detection, demonstrating the
generality of our approach. Implementing this method
in our pipeline enables the use of high-performance tech-
niques that have not been previously applied in the con-
text of long read alignment. It also enables continuous
performance improvements in this step due to increas-
ingly optimized implementations of SpGEMM [26, 9].

BELLA’s overlap detection has been coupled with
our high-performance seed-and-extend algorithm, which
means that the alignment between two reads starts
from a common seed (identified in the previous overlap
detection) and not necessarily from the beginning of
the reads. To refine the seed selection, we introduce a
procedure called binning. The k-mer positions in a read
pair are used to estimate the length of the overlap, and
the k-mers are “binned” based on their length estimates.
We consider for the alignment only k-mers that belong
to the most crowded bins, which we call consensus k-
mers. During the alignment phase, BELLA uses a new
method to separate true alignments from false positives
as a function of the alignment score. We prove that the
probability of false positives decreases exponentially as
the length of overlap between reads increases.

Existing tools also implement approximate overlap
detection using sketches. A sketch is a space-reduced
representation of a sequence. Several randomized hash
functions convert k-mers into integer fingerprints, and
a subset of them is selected to represent the sketch of
a sequence according to some criterion. For example,
Berlin et al. [2] keep only the smallest integer for each
hash function and use the collection of these minimal-
valued fingerprints as the sketch. These methods are
fast, but only approximate, since the sketch is a lossy
transformation. In contrast, BELLA uses an explicit k-
mer representation that allows us to couple our overlap
detection with a seed-and-extend alignment to refine the
output and improve the precision of our algorithm.

4 Methods

4.1 Overlap Feasibility Chaisson and Tesler [6]
proposed a theory of how long reads contain subse-
quences that can be used to anchor alignments to the
reference genome. The sequences are modeled as ran-
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Figure 1: Proposed Markov Chain model demonstrating
the feasibility of using k-mers for overlap detection.
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Figure 2: Proposed Markov Chain model using syncmer
approach instead of the k-mer one, where q = 1/c.

dom processes that generate error-free regions whose
length is geometrically distributed, with each such re-
gion separated by an error [13]. The result obtained
from their theory is the minimum sequence length to
have an anchor within a confidence interval.

Here we present an alternative model of how these
subsequences, also called k-mers, can be used to anchor
alignments between two erroneous long read sequences,
allowing accurate overlap detection between all reads in
a dataset. The initial assumption of our model defines
the probability of correctly sequencing a base as equal
to p = (1−e), where e is the error rate of the sequencer.
From this notion, we model the probability of observing
k correct consecutive bases on both read1 and read2 as
a Markov chain process [22].

The Markov chain process is characterized by a
transition matrix P that contains the probabilities of
transitioning from one state to another. Each row index
start of P represents the initial state, and each column
index end of P represents the final state. Each entry
of P is a non-negative number indicating a transition
probability. Our transition matrix has (k + 1) possible
states, resulting in (k + 1)2 transition probabilities for
the transition from start to end. The probability of
having a correct base in both reads is p2. For every
state except the absorbing state k, an error in at least
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Algorithm 1 Probability of observing at least one
correct k-mer in an overlap region of length L > k.

1: procedure EstimateSharedKmerProbabil-
ity(k,L,p)

2: states← (k + 1)
3: P← 0 . Entire matrix initialized to 0
4: for i← 0 to states do
5: P[i, 0]← (1− p2)
6: P[i, i+ 1]← p2

7: end for
8: P[states, states]← 1
9: v← (1, 0, . . . , 0) . Initialized to standard unit

vector
10: for i← 0 to L do . Compute vPL without

exponentiation
11: v← vP
12: end for
13: return v[states]
14: end procedure

one of the two sequences sets the model back to state 0,
which happens with probability 1 − p2; otherwise, the
Markov chain transition from state i to i + 1 happens
with probability p2. The absorbing state k cannot be
abandoned since both read1 and read2 have already seen
k successive correct bases. Therefore, its transition
probability is 1. Figure 1 describes the process: each
state contains the number of successfully sequenced
bases obtained on both reads up to that point, while
the arrows represent the transition probabilities.

One can then find the probability of being in one
of the states after L steps in the Markov chain by
computing the L-th power of the matrix P, where L is
the length of overlap between the two sequences. More
efficiently, this can be computed iteratively with only
L sparse matrix vector products, starting from the unit
vector v← (1, 0, . . . , 0) (Algorithm 1). This approach is
sufficient since we are only interested in the probability
of being in the absorbing final state. This operation
leads to the probability of having a correct k-mer at the
same location on both reads, given a certain overlap
region. This model is the driving factor for choosing
the optimal k-mer length used in overlap detection.

Our Markov chain can be modified to accommodate
different k-mer selection strategies, such as syncmers
and minimizers. Given a compression factor c > 1
that sets a minimal value for the k-mer code, a k-
mer κ is a mincode syncmer if code(κ) ≤ H/c, where
H is the maximal possible code [10]. The probability
that a given k-mer is chosen as a mincode syncmer is
1/c. In this case, we can modify our model to include
the probability that a k-mer is correct and that it is

retained as a mincode syncmer. The transition from
the (k − 1)-th state to the k-th state in the Markov
chain will model syncmer selection so that we have
a probability of transitioning from k − 1 to k that is
equal to qp2, where q = 1/c, i.e., the k-th is correctly
sequenced and the k-mer is a mincode syncmer. Then,
we have a probability of (1− q)p2 to stay in the (k− 1)-
th state, which means that we have sequenced a correct
base on both sequences, but the k-mer is not selected as
a syncmer. The probability of returning to the initial
state is unchanged. The Markov chain model that is
modified for mincode syncmers is shown in Figure 2.

We used the mincode syncmer as an example but
the same probabilistic model applies to other syncmer
types, including those with better spacing properties,
such as closed syncmers [10]. This is because the
selection of a k-mer as a syncmer is by definition a local
decision and is not affected by neighboring k-mers.

The case of the minimizer is slightly different. A
k-mer is a minimizer if it has the smallest code among
w consecutive k-mers, where w is called the window
length [29]. For a k-mer κ that is correctly sequenced
in both reads, we need to consider the number of
competing k-mers in its windows to determine the
probability that κ is selected as the minimizer from
both reads. If there are no sequencing errors, there
are w competing k-mers including κ itself. Because
errors can change the competing k-mers in each read
independently, the maximum number of competing k-
mers including κ itself is 2w−1. It is possible to compute
the exact expected number of competing k-mers, but
since this range is narrow within a factor of two, we
can also use the upper and lower bounds instead when
choosing minimizer parameters (w, k) in practice.

4.2 Reliable k-mers Repetitive regions of the
genome cause certain k-mers to occur frequently in in-
put reads. K-mers from these regions pose two prob-
lems for pairwise overlap and alignment. First, their
presence increases the computational cost, both in the
overlap and alignment phases, as these k-mers generate
numerous and possibly incorrect overlaps. Second, they
often do not provide valuable information.

Our argument here is that k-mers that originate
from a repetitive region in the genome can be ignored for
seed-based overlap. This is because either (a) the read
is longer than the repeat, in which case there should be
enough sequence data from the non-repetitive section to
find overlaps, or (b) the read is shorter than the repeat,
in which case their overlaps are inherently ambiguous
and uninformative and will not be particularly useful
for downstream tasks such as de novo assembly. In the
case of a nearly identical region, we would expect to find
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a k-mer that comes from a unique region of that nearly
identical repetition to identify that region.

Following the terminology proposed by Lin et
al. [21], we refer to k-mers not present in the genome
as non-genomic and thus characterize k-mers present
in the genome as genomic. A genomic k-mer may be
repeated if it occurs multiple times in the genome, or
unique if it does not. One can think of the presence of
k-mers in each read as the feature vector of that read.
Therefore, the feature vector should contain all unique
k-mers, as they are often the most informative features.

Since we do not know the genome before assem-
bly, we estimate the genomic uniqueness of k-mers from
redundant, error-prone reads. Here we present a mathe-
matically based procedure that selects a frequency range
for k-mers that we consider reliable. The basic question
guiding the procedure for selecting reliable k-mers is
the following: ”Given that a k-mer is sequenced from
a unique (non-repeated) region of the genome, what is
the probability that it occurs at least m times in the
input data?” For a genome G sequenced at depth d,
the conditional modeled probability is:

(4.1)
Pr(freq(k-mer, G, d) ≥ m|count(map(k-mer, G) = 1)

where map(k-mer, G) is the set of sites in genome G
to which k-mer can be mapped, the function count()
computes the cardinality of a given input set, and
freq(k-mer, G, d) is the expected number of occur-
rences of k-mer within sequenced reads, assuming that
each region of G is sequenced d times (sequencing
depth). In this sense, BELLA’s approach to selecting
reliable k-mers is very different from the way Lin et
al. [21] select their solid strings. While solid strings dis-
card rare k-mers, our model discards highly recurrent
k-mers because (a) unique k-mers are sufficient to find
informative overlaps, and (b) a unique k-mer has a low
probability of occurring frequently.

The probability of correctly sequencing a k-mer is
approximately (1 − e)k, where e is the error rate. The
probability of correctly sequencing a k-mer once can be
generalized to the probability of seeing it multiple times
in the data, provided that each correct sequencing of
that k-mer is an independent event. For example, if
the sequencing depth is d, the probability of observing
a unique k-mer ki in the input data d times is approxi-
mately (1− e)dk. More generally, the number of correct
sequencing of a unique k-long genome segment at a se-
quencing depth d follows a binomial distribution:

(4.2) B(n = d, p = (1− e)k)

where n is the number of trials and p is the

probability of success. From this, we derive that the
probability of observing a k-mer ki (corresponding to
a unique non-repetitive region of the genome) m times
within a sequencing input data with depth d is:

(4.3)

Pr(m; d, (1− e)k) =

(
d

m

)
(1− e)km(1− (1− e)k)(d−m)

where m is the multiplicity of the k-mer in the input
data, e is the error rate, d is the sequencing depth, and
k is the k-mer length. Given the values of d, e and k,
the curve Pr(m; d, (1− e)k) can be calculated.

Equation 4.3 is used to identify the range of reliable
k-mers. To choose the lower bound l, we compute
Pr(m; d, (1−e)k) for each multiplicity m and sum these
probabilities cumulatively, starting from m = 2. The
cumulative sum does not start at m = 1 because a k-mer
that occurs only once in the input data (and therefore
appears on a single read) cannot be used to identify the
overlap between two reads. The lower bound l is the
smaller m value after which the cumulative sum exceeds
a user-defined threshold ε. The choice of l is significant
when the sequencing error rate is relatively low (≈ 5%)
or when the sequencing coverage is high (≈ 50−60×), or
both. This is because in these cases, a k-mer with small
multiplicity has a high probability of being incorrect.

The upper bound u is chosen in a similar way. Here,
starting from the largest possible value of m (i.e. d), the
probabilities are added up cumulatively. In this case, u
is the largest value of m after which the cumulative sum
exceeds the user-defined threshold ε. The k-mers that
are more frequent than u have too low a probability
of belonging to a unique region of the genome, and
multiple mapped k-mers would lead to an increase in
computational cost and possibly misassembly.

K-mers with multiplicity greater than u and mul-
tiplicity less than l in the input set are discarded and
not used as read features in the downstream algorithm.
Our reliable k-mers selection discards at most 2ε useful
information when the data fits the model, in the form
of k-mers that can be used for overlap detection.

When using syncmers instead of k-mers, the reliable
range calculations are unchanged. This is because any
given k-mer is either selected as a syncmer for all its
occurrences in the dataset, or it is never selected as
a syncmer. For minimizers, the exact computation
of the reliable range is non-trivial, since errors in
flanking sequences affect whether a k-mer is retained
as a minimizer. Therefore, we leave this as future work.

4.3 Sparse Matrix Construction and Multipli-
cation BELLA uses a sparse matrix format to store its
data and a sparse matrix multiplication (SpGEMM) to

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



R1 R2 R3 R4 R5

R1 R2 R3 R4 R5

R1

R2

R3

R4

R5

R1

R2

R3

R4

R5

K1 K2 K3 K4 K5

K1

K2

K3

K4

K5

A AT

Hash accumulator

1

2 AAT

Figure 3: Column-wise sparse matrix multiplication.
AT(:, R3) is chosen as the “active column”: its non-
zero elements define which columns of A to consider by
looking at their corresponding row indices in AT.

identify overlaps. Sparse matrices express data access
patterns concisely and clearly, and allow for better or-
ganization of computation. The sparse matrix A, also
known as the data matrix, is a |reads|-by-|k-mers|matrix
with reads as rows and the entries of the k-mer dictio-
nary as columns. If the j-th reliable k-mer is present in
the i-th read, the (i, j) cell of A is nonzero. A is then
multiplied by its transpose, AT, yielding a sparse over-
lap matrix AAT of dimensions |reads|-by-|reads|. Each
cell (i, j) of the overlap matrix that is non-zero contains
the number of shared k-mers between the i-th read and
the j-th read, and the corresponding positions in the
corresponding read pair of (at most) two shared k-mers.

Column-wise sparse matrix multiplication is ef-
ficiently implemented using the Compressed Sparse
Columns (CSC) format for storing sparse matrices.
However, other options are certainly possible in the fu-
ture, which is one of the advantages of our work. Any
novel sparse matrix format and multiplication algorithm
would apply to the overlap problem and allow for further
performance improvements, as several software pack-
ages already implement these primitives, including Intel
MKL and Sandia’s KokkosKernels [9].

The SpGEMM algorithm shown in Figure 3 is func-
tionally equivalent to a k-mer-based seed index table
common in other long read alignment codes. How-
ever, unlike hash tables, the CSC format allows true,
constant-time random access to the columns. More im-
portantly, the computational problem of accumulating
the contributions of multiple shared k-mers to each read
pair is automatically handled by choosing appropriate
data structures within SpGEMM. Figure 3 illustrates
the merging operation of BELLA, which uses a hash
table data structure indexed by the row indices of A,
following the multi-threaded implementation proposed
by Nagasaka et al. [26]. This hash table based accumu-
lator is merely one way to compute SpGEMM and many

other methods have been proposed in the literature [12].
Finally, the content of the hash table is stored in a col-
umn of the final matrix once all the required nonzeros
for that column are accumulated.

Since BELLA performs a seed-and-extend align-
ment from pairs of reads that share at least t (by default
t = 1) k-mers, the overlap phase must keep track of the
positions of the shared k-mers. In cases where multiple
k-mers are shared between any pair of reads, it is not
economical to store all k-mer matches. Even though
the previously described reliable k-mer selection proce-
dure eliminates most matches from repeated regions, it
is still possible to observe misleading k-mer matches due
to sequencing errors and repetitions.

To ensure optimal seed selection for the alignment
step, BELLA applies the following binning method.
Whenever a common k-mer is found between a pair of
reads, we use its position in these reads to estimate an
overlap length and orientation. A new overlap estimate
forms its bin with a single element unless it is already
within the boundaries of a previous bin (i.e., within an
adjustable distance β, which is 500 by default). In this
case, the vote count of the adjacent bin is increased
by one, as long as the two originating k-mers do not
overlap. Only the two bins with the highest vote count
are retained, along with a representative k-mer that
supports this overlap estimate.

In the resulting sparse overlap matrix AAT, each
non-zero cell (i, j) is a structure consisting of an inte-
ger value storing the number of shared k-mers and an
integer array of size 4 storing the position of (up to
two) shared k-mers on read i and read j corresponding
to the overlap estimate bins with the highest number
of votes. To enable this special multiplication, which
performs scalar multiplication and addition differently,
we use semiring abstraction [17]. Multiplication on a
semiring allows the user to overload scalar multiplica-
tion and addition operations while still using the same
SpGEMM algorithm. Many existing SpGEMM imple-
mentations support custom semirings, including those
that implement the GraphBLAS API [4].

As genome size increases, so does the memory
required to construct the final overlap matrix. For large
genomes, the sparse overlap matrix AAT may not fit
in memory even if the data matrix A does. BELLA
avoids this situation by splitting the multiplication into
batches based on the available RAM. In each phase, only
one batch of columns of the overlap matrix is created.
The set of nonzeros in this batch of the overlap matrix
is immediately tested for alignments (as described in
Section 4.4). The pairs that pass the alignment test are
written to the output file of BELLA, so that the current
batch of the overlap matrix can be discarded.
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Due to the nature of our problem, the sparse over-
lap matrix AAT is a symmetric matrix. Therefore, we
compute the multiplication using only the lower trian-
gle of A and avoid computing the pairwise alignment
twice for each pair. Currently, there are no known spe-
cialized SpGEMM implementations for AAT that store
and operate only on A, but we hope to develop one in
the future. This would have halved the memory require-
ment. The obvious solution of computing inner projec-
tions of rows of A is suboptimal, since it must perform
Ω(|reads|2) inner products even though the majority of
inner products are zero. In contrast, our column-wise
implementation runs faster than O(|reads|2) when the
overlap matrix AAT is sparse. Since the main purpose
of the overlap process is to filter overlap candidates, the
overlap matrix tends to be sparse over 99%.

4.4 Pairwise Alignment High precision is desirable
to avoid unnecessary work in the subsequent steps of
de novo assembly. Therefore, BELLA filters overlap
candidates by performing fast, near linear-time pairwise
seed-and-extend alignments.

Unlike approaches that rely on sketches or mini-
mizers, such as Minimap2 [19] and MHAP [2], seed-
and-extend alignment can be performed directly using
the k-mers from the overlap phase of BELLA. BELLA’s
alignment module is based on our high-performance
seed-and-extend banded alignment, which uses a narrow
adaptive band that significantly improves performance
and reduces the search space for optimal alignment.

Our binning mechanism chooses at most two seed k-
mers to be used as input for the seed-and-extend x-drop
alignment. For each read pair in the overlap matrix,
the alignment of one or two seeds is extended until the
alignment score falls x points below the previous best
score. If the final score is less than a threshold n, the
sequence pair is discarded.

To filter out spurious candidates, we use an adaptive
threshold, calculated based on the estimated overlap
between a given pair of reads. The choice of scoring
matrix used in the pairwise alignment step can justify
that the alignment score threshold is a linear function
of the estimated overlap length.

Given an estimated overlap region of length L and
probability p2 of obtaining a correct base on both
sequences, we would expect m = p2 · L correct matches
within this overlap region. The alignment score χ is:

(4.4) χ = αm− β(L−m) = αp2L− β(L− p2L)

where m is the number of matches, L is the overlap
length, α is the value associated with a match in the
scoring matrix, while β is the penalty for a mismatch or

a gap (α, β > 0). Under these assumptions, we define
the ratio ϕ as χ over the estimated overlap length L as:

(4.5) ϕ =
χ

L
= αp2 − β(1− p2).

The expected value of ϕ is equal to 2·p2−1 when an
exact alignment algorithm is used. We want to define
a cutoff with respect to (1 − δ)ϕ such that we keep
pairs above this cutoff as true alignments and discard
the remaining pairs. To this scope, we use a Chernoff
bound [7, 16] to define the value of δ, and prove that
there is only a small probability of missing a true overlap
of length L ≥ 2000 bp (which is typically the minimum
overlap length for a sequence to be considered a true
positive) using the cutoff defined above.

Let Z be a sum of independent random variables
{Zi}, with E[Z] = µz; we assume for simplicity that
Zi ∈ {0, 1}, for all i ≤ L. The Chernoff bound
defines an upper bound on the probability of Z deviating
by a certain amount δ from its expected value. In
particular, we use a corollary of the multiplicative
Chernoff bound [1] defined for 0 ≤ δ ≤ 1 as:

(4.6) Pr[Z ≤ (1− δ)µz] ≤ e
−δ2µz

2

To obtain the Chernoff bound for the ratio ϕ, we
consider a random variable Xi ∈ {−β, α} such that:

(4.7) Xi =

{
α, with probability p2

−β, with probability 1− p2

where α, β > 0 are still the values associated with a
match and a mismatch and a gap/indel in the scoring
matrix, respectively; its expected value E[Xi] is exactly
equal to ϕ = αp2−β(1−p2). Since the Chernoff bound
is defined for a sum of independent random variables
Zi ∈ {0, 1}, we need to move from Xi ∈ {−β, α} to
Zi ∈ {0, 1}. Thus, we define a new random variable
Yi = Xi + β as a linear transformation of Xi that can
take values {0, α + β}. Given E[Yi] = E[Xi] + β =
(α + β)p, we can normalize Yi to obtain the desired
random variable Zi:

(4.8) Zi =
Xi + β

α+ β
, where Zi ∈ {0, 1}

From the linearity of expectation, we obtain:

(4.9)

E[Z] = E

[
X + β

α+ β

]
=
E[X] + βL

α+ β
=

(2p2 − 1)L+ βL

α+ β
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Table 1: Datasets used for evaluation. Datasets above
the line are real data, while datasets below the line
were generated using PBSIM [27]. Download: portal.

nersc.gov/project/m1982/bella/.

Short Name Depth Species and Strain Fastq Size

E.coli (Sample) 30X Escherichia coli MG1655 266 MB
E.coli 100X Escherichia coli MG1655 929 MB
E. coli (CCS Sample) 29X Escherichia coli MG1655 240 MB
E. coli (CCS) 290X Escherichia coli MG1655 2.60 GB
C.elegans 40X Caenorhabditis elegans Bristol 8.90 GB

P. aeruginosa 30X Pseudomonas aeruginosa PAO1 359 MB
V. vulnificus 30X Vibrio vulnificus YJ016 288 MB
A. baumannii 30X Acinetobacter baumannii 248 MB
C.elegans 20X Caenorhabditis elegans 3.75 GB

Finally, substituting Eq. 4.8 and Eq. 4.9 into Eq. 4.6
and simplifying with our scoring matrix α, β = 1, we
get the final expression:

(4.10) Pr[X ≤ (1− δ)µx] ≤ e−δ
2p2L, with E[X] = µx

For two sequences that correctly overlap by L =
2000, the probability that their alignment score is more
than 10% (δ = 0.1) below the mean is ≤ 5.30 × 10−7.
BELLA, with an x-drop value of x = 50 and an adaptive
threshold derived from the scoring matrix, and the
cutoff rate set to δ = 0.1, achieves high values for recall
and precision among state-of-the-art software tools.

5 Experimental Setting

The datasets used for evaluation are shown in Table 1.
The selected genomes vary in size and complexity, as
runtime and accuracy depend on these features [20]. In
addition, we include a dataset based on PacBio CCS
technology that was sampled at varying depths. This
technology is more accurate than PacBio CLR, but has
higher cost and shorter read length (although it is still
classified as a long read technology).

Recall, precision, F1 score, and runtime are used as
performance metrics. Recall is defined as the fraction of
true-positives from the aligner/overlapper to the total
ground truth. Precision is the fraction of true positives
from the aligner/overlapper to the total number of
elements found by the aligner/overlapper. F1 score is
the harmonic mean of precision and recall.

A read pair is considered true-positive if the se-
quences align for at least 2 kb in the reference genome.
The threshold t = 2 kb is derived from the procedure
proposed by Heng Li [19] and the ground truth is gen-
erated using Minimap2. A description of our evaluation
procedure and ground truth generation can be found in
the supplementary material of our preprint [15].

In addition, we report preliminary assembly results
on simulated datasets obtained by coupling the overlap-

pers/aligners with the Miniasm assembler [19]. As met-
rics for assembler quality, we use the number of contigs,
the number of misassemblies, N50, and the total assem-
bly length. A contig is defined as a set of overlapping
reads that together represent a consensus region of the
genome. A misassembly is a position in a contig whose
flanking sequences are more than 1kbps apart. N50 is
a measure of assembly contiguity and is defined as the
minimum contig length to cover 50% of the genome.

Results were collected on a dual-socket computer
with two 20-core Intel Xeon Gold 6148 CPU (“Sky-
lake”) processors, each running at 2.4 GHz with 384
GB DDR4 2400 MHz memory, using 2 threads per core
(80 threads total). To run MHAP v2.1.3 on C. elegans
40X and C. elegans 20X, we increased the Java heap
space to our largest machine, as the default setting of
32 GB resulted in out-of-memory failures. DALIGNER
results are reported only for real PacBio CLR data be-
cause it requires single-cell PacBio sequencing data. For
all simulated datasets and real Pacbio CCS datasets,
DALIGNER quickly failed and produced the associated
error “Pacbio header line format error”. Our at-
tempt to reformat the data also failed.

6 Results

BELLA is evaluated against several state-of-the-art long
read overlap detection and alignment software (see Sec-
tion 2), using both synthetic and real PacBio data. The
synthetic data were generated using PBSIM [27] with an
error rate of 15%. The advantage of the synthetic data
is that the ground truth is known. Table 2 and Table 3
show the results on synthetic and real data, respectively,
in terms of accuracy and runtime. The last column of
each table indicates whether the respective overlapper
also performs nucleotide-level alignment. The full run-
time breakdown for BELLA is shown in Figure 7 in the
supplementary material of our preprint [15].

Table 4 shows the assembly results on simulated
data. Each overlapper was coupled with the Miniasm
assembler [19]. If the tool also computes alignment at
the nucleotide level by default, as BELLA does, the
post-alignment data is used as input to Miniasm.

Table 2 shows that MECAT trades recall for pre-
cision and achieves the highest precision, but misses a
large number of the true overlaps. In contrast, BELLA,
Minimap2, and BLASR were consistently strong in both
precision and recall (generally over 80%), but BLASR
had a much higher computational cost (on average 2.6×
slower than BELLA). The F1 score of BELLA is consis-
tently higher than that of competing software, with the
exception of Minimap2, which had a slight improvement
of 1.1% in three of four data sets, while BELLA had an
improvement of 1.2% over Miniamp2 in C. elegans 20X.
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Table 2: Recall, precision, F1 score, and time com-
parison (synthetic data). The last column indicates
whether the tool computes alignments. Bold font
indicates best performance, underlined font indicates
second best. DALIGNER was not run on synthetic
datasets.

Dataset Overlapper Recall Precision F1 Score Time (s) Alignment

P. aeruginosa 30X BELLA 97.66 89.68 93.50 140.43 Y
BLASR 86.86 90.54 88.66 230.97 Y
MECAT 38.40 95.20 54.72 21.76 N
Minimap2 99.10 88.83 93.69 17.76 N
MHAP 72.68 63.42 67.74 72.72 N

V. vulnificus 30X BELLA 97.27 84.05 90.18 42.76 Y
BLASR 87.31 84.74 86.01 179.51 Y
MECAT 43.53 88.89 58.44 17.20 N
Minimap2 96.71 89.33 92.87 12.93 N
MHAP 74.52 45.10 56.19 70.21 N

A. baumannii 30X BELLA 97.54 84.90 90.78 44.69 Y
BLASR 89.51 84.58 86.98 152.76 Y
MECAT 46.31 90.39 61.25 15.65 N
Minimap2 96.89 85.79 91.01 10.06 N
MHAP 76.88 28.79 41.89 69.02 N

C. elegans 20X BELLA 91.80 88.02 89.87 2,352.24 Y
BLASR 95.61 78.19 86.02 3,655.12 Y
MECAT 13.45 95.09 23.57 222.10 N
Minimap2 95.76 82.84 88.83 194.77 N
MHAP 82.57 6.41 11.90 5,353.30 N

Minimap2 was the fastest tool for synthetic data and
performed only overlap but no alignment.

Table 3 shows that while BLASR performed reason-
ably well on synthetic data, it had a lower hit rate than
other software on real data. BLASR did not run on C.
elegans 40X because its latest version (v5.1) does not
accept fastq larger than 4 GB1). DALIGNER proved
to be the fastest of the tools on E. coli 30X and E.
coli 100X, but its performance drops dramatically when
moving to a larger dataset, where DALIGNER has the
worst runtime, 2.5× slower than BELLA, which also
performs alignment. BELLA’s F1 score outperformed
competing software except Minimap2 on E. coli 100X. It
is noteworthy that the precision and F1 score of BELLA
is significantly better for PacBio CCS data, the sequenc-
ing data with lower error rates and shorter read length,
than for competing software. For the CCS data, the δ
parameter of BELLA was increased from 0.1 to 0.7.

In Table 4, we show BELLA improved assembly
quality compared to competing software. MECAT
produced fewer contigs than BELLA on C. elegans
20X, but its N50 and assembly length are significantly
smaller, implying that MECAT did not retain enough
true overlaps for assembly. Miniasm produced no
assembly when coupled with MHAP and BLASR.

7 Discussion

BELLA proposes a computationally efficient and accu-
rate approach to overlap and alignment of noisy long

1https://github.com/PacificBiosciences/pbbioconda/issues/46

Table 3: Recall, precision, F1 score, and time compar-
ison (real data). BLASR result for C. elegans 40X is
not reported as BLASR v5.1 does not accept fastq

larger than 4 GB.

Dataset Overlapper Recall Precision F1 Score Time (s) Alignment

E. coli (Sample) BELLA 82.66 85.69 84.15 60.94 Y
DALIGNER 89.97 62.62 73.84 8.70 Y
BLASR 77.64 79.64 78.63 160.05 Y
MECAT 78.41 78.71 78.56 24.45 N
Minimap2 91.40 76.36 83.21 16.57 N
MHAP 79.71 66.93 72.76 43.67 N

E. coli BELLA 65.08 71.22 68.01 374.37 Y
DALIGNER 82.18 54.50 65.54 58.50 Y
BLASR 35.41 72.01 47.48 715.19 Y
MECAT 54.61 72.69 62.37 84.21 N
Minimap2 80.68 62.30 70.30 107.76 N
MHAP 67.84 44.60 53.81 287.66 N

E. coli (CCS Sample) BELLA 96.32 99.84 98.05 66.49 Y
BLASR 92.38 97.30 94.77 491.49 Y
MECAT 98.21 88.39 93.04 66.12 N
Minimap2 98.90 58.34 73.39 51.78 N
MHAP 99.05 38.29 55.23 50.98 N

E. coli (CCS) BELLA 97.67 99.81 98.73 8,444.64 Y
BLASR 9.11 100.00 16.70 11,058.86 Y
MECAT 15.71 99.95 27.15 289.38 N
Minimap2 98.83 69.94 81.91 5,828.72 N
MHAP 98.99 38.80 55.75 2,277.66 N

C. elegans 40X BELLA 75.43 73.81 74.61 9,042.36 Y
DALIGNER 62.81 58.66 60.67 22,797.50 Y
MECAT 73.05 75.27 74.14 733.79 N
Minimap2 94.13 34.06 50.02 1,733.26 N
MHAP 86.63 5.31 10.01 9,102.23 N

reads based on mathematical models that minimize the
cost of overlap detection while maximizing the reten-
tion of true overlaps. Tables 2 and 3 show the competi-
tive accuracy of BELLA compared to the literature and
demonstrate the effectiveness of the methods we intro-
duced and implemented. BELLA’s runtime is within the
average of competing software, which is remarkable con-
sidering that we perform nucleotide-level alignment that
is sufficiently accurate to facilitate downstream analysis.

For synthetic data, BELLA achieves both high re-
call and precision, consistently among the best. For
real PacBio CLR data, BELLA’s recall and precision are
generally lower than for synthetic data, yet BELLA’s F1
results are among the best and show performance sta-
bility that competing software often does not. Notably,
BELLA has a 49.16% higher F1 score than Minimap2
for C. elegans 40X. BELLA’s precision and F1 score on
real CCS data appreciably outperform competing soft-
ware. Overall, a good performer on one dataset becomes
one of the worst on another, whereas BELLA’s F1 score
is consistently within 1.7% of the top entry.

Tables 2 and 3 show that BELLA achieves higher
F1 score values on synthetic data and real CCS data
compared to real CLR data. The way ground truth
is generated could explain this behavior. On synthetic
data, ground truth comes directly with the dataset
itself. Thus, we know exactly where a read in the
reference genome comes from and which other reads
overlap with it. For real data, the positions of the
reads in the reference are determined by mapping the
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Table 4: Preliminary assembly results of synthetic
datasets. The overlappers’ outputs were translated into
PAF format and paired with Miniasm [19]. DALIGNER
was not run with synthetic datasets. Miniasm produced
no output when paired with BLASR and MHAP, and
neither tool produced misassemblies.

Dataset Overlapper Contigs N50 Total Length

P. aeruginosa 30X BELLA 39 299,124 6,539,838
6,264,404 bp MECAT 130 30,078 3,123,445

Minimap2 118 84,638 6,368,698

V. vulnificus 30X BELLA 39 201,956 5,319,876
5,126,696 bp MECAT 101 30,132 2,585,336

Minimap2 105 58,711 4,941,291

A. baumannii 30X BELLA 35 185,443 4,486,557
4,335,793 bp MECAT 88 33,248 2,234,729

Minimap2 93 61,967 4,092,102

C. elegans 20X BELLA 2,792 35,782 82,763,749
100,286,401 bp MECAT 366 10,661 2,398,741

Minimap2 2,875 19,894 49,724,174

reads to the reference using Minimap2 in its “mapping
mode”. Intuitively, such a procedure is suboptimal,
since there is no guarantee that Minimap2 correctly
locates each read. BELLA could potentially find a
better set of true overlaps than those identified by
Minimap2. Given a uniformly covered genome, we
observed that Minimap2 and other long read mappers
tend to map reads to “hotspots” within a genome
rather than mapping them evenly across the genome.
This leads to uneven coverage and overestimation of
overlaps by a factor of 1.14×. Recall beyond a certain
point on real data would mean that the overlapper also
overestimates the overlap cardinality. It is possible that
the actual accuracy of BELLA is actually higher for
real data. As future work, we plan to investigate these
issues in more detail. This bias may not be present
when mapping CCS data to the reference, as error rates
are lower, making it easier for the mapper to find the
correct position on the reference genome.

Table 4 provides insight into the beneficial impact
of BELLA in a de novo assembly pipeline. Our meth-
ods, such as the reliable k-mer strategy, noticeably im-
prove assembly contiguity compared to MECAT and
Minimap2. Importantly, Miniasm produced no output
when using MHAP or BLASR, leading us to empha-
size that an assembler is often built with a particular
overlapping tool in mind and programmed to exploit
that tool’s methods. To fully exploit the potential of
BELLA, we plan to build our assembler on top of it.

8 Conclusion

Long-read sequencing technologies enable highly accu-
rate reconstruction of complex genomes. Read overlap-
ping is a major computational bottleneck in long read
pipelines for genome analysis, such as genome assembly.

In this paper, we introduced BELLA, a computa-
tionally efficient and highly accurate long read-to-long
read aligner and overlapper. BELLA uses a k-mer-
based approach to detect overlaps between noisy long
reads. Then we demonstrated the feasibility of the k-
mer-based approach using a mathematical model based
on Markov chains and showed the generality of such a
model. BELLA provides a novel algorithm for pruning
k-mers that are unlikely to be useful for overlap detec-
tion and whose presence would only add unnecessary
computational cost. Our algorithm for reliably detect-
ing k-mers explicitly maximizes the probability of keep-
ing k-mers that belong to unique regions of the genome.

BELLA achieves fast overlap without sketching us-
ing sparse matrix multiplication (SpGEMM), imple-
mented using high-performance software and libraries
developed for this subroutine. Any novel sparse ma-
trix format and multiplication algorithm would be ap-
plicable to overlap detection and would enable further
performance improvements. Moreover, our SpGEMM
approach is general and flexible enough that it can be
coupled with any k-mer selection strategy. Our overlap
detection is coupled with our newly developed seed-and-
extend banded alignment algorithm. The optimal k-mer
seed is chosen by our binning mechanism, which uses k-
mer positions within a read pair to estimate the length
of the overlap and to “bin” k-mers to form a consensus.

Finally, we developed a new method to separate
true alignments from false positives as a function of
the alignment score. This method shows that the
probability of false positives decreases exponentially as
the overlap length between sequences increases.

BELLA achieves consistently high accuracy scores
compared to state-of-the-art tools on both synthetic
and real-world data, while being performance competi-
tive. BELLA significantly improves assembly results on
synthetic data, validating our approach. Future work
includes further characterization of real data properties,
performance improvements, and the development of a
complete de novo assembler built on BELLA.

Code: https://github.com/PASSIONLab/BELLA.
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