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Abstract
This work examines a data-intensive irregular application
from genomics that represents a type of Generalized N-Body
problems, one of the “seven giants” of the NRC Big Data
motifs. In this problem, computations (genome alignments)
are performed on sparse data-dependent pairs of inputs, with
variable cost computation and variable datum sizes. Unlike
simulation-based N-Body problems, there is no inherent lo-
cality in the pairwise interactions, and the interaction spar-
sity depends on particular parameters of the input, which
can also affect the quality of the output. We build-on a pre-
existing bulk-synchronous implementation, using collective
communication in MPI, and implement a new asynchronous
one, using cross-node RPCs in UPC++.We establish the intra-
node comparability and efficiency of both, scaling from one
to all core(s) on node. Then we evaluate the multinode scal-
ability from 1 node to 512 nodes (32,768 cores) of NERSC’s
Cray XC40 with Intel Xeon Phi “Knight’s Landing” nodes.
With real workloads, we examine the load balance of the
irregular computation and communication, and the costs
of many small asynchronous messages versus few large-
aggregated messages, in both latency and overall application
memory footprint. While both implementations demonstrate
good scaling, the study reveals some of the programming
and architectural challenges for scaling this type of data-
intensive irregular application, and contributes code that
can be used in genomics pipelines or in benchmarking for
data analytics more broadly.

CCS Concepts • Computing methodologies → Paral-
lel computing methodologies; Distributed computing
methodologies; • Networks → Network measurement; •
Applied computing→Computational genomics; Com-
putational proteomics; Bioinformatics.
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1 Introduction
Generalized N-Body problems [12] are a proper superset of
classical N-Body problems, that extends to non-Euclidean
and higher dimensional problems. They are characterized
by the computation of similarity metrics between many or
all pairs or tuples in the input. Naive solutions are 𝑂 (𝑁 2) or
𝑂 (𝑁 3)... As highlighted in the NRC report, well-established
approximations for classical N-Body problems, that reduce
the complexity from 𝑂 (𝑁 2) to 𝑂 (𝑁𝑙𝑜𝑔𝑁 ) or 𝑂 (𝑁 ), such as
Barnes-Hut [21] and the Fast Multipole Method [2], do not
apply when the similarity metric is non-Euclidean, as in
computational genomics. These problems arise from many
other domains as well, such as computational physics, chem-
istry, astronomy, computer vision, and computational biol-
ogy [5, 8, 23]. To study this class of problems while also
contributing to a concrete open problem, our work exam-
ines the memory and compute-intensive problem of comput-
ing many-to-many long read alignments without a reference
genome. Given an input set of long reads, strings representing
DNA fragments from the latest sequencing technology, the
problem is to find the best-scoring alignments among all long
read pairs – definitions and background from genomics are
provided in Section 2. Like other Generalized N-Body prob-
lems, one can compute the result by computing the similarity
(alignment) of all input long reads to all other – the naive
𝑂 (𝑁 2), which quickly becomes intractable for large datasets.
Rather than relying on fixed physical properties, runtime
analysis on the input data is necessary. Domain-specific anal-
ysis [4, 7, 13, 15, 17, 22] can effectively reduce the number
of interactions (alignments). However, these analyses also
typically reveal unstructured sparse (data-dependent) inter-
actions across the input reads, over which the many-to-many
pairwise alignment computation must be performed. This
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Figure 1. The circled matching substrings on the left are
used to “seed” the alignment on the right.

Figure 2. Three ways a pair of reads (represented with gray
rectangles) can overlap.

poses challenges for parallel load balancing and commu-
nication cost minimization. Similar challenges appear in
other Generalized N-Body problems from bioinformatics as
well, such as fine-grained similarity searches across genomes,
metagenome clustering, and protein searches in massive data
sets (Section 2). Our work contributes (1) code for solving
this specific genomics problem and (2) for facilitating per-
formance characterization of similar problems, and (3) an
empirical analysis of two distributed-memory parallelization
approaches, a bulk-synchronous one (Section 3.1) and an
asynchronous one (Section 3.2). Each approach presents a
scalable solution to this specific problem (Section 4), but also
presents a set of distinct advantages and constraints, in terms
of computation, communication, load balance, and memory
footprint, generalizable to similar problems.

2 Application Background & Related Work
Improvements in DNA sequencing technology have spurred
rapid growth in genomic data sets, a trend that has outpaced
computing capabilities for analyzing genomic data. DNA se-
quencers are unable to read entire genomes at once, and thus
produce a large number of strings (representing DNA frag-
ments) called reads that are short relative to genome sizes.
Genome sizes are variable and can be large. For example,
Drosophila melanogaster (a fruit fly) genome is roughly 144
million base pairs (bps); the wheat genome is much larger at
17 billion bps; and larger still, the flower, Paris japonica, is
approximately 150 billion bps. The latest sequencing tech-
nologies, known as long read sequencers, produce reads that
are 3 orders of magnitude longer than previous technologies,
but still only 1 thousand to 100 thousand bps long.
Long read sequencers also emit errors at high rates, be-

tween 5-35% historically. Sequencer errors include adding a
bp into the output read that is not in the genome sequence,
excluding a base in the genome from the output read, or sub-
stituting a bp at one position in the genome for a different
bp in the same position in the read. Additionally, on base
calls for which the sequencer has low confidence, it may
insert ‘N’, so the strings for computational analysis have a

5 rather than 4 character alphabet, {‘N’}∪ {‘A’, ‘C’, ‘T’, ‘G’}.
Redundancy in sequencing is used to account for these er-
rors; each region of the genome is sequenced multiple times
(a.k.a. sequencing depth or coverage). Identifying overlaps
among the reads and computing their alignments is critical
for direct analysis of the read dataset, for correcting errors
in the reads, or for reconstructing a more complete repre-
sentation of the genome from the reads (de novo assembly).
However, it is also expensive with respect to both memory
and computation.

For any pair of reads that might overlap, it is necessary to
compute their pairwise alignment, in order to determine the
direction and extent of overlap (see Figure 2), as well as the
edits required to make the overlapping subregions identical.
Briefly and informally, pairwise alignment for a given pair of
strings (𝑠, 𝑡) computes the character substitutions, deletions,
or insertions (edits) necessary to make 𝑠 and 𝑡 match with-
out permutation. For any (𝑠, 𝑡) there may be many possible
sequences of edits (alignments) that achieve this goal. To
quantitatively differentiate pairwise alignments for a given
pair of strings, weights are assigned to the various types
of character edits (penalties) and to matches (rewards). The
sum of the weights for an alignment is the alignment’s score.
Pairwise alignment algorithms seek the best-scoring align-
ment for a given input string pair and weighting scheme
(scoring scheme). Considering the computational complexity
and long read lengths, pairwise alignment is not inexpen-
sive in practice. Exact dynamic programming algorithms are
𝑂 (𝑛2), if 𝑛 is the length of the longer read [19][18]. In prac-
tice, long read lengths range within and beyond [103, 105]
characters; and for the many-to-many long read alignment
problem, many such pairwise alignments are computed.

However, seed-and-extend pairwise alignment algorithms,
which can be average-case 𝑂 (𝑛), are particularly practical
for long-read to long-read alignment, not only for their lower
complexity but also for their expected result [1][13]. Seed-
and-extend pairwise alignment treats a common substring(s),
the seed(s), as fixed between the two strings, and extends the
alignment backward and/or forward (illustrated in Figure 1).
The intuition behind seed-and-extend alignment is that the
best alignment for a pair of reads should include any match-
ing, error-free substrings the two reads have in common. If
such substrings can be detected prior to alignment, they can
be used as seeds. With the high error rates of long reads, and
the expectation of overlap (Figure 2) rather than end-to-end
alignment in the common case, seed-and-extend alignment
is well-suited to efficiently find an alignment corresponding
to the true region of overlap.

This provides an overall complexity of 𝑂 (𝑛 × 𝑁 2) versus
𝑂 (𝑛2 × 𝑁 2), where 𝑁 is the number of reads in the input.
However, since 𝑁 depends on the size of the genome and
the sequencing depth, 𝑂 (𝑁 2) quickly becomes intractable.
Hence, most existing approaches heuristically identify pairs
of reads that are likely to align well. Pairwise alignments are
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then computed only for those (a many-to-many computation
over the reads), rather than for each read against every other
read (an 𝑂 (𝑁 2) all-to-all computation). One of the most
popular methods for identifying these “candidate” overlaps
is exact substring (k-mer) matching [7, 13, 17, 22]. In short,
k-mers are computed by moving a sliding window of length
𝑘 over the reads one character at a time, producing𝑂 (Γ ×𝑑)
k-mers for a genome of size Γ and a coverage of 𝑑 . Note,
small 𝑘 (order 10) is typical in the presence of high error rates.
These k-mers are filtered implicitly [17] or explicitly [13][11],
and only pairs of reads with matching (filtered) k-mers are
considered overlap “candidates”. Filtered k-mers can then be
used to seed the seed-and-extend pairwise alignments.
These data-dependent approaches, while effective, tend

to yield large sparse unstructured graphs. The connections
between reads in the graph are only discovered through
runtime analysis. Further the connections (determined by
matching filtered k-mers), may be false positives. The cost of
individual pairwise alignments can therefore vary drastically,
not only from variable read and overlap lengths, but also
from early-termination heuristics triggered by false positives
- a common technique.

In short, the variability in genome sizes, sequencing cover-
age, read lengths, and alignment costs lead to highly variable
units of computation and communication in this applica-
tion. These sources of irregularity are shared by a number of
other bioinformatics applications as well. Whole genome to
whole genome alignment, for refining or constructing refer-
ence genomes for example, computes alignments on genome-
length strings. Metagenome assembly –reconstructing the
genomes of many organisms in an e.g. soil sample– also
involves fine-grained string comparison with highly vari-
able string lengths. Protein searches in massive data sets is
another example, with typically shorter reads but also a 20
character alphabet [20].

3 Parallel Approaches & Implementations
Our representative case study builds-on DiBELLA [11], a 3-
stage bulk-synchronous pipeline for long-read to long-read
alignment. The 1st stage partitions the input reads uniformly
by size – a data-independent strategy in that no characteristic
other than size in memory is considered. Between the 1st
and 2nd stages, it computes a k-mer histogram and filters
k-mers (seeds) based on user criteria, then redistributes the
discovered pairwise alignment tasks. The task redistribution
preserves the invariant that each task is assigned to the
owner of one or both of the required reads, such that the
(number) of tasks are roughly balanced across the processors.
If an assignee owns one but not both reads, it must retrieve
the remotely owned read in order to complete the task.
We examine two approaches for coordinating the sub-

sequent irregular communication and computation. One is
bulk-synchronous and prioritizes bandwidth-utilization and

message cost amortization via message aggregation. Our
implementation extends and refactors DiBELLA’s original
implementation, as described in Section 3.1. The original
DiBELLA focused on a first distributed-memory solution to
this interdisciplinary problem, and it provided a way to study
the data, input, output, and communication and computation
patterns for distributed memory scalability (including the
challenge of working dataset size explosion and managing
memory for communication). Having learned much about
these from DiBELLA [11], we were able to make connec-
tions across similar problems, placing them in the broader
context of Big Data frontiers, and further, provide a more
advanced bulk-synchronous solution as well as an alterna-
tive asynchronous solution here. The asynchronous solution
prioritizes injection speed and communication-hiding via
asynchronous communication and computation of the ir-
regular interactions. It simultaneously minimizes memory
footprint. We implemented it from scratch, as further de-
scribed in Section 3.2. Our empirical performance analysis
(Section 4) examines the balance of communication, com-
putation, load imbalance, and memory footprint in practice,
using our two implementations.

3.1 Bulk-Synchronous Approach
The bulk-synchronous approachwe examine exchanges reads
in an irregular all-to-all and then computes the pairwise
alignments independently in parallel. It uses message aggre-
gation to maximize both bandwidth utilization and message-
cost amortization. Given the data-intensive nature of the
application, the balance of per-node memory to bisection
bandwidth is a significant factor in this approach. Across ar-
chitectures, per-node memory can limit exchange (message
buffer) sizes and therefore also limit effective bandwidth uti-
lization, and increase total synchronization costs by increas-
ing the necessary number of bulk-synchronous supersteps.
Per-node memory constraints are particularly relevant for
small distributed memory architectures and clusters, and
architectures (large or small) in which the ratio of memory
to compute resources is relatively low. This includes not only
“skinny” node architectures but also “fat” node architectures
in which fully utilizing the compute resources severely limits
per-core memory, such as on various multi- and many-core
architectures - the experimental evaluation includes one such
many-core architecture, Cori KNL at NERSC.
To examine this set of trade-offs in practice, we refac-

tored DiBELLA’s 3rd stage (see Section 2) to potentially
perform multiple, dynamically-sized communication and
computation rounds, depending on the workload and per
node memory limits. The read exchange is implemented
with MPI_Alltoall and MPI_Alltoallv routines. All pairwise
alignments associated with each received read are computed
together, when the respective read is accessed from the mes-
sage buffer. Dynamically sizing the supersteps enables us
to study the performance implications of memory-limited
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exchanges with real workloads, it supports performance anal-
ysis at both small and large scale, and also contributes to the
usability and portability of DiBELLA.

3.2 Asynchronous Approach
Rather than amortizing message costs via aggregation, our
asynchronous approach seeks to hide message costs with
the pairwise alignment computation and maximize injection
speed. Each task involving a remote read 𝑏 and local read 𝑎
is indexed under 𝑏; those tasks for which both reads are local
may be indexed under either. Once the tasks are organized
by remote read, the single program multiple data (SPMD) al-
gorithm proceeds by issuing asynchronous requests for each
remote read in parallel. A callback is attached to the request;
once a remote read 𝑏 arrives, all alignment computations
involving 𝑏 are executed as soon as they are dequeued. This
“pull” rather than “push” approach avoids memory overflow
issues from potentially many parallel processors -unaware
of each other- pushing reads to the same target. As in the
bulk-synchronous algorithm, only those alignments which
meet or exceed the user or default scoring criteria are saved
for output. A single exit barrier ensures the partitioned reads
remain available to all parallel processors until all tasks are
complete.
In contrast to the bulk-synchronous approach, this ap-

proach roughly maximizes rather than minimizes the num-
ber of messages, except in that parallel processors retrieve
remote reads no more than once, and pay the round-trip
latency for each variable-sized remote read. However, the ap-
proach also requires no more than 1 remote read in-memory
at any given time in order to make progress, relatively min-
imizing memory footprint. Whether the irregular com-
putation can sufficiently overlap (hide) the extra com-
munication in practice, with state-of-the-art runtime
support, is one of the questions Section 4 considers.

We implemented this algorithm in UPC++, a C++ library
for high-performance asynchronous communication and
computation. UPC++ supported by GASNet-EX [6] claims
lower one-sided message latencies and better programma-
bility [3] over other asynchronous languages and libraries.
Given that read lengths are highly variable and that, there-
fore, the number of reads per parallel processor is non-uniform,
our implementation employs UPC++ remote procedure calls
(RPCs) to lookup and return reads from remote data structure
partitions. It has been demonstrated [14] that RPCs can out-
perform remote direct memory accesses (RDMA) for large
messages and for data structure lookups that involve both an
index lookup and retrieval of the data itself. This most closely
matches our use-case. We leave a thorough investigation of
RDMA versus RPC performance for our application to future
work however. One other consideration for implementations
in general are the progress guarantees of the underlying
language and runtime regarding RPCs and callbacks. In our
UPC++ implementation, application-level polling is required

to ensure read requests are answered and callbacks are pro-
cessed. Beyond this, GASNet-EX ensures read requests and
callbacks are delivered, under the usual assumptions about
the network.

After each parallel processor loads its reads, it enters the
first phase of a UPC++ split-phase barrier and computes the
tasks for which it has both reads locally (during the time
it would otherwise be waiting at a regular barrier). Parallel
processors will only exit the second phase of the barrier
once all reads are accessible via RPC-lookup, however, to
support irregular global accesses. Any waiting time in the
split-phase barrier (though little to none is expected) and in
the final barrier is included in our performance analysis as
synchronization time.

4 Empirical Results
Experiments were conducted on a Cray XC40, Cori KNL, at
the National Energy Research Scientific Computing Center
(NERSC). Each Cori KNL node has 96 GB of DDR mem-
ory and 16 GB of MCDRAM high-bandwidth memory. Each
node is single socket, Intel Xeon Phi Knights Landing pro-
cessor with 68 cores per node @ 1.4 GHz, and each core is
4-way hardware hyperthreaded. Fully utilizing the compute
resources therefore heavily constrains available memory per
parallel processor. The nodes are connected by the Cray
Aries interconnect with Dragonfly topology.

The three real data sets shown in Table 1 were used in the
evaluation. The smallest, E. coli 30×, was used for intranode
performance measurements, as it can be processed within
the memory of a single node in a reasonable amount of
time - within an hour on a single KNL core. The largest
dataset, Human CCS, was used for multinode strong scaling
measurements. An intermediate data set, E.coli 100×, was
used to measure the strong scaling performance, from 1 node
to over 100 nodes, under conditions optimal for the bulk-
synchronous code – optimal strong scaling conditions for the
bulk-synchronous code enable it to exchange reads in a single
round of communication, maximally utilizing bandwidth
and minimizing per-round communication synchronization,
across scales. This is not possible at all scales with the larger
Human CCSworkload, and the performance impact is shown
in the following results.

For each approach’s results shown side-by-side, the align-
ment tasks computed from each dataset, and their partition-
ing, are treated as fixed inputs. DiBELLA is used to per-
form the data analysis, including computing seeds for pair-
wise seed-and-extend alignment. For DIBELLA’s seed (k-mer)
computation and filtering, 𝑘 was set to 17 and the maximum
frequency of retained k-mers for each dataset was set accord-
ing to the BELLA model [13]. BELLA utilizes each dataset’s
particular sequencing coverage, error rate, and 𝑘 for its fre-
quency calculation. For individual seed-and-extend pairwise
alignments, we employ a performant C++ implementation of
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Table 1. Workloads used for evaluation. For each data set, we list a short name for the dataset, the scientific name of the
species, the total number of reads, the total number of pairwise alignments (equal to the number of seeds extended in our
experiments - one per candidate overlap), and the link to the raw read data. *Exploring 1 seed per overlap candidate.

Short Name Species Reads Tasks Raw Data Source
E. coli 30× Escherichia coli 16,890 2,270,260 https://bit.ly/2EEq3JM (CBCB)
E. coli 100× Escherichia coli 91,394 24,869,171 https://bit.ly/2POV1Qs (NCBI)
Human CCS Homo sapiens 1,148,839 87,621,409 https://tinyurl.com/y73tfgnw (NCBI)
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Figure 3. Bulk-synchronous (BSP) and asynchronous
(Async) implementations processing the E. coli 30×workload
on 1 Cori KNL node, with 64 cores running the application
and 4 cores isolating system overhead (right) versus all 68
cores running the application (left). At both core counts, the
overall runtime difference between the two codes is < 0.1𝑠
(and within 0.1% of the overall runtime).

X-drop [25] from the SeqAn library [9] in both of our codes.
One seed is extended per candidate overlap, simulating ex-
pected advances in seed-selection techniques, and focusing
the performance analysis on communication performance
and load balance.

Each data point is a median global result from many runs,
across multiple allocations. Within each run, statistics (min-
imum, maximum, averages, and sums) are computed via
global reductions across parallel processors. These reduc-
tions are excluded from the runtime analysis. Lastly, time
spent in I/O is left-out of the presentation. Scalable parallel
file I/O is employed in each version, but the implementations
are different, and file I/O is not the focus of this work. Other
differences in computational overhead due to implementa-
tion differences are presented in Sections 4.1 and 4.6.

4.1 Single Node Performance
The single node evaluations examine the intranode-scalability
and comparability of the two codes, and establish single-node
settings for later multi-node experiments. Figures 3-4 present
results for two real workloads. The E. coli 30× workload is
used to collect intranode strong scaling results, as it is small
enough to process within the memory of a single Cori KNL
node, in reasonable time for repeated experiments. Given
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Figure 4. Bulk-synchronous (BSP) and asynchronous
(Async) code runtime breakdowns on 2 problem sizes, run
on 1 Cori KNL node with 64 cores running application code
and 4 cores isolating system overhead. The left-hand results
are also shown on the right-hand-side of Figure 3. The run-
time of the larger problem (E. coli 100×) is ≈ 94% compute-
dominated, versus ≈ 90% for the smaller problem (E. coli
30×). For the larger problem (E. coli 100×), the overall run-
time difference between the codes is ≈ 1s (< 0.3% of the
minimum runtime).

this workload, both codes scale perfectly by powers of 2 from
1 to 32 cores, but the speedup tapers-off to ≈ 62× with ≥ 64
cores. Therefore, Figure 3 presents a runtime breakdowns for
64-68 cores, distinguishing useful work from communication
and synchronization overheads. The 64-core runs dedicate
the 4 additional cores to system overhead isolation. With
68 versus 64 cores (left vs. right in Figure 3), the slight im-
provement in computation time is cancelled-out by a slight
increase in overheads, primarily synchronization overhead.
At both core counts, the overall runtime difference between
the two codes is < 0.1s (within 0.1% of the overall runtime),
and the absolute time-to-solution is effectively reduced from
≈ 1 hour to ≈ 1 minute (on 1 vs. 64-68 cores).

Figure 4 shows the single-node runtime breakdown for E.
coli 100×, a much larger workload – an estimated ≈ 7 hours
would be needed to process this workload on a single Cori
KNL core. The overall runtime difference between the two
codes is ≈ 1s (< 0.3% of the overall runtime). Together with
the E. coli 30× results, these establish the comparability of
the two codes in terms of single-node baseline performance.



ICPP ’21, August 9–12, 2021, Lemont, IL, USA Marquita Ellis, Aydın Buluç, and Katherine Yelick

0

1

2

3

0
20
40
60
80

100
120
140

512
1,024

2,048
4,096

8,192

16,384

32,768

Lo
ad

 Im
ba

la
nc

e

Se
co

nd
s

Number of Cores (64 per Node)

Min. Avg. Max. Load Imbalance (Right Axis)

Figure 5. Minimum, average, and maximum times spent
in SeqAn seed-and-extend calls cumulatively (left axis) and
load imbalance (right axis), strong scaling Human CCS on
Cori KNL.

In both Figures 3 and 4, the “Computation (Overhead)”
includes data structure traversal, function call overhead, etc.
for initializing and invoking the seed-and-extend kernel from
the SeqAn library [9]. Though a small fraction of the run-
time, this overhead is slightly higher for the asynchronous
code, we therefore present additional results for the largest
workload, Human CCS, with other multinode strong scaling
results later. Computing the actual seed-and-extend pairwise
alignments (“Computation (Alignment)”) dominates the run-
time across all scales and experiments. Pairwise alignments
are balanced across cores by number but not necessarily
by cost, since the seed-and-extend pairwise alignment cost
varies dynamically with the lengths of the reads, the length
of their "true overlap", the speed of “false positive” detection
(early termination), and so on. The synchronization time is
dominated by this load imbalance, on which the next section
provides further results.

Based on these and additional results showing negligible
or no benefit from employing 68 versus 64 cores or hard-
ware hyperthreads on Cori KNL for this and similar appli-
cations [10], we use 64 cores with 4 cores dedicated to sys-
tem overhead management as our default setting. The next
section shows the results strong scaling the two codes pro-
cessing E. coli 100× workload from a single node with 64
cores (also shown in Figure 4) to 128 nodes (8,192 cores), with
additional multinode strong scaling results for the Human
CCS workload (Table 1).

4.2 Load Imbalance
The work is partitioned statically by number of alignments,
but individual seed-and-extend pairwise alignments may
have variable costs. The variability in these costs is the source
of much of the overall load imbalance (see Figure 5). The
costs vary by read lengths and runtime parameters (for ex-
ample, the value of X for the X-drop algorithm [24]) and
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Figure 6. From strong scaling Human CCS on Cori KNL,
the difference between the maximum and minimum bulk-
synchronous exchange loads.
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Figure 7. Total average communication latency from strong
scaling Human CCS on Cori KNL with computation skipped.

cannot be easily determined before runtime. This highlights
an opportunity to explore dynamic or semi-static approaches
to load balancing alignment tasks in future work.
Variability in read lengths additionally affects communi-

cation load imbalance. Figure 6 shows communication load
imbalance for the bulk-synchronous exchanges, strong scal-
ing the Human CCS workload, in terms of the amount of
received read data per processor (core). As shown, there
is a large difference between the minimum and maximum
loads, which might explain some of the poor communication
scalability, in terms of latency, shown in the next section.

4.3 Absolute Communication Latency
In order to understand the absolute (unhidden) communica-
tion latency of the asynchronous code using RPCs, we imple-
mented a mode that executes everything (except the pairwise
alignment computation). Though it is simpler to extract com-
munication performance from the bulk-synchronous code,
we also implemented this mode in the bulk-synchronous
code for communication-focused benchmarking. Figure 7
shows the communication latency from strong scaling the
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Human CCS workload in this mode. The reason for the poor
scaling of the asynchronous version between 8-16 nodes re-
quires further investigation, but because of the high numbers
of outgoing and incoming RPCs at those scales, we speculate
that further tuning runtime parameters to the workload (e.g.
varying limits on outgoing requests) could improve overall
latency. From 16-512 nodes, however, it appears the message
latencies scale with the workload – as the number of parallel
processors increase, the number of lookups per processor
decrease and so does the total latency. The bulk-synchronous
communication latency is lower than the asynchronous la-
tency, but scales sublinearly from 8-512 nodes, resulting in
the performance cross-over between 32-64 nodes.

4.4 Computation-Communication Overlap
We compare the asynchronous versus the bulk-synchronous
multinode performance using two real worloads, E. coli 100×
and Human CCS. E. coli 100× is small enough to process
on a single node, but the raw input data is over 3× larger
(and the number of alignments is nearly 11× larger) than E.
coli 30×. We employ it for a strong scaling comparison in
which there is sufficient per-processor memory for the bulk-
synchronous version to exchange all reads at once, achieving
its lowest communication overhead. The second workload,
Human CCS, is roughly 28× larger than the E. coli 100× data
set, with respect to raw input sizes, and the initial stages
of the DiBELLA pipeline, including the analysis necessary
to compute alignment tasks, cannot complete with fewer
than (4, 8] Cori KNL nodes. For all experiments, processors
are pinned to each full core (exclusive L1 cache) on a node,
except for 4 cores dedicated to system overhead isolation,
for a total of 64 cores running the application per node (see
Section 4.1).

Figure 8 shows results strong scaling the E. coli 100×work-
load from 1 to 128 Cori KNL nodes (64 to 8K cores). The
absolute runtime of both versions with 8K cores (128 nodes)
is ≈ 10 seconds, a roughly 40× speedup over the single node
time. The time spent in computation (seed-and-extend pair-
wise alignment) and synchronization are practically the same
between the two versions. The synchronization time results
primarily from load imbalance in computation due to vari-
able task costs (see Section 4.2). The visible communication
latency sets the two versions apart. The bulk-synchronous
version’s communication latency increases from just over
1% on a single node (64 cores) to over 24% on 128 nodes
(8K cores). In contrast, the asynchronous version manages
to hide most communication latency up to 128 nodes (8K
cores); the visible latency at 128 nodes (8K cores) is less than
7% of its own runtime. Consequently, the asynchronous ver-
sion is up to 12% more efficient. Though small, the gap is
significant because there is sufficient memory across scales
for the bulk-synchronous code to perform a single bulk-
synchronous exchange of the reads (achieving its highest
bandwidth utilization and lowest communication latency).
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Figure 8. Comparative runtime breakdown, strong scaling
E. coli 100× on Cori KNL. The computation and synchro-
nization time between the asynchronous (Async) and bulk-
synchronous (BSP) performance is the same. Because Async
successfully hides most of its communication latency, the
runtime normalized to the BSP runtime is lower than 100%.
In contrast, the bulk-synchronous (BSP) version’s commu-
nication latency increases from over 1% of its runtime on a
single node (64 cores) to over 24% on 128 nodes (8K cores),
despite having enough memory to communicate in a single
step (maximizing its bandwidth utilization and minimizing
its latency).
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Figure 9. 8 to 64 nodes (512-4K cores) comparative run-
time breakdown of the bulk-synchronous (BSP) and asyn-
chronous (Async) code, strong scaling the Human CCS work-
load. Due to the size of the workload relative to memory on
node, the BSP code must perform multiple steps of commu-
nication and computation up to 64 nodes.

Even so, successful communication hiding in the asynchro-
nous code yields higher efficiency.

Figures 9-10 show comparative strong scaling results with
the Human CCS workload. Note, the minimum number of
nodes required to process this workload with our setup is
8, as determined by the memory requirement of DiBELLA’s
initial pipeline stage (see Section 2). The workload is scaled
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Figure 10. 64 to 512 node (4K-32K cores) comparative
runtime breakdown of the bulk-synchronous (BSP) vs. asyn-
chronous (Async) code, strong scaling the Human CCS work-
load. Unlike Figure 9, there is sufficient memory for the BSP
code to complete communication and computation in a single
superstep.

from 8 nodes to 512 nodes (512 to 32K cores respectively).
From 8 to 32 nodes (Figure 9), there is insufficient mem-
ory for the bulk-synchronous version (“BSP”) to complete
its read exchanges in a single round; it requires multiple
exchange-compute steps. As in the E. coli 100× results, the
synchronization time between the two versions is practi-
cally the same across scales, due to load imbalance from
dynamic seed-and-extend computation costs. The commu-
nication overhead of the bulk-synchronous version is 17%
to 34% of its runtime across scales, while the asynchronous
version successfully hides its communication latency. Conse-
quently, the asynchronous version is up to 20%more efficient
than the bulk-synchronous version with 8-32 nodes (512-2K
cores). With sufficient per processor memory for the bulk-
synchronous version to complete the exchange in one step
(Figure 10), the efficiency gap decreases from 13% at 64 nodes
(4K cores) to 4% at 512 nodes (32K cores).

4.5 Memory Footprint
The memory footprint of each approach is shown in Fig-
ures 11-12. Figure 11 shows the maximum per core mem-
ory footprint of each approach, strong scaling the Human
CCS workload. This memory footprint information was gath-
ered from NERSC’s completed job logs. Also shown is the
application-available memory per core (roughly 1.4GB) and
the estimated memory required to exchange all reads at
once. The estimate is calculated from the total exchange
load, divided by the number of processors, plus the average
input partition sizes. Between 512-2K cores (8-32 nodes) the
bulk-synchronous version (BSP) exchange sizes are limited
by available per core memory. From 4K-32K cores (64-512
nodes), the memory footprint matches the estimate fairly
closely. The memory footprint of the asynchronous version,
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Figure 11. Maximum memory footprint (log-scaled) per
core (MB) of the bulk-synchronous (BSP) and asynchronous
(Async) approaches, strong scaling Human CCS on Cori KNL.
The solid line is the application-available memory per core
(<1.4GB). The dashed line is the estimated total memory re-
quired to exchange all reads at once. From 512-2K cores (8-32
nodes), BSP performs multiple exchanges limited by avail-
able memory. It is only able to perform a single exchange,
maximizing bandwidth utilization, between 4K-32K (64-512
nodes). The Async version on the other hand maintains a
relatively low memory footprint (<256MB) across scales.
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Figure 12. Memory footprint and runtime of the bulk-
synchronous (BSP) and asynchronous (Async) versions,
strong scaling Human CCS on Cori KNL. Async maintains a
relatively low fixed memory footprint while achieving better
performance through communication-computation overlap.

on the other hand, remains relatively fixed and below 256MB
per core. Figure 12 shows the same memory footprint infor-
mation on an absolute scale (left axis) along with overall
runtimes (right axis). While the asynchronous version main-
tains a lower runtime via communication-computation over-
lap (Section 4.4), and typically lower memory footprint, the
results are very close at-scale 32K cores (512 nodes).
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traversing local data structures storing alignment tasks and
associated data, while strong scaling Human CCS on Cori
KNL. The BSP code uses flat arrays; the Async code uses C++
standard library data structures. While not of primary focus,
the results are presented for completeness.

4.6 Local Data Structure Performance
In the runtime breakdowns in Section 4.1, though negligible
to overall performance there, the computational overhead
is slightly higher for the asynchronous version, due to local
data structure implementation choices. Each code traverses
local data structures storing alignment tasks with associated
data, in order to issue/buffer requests for remote reads and
then compute pairwise alignments. The bulk-synchronous
code uses flat arrays, achieving better locality. The asynchro-
nous code uses C++ standard library data structures; while
the code is more object-oriented and readable, the trade-off
is higher performance overheads. While local data structure
optimization is not the focus of this work, for completeness
Figure 13 shows the overhead of the data structure traversals
in isolation for the largest workload, Human CCS. While it
scales down to ≈ 4% of the overall runtime, the performance
difference between the traversing local flat arrays in the
bulk-synchronous code versus the local pointer-based data
structures in the asynchronous presents the classic trade-off
of performance and programmability.

5 Summary & Conclusions
This work examined two parallelization approaches to many-
to-many long read alignment, relevant to other Generalized
N-Body problems, a bulk-synchronous and an asynchronous
one. The bulk-synchronous approach prioritized maximiz-
ing bandwidth utilization and message cost amortization.
The asynchronous approach prioritizes message injection
speed and message hiding via communication-computation
overlap. Detailed strong scaling results from our respective
implementations for 3 real workloads (Table 1) on Cori KNL
were presented in Section 4. The relative performance of
the two approaches was determined by the performance of

communication primitives for many-to-many exchanges and
by the performance of the pairwise alignment computation.

The communication latency of the asynchronous approach,
prioritizing injection speed, scaled as the workload scaled-
out. The number of messages per parallel processor scaled
inversely with the number of processors, and the overlapped
communication and computation costs in aggregate balanced
out. On a high-latency network however, we would expect
more aggregation to be necessary – but how much more
depends also on the computation costs.
Further, we emphasize that optimizing communication

and computation performance is not independent frommem-
ory capacity. Increasing message aggregation for better band-
width utilization and message cost amortization is an effec-
tive go-to solution for many applications. For these data-
intensive Generalized N-Body problems, the memory en-
abling (or limiting) message aggregation can limit achiev-
able performance. To analyze the performance of the bulk-
synchronous approach under best-case and memory-limited
scenarios, we employed a workloads for which the many-to-
many bulk-synchronous exchange could be performed in a
single, bandwidth-maximizing exchange, within the avail-
able memory of 1 to 128 nodes, and a much larger workload
for which the many-to-many exchange could not be per-
formed in a single exchange at small scale. The latter revealed
significant communication overheads (17-34%) when forced
to perform multiple irregular exchanges within available
memory. Overall, Cori’s low-latency high-bandwidth net-
work supports both approaches well, but the ratio of compu-
tational to memory resources limited the bulk-synchronous
message-aggregating approach. Studying the performance
across interconnect architectures would be interesting fu-
ture work. Furthermore, optimizations targeting just the
computation will affect the overall performance of each
approach differently. For the bulk-synchronous approach,
we expect improvements to the computation to decrease
overall runtime, and to lower the number of parallel proces-
sors at which strong scaling overall application performance
becomes communication-bound rather than computation-
bound. For the asynchronous approach, we expect overall
runtime to improve with alignment computation optimiza-
tions until average asynchronous message latency exceeds
the average pairwise alignment computation rate, at which
point, communication optimizations (e.g. lower latency prim-
itives, message aggregation) will be necessary for any fur-
ther computational optimizations to be effective. Bisection
bandwidth for many-to-many exchanges, supporting bulk-
synchronous approaches, versus the (balance of) alignment
computation to one-sided or point-to-point message latency,
supporting asynchronous approaches, determines the rela-
tive performance of each approach across workloads, imple-
mentations, and architectures. The analysis is informative
for both software and hardware designers seeking to support
similar data-intensive Generalized N-Body problems.
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The results from both implementations motivate further
study of the load imbalance. The synchronization time, dom-
inated by imbalance in variable-cost alignment tasks, was
visible between the codes across scales. For all results, Di-
BELLA’s [11] direct “blind” partitioning avoids re-partitioning
input reads and balances the (number) alignment tasks per
processor with a simple heuristic, but the cost of each align-
ment task varies dynamically. This work focused on many-
to-many communication approaches that are independent of
the underlying partitioning approach. That is, for improve-
ments in the underlying partitioning approach, we expect
the communication performance of these approaches to only
improve. The variability in computational costs here and in
similar applications perhaps motivates a dynamic approach,
but whether the performance improvements can compen-
sate for the overheads of dynamic load balancing in practice
will be the question. Supporting future work in performance
analysis and genomics, the code [16] from this study can be
used for many-to-many long read alignment with general
inputs. It can also be modified to solve similar bioinformatics
problems with reasonable effort. Finally, the code can also
be used for performance benchmarking and characterization
of this and other Generalized N-Body problems.
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