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Matrices

Parallel Computing

Applica5ons

• Parallel data structures
• Parallel programming
• Communication bounds

• New sparse data structures and algorithms 
• Identification of computational primitives

GraphBLAS: graphs in the 
language of linear algebra

http://graphblas.org

Communication-avoiding 
algorithms for sparse matrices
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Sparse Matrices

“I observed that most of  the 
coefficients in our matrices were 
zero; i.e., the nonzeros were ‘sparse’ 
in the matrix, and that typically the 
triangular matrices associated with 
the forward and back solution 
provided by Gaussian elimination 
would remain sparse if  pivot 
elements were chosen with care”

- Harry Markowitz, describing the 1950s 
work on portfolio theory that won 
the 1990 Nobel Prize for Economics



Sparse Matrices in Simulations

Original: Ax = b (hard to solve directly)
Factored: LUx = b (solvable by direct substitution) 
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Talk Outline

• Sparse matrix-matrix multiplication

• SpGEMM use cases

• Masked SpGEMM use case and new algorithms

• SpMM (+SDDMM) use cases and new algorithms

• The GraphBLAS effort 

• Combinatorial BLAS 2.0

• GraphBLAST



Sparse matrix-matrix multiplication

A

C(¬M) ⊕= AT ⊕.⊗ BT

M B.*( )C

M: the output mask (also called a sampling matrix), always sparse if present
A, B: input matrices, at least one is sparse unless the mask is present 
C: output matrix

SpGEMM: A, B are sparse, C can be sparse or dense (depending on shape)
Masked-SpGEMM: Same as SpGEMM, with mask (M) present
SpMM: A sparse, B and C dense (tall skinny), often no mask (M)
SDDMM: A, B are dense, M present, C sparse
SpMV: degenerate case of SpMM with B and C having 1 column
SpMSpV: degenerate case of SpGEMM with B, C, (possibly M) having 1 column



SpGEMM use case #1: read overlapping

r1
r2

r3
r4

r5
r6

r1 r2 r3 r4 r5 r6

AAT(i,j) = # shared k-mers 
between reads i and j, plus 
their positions in the reads

Read-by-read overlap matrix: AAT

Use any fast SpGEMM algorithm, as long as it runs on arbitrary semirings

Giulia Guidi, Marquita Ellis, Daniel Rokhsar, Kathy Yelick, Aydın Buluç. BELLA: Berkeley Efficient Long-read to Long-
Read Overlapper and Aligner. In SIAM Conference on Applied and ComputaNonal Discrete Algorithms (ACDA21) 2021



diBELLA.2D performance results 

diBELLA.2D: distributed-memory version of BELLA on 2D process grid
Performs overlap detection plus transitive reduction (overlap to string graph)
https://github.com/PASSIONLab/diBELLA.2D

Giulia Guidi, Oguz Selvitopi, Marquita Ellis, Leonid Oliker, Katherine Yelick, Aydin Buluç. Parallel 
String Graph Construction and Transitive Reduction for De Novo Genome Assembly. IPDPS 2021

https://github.com/PASSIONLab/diBELLA.2D


Is the sparse matrix approach better?

• Comparing the sparse matrix abstraction (diBELLA 2D [2], weeks of effort) 
with a direct implementation (diBELLA 1D [1], years of effort). Both use MPI

• Sparse matrices reduce communication via 2D sparse SpGEMM

[1] Marquita Ellis, Giulia Guidi, Aydin Buluç, Leonid Oliker, and Katherine Yelick. "diBELLA: Distributed long 
read to long read alignment." ICPP 2019
[2] Giulia Guidi, Oguz Selvitopi, Marquita Ellis, Leonid Oliker, Katherine Yelick, Aydin Buluç. Parallel String 
Graph ConstrucNon and TransiNve ReducNon for De Novo Genome Assembly. IPDPS 2021



SpGEMM use case #2: many-to-many
protein alignment 

• Idea similar to BELLA, but removing 
the exact match restriction

• For homology detection, need to 
catch weaker signal (~30% ANI)

• K-mers with substitutes may be more 
valuable than exact matches!

1 substitute 2 substitutes



SpGEMM for many-to-many
protein alignment 

Introduce new sparse matrix S
Contains substitution information
Each entry has substitution cost

Exact k-mers à C=AAT

Substitute k-mers à C=ASAT

New semiring

Oguz Selvitopi, Saliya Ekanayake, Giulia Guidi, Georgios Pavlopoulos, Ariful Azad, and Aydın Buluç. 
Distributed Many-to-Many Protein Sequence Alignment Using Sparse Matrices. SC’20.

PASTIS (https://github.com/PASSIONLab/PASTIS) does distributed 
many-to-many protein sequence similarity search using sparse matrices

https://github.com/PASSIONLab/PASTIS


PASTIS performance and accuracy

• Protein similarity search is the first and most .me-consuming step in 
discovering protein families (proteins evolved from a common ancestor 
and who likely have the same func.on)

• Protein family iden2fica2on is a key step in protein func.on discovery and 
taxonomic assignment of newly sequenced organisms
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Multi-source traversal:
Ex: multi-source BFS, betweenness centrality, triangle counting*, Markov clustering*

GrB_mxm(Y, P, <semiring>, A, X, <desc>)

A: sparse adjacency matrix
X: sparse input matrix (previous frontier), n-by-b where b is the #sources
P: mask (already discovered vertices), multi-vector version of p from previous slide

Masked SpGEMM use case: 
graph traversal
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Triangle counting is also multi-source(in fact, all sources) traversal:
It just stops after one traversal iteration only, discovering all wedges

GrB_mxm(C, A, <semiring>, L, U, <desc>)

Masked SpGEMM use case: 
graph traversal



New algorithms for Masked SpGEMM

for i = 1:n 
  Ci* = Mi* .* (Ai* x B) 

m

c

mask A B Accumulator
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a7

C

A B AB

mask mask ⊙ AB

plain

masked

Main Idea: When certain output 
entries of SpGEMM  are not needed 
(masked out), it is wasteful to 
materialize/compute the product 
first and then to mask out entries

• Row-wise Masked SpGEMM using an accumulator to compute output row C𝑖∗. 
• The rows corresponding to the column indices of entries in row A𝑖∗are merged and 

filtered through the respective mask entries to compute C𝑖∗. 
• This merging and filtering process can be performed in a number of ways. 



Masked Sparse Accumulator (MSA)

Srdjan Milakovic ́, Oguz Selvitopi, Israt Nisa, Zoran Budimlic ́, and Aydın Buluç. Parallel algorithms for 
masked sparse matrix-matrix products. arXiv preprint arXiv:2111.09947, 2021 (Poster at PPOPP’22)
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Performance of Masked SpGEMM algorithms

Srdjan Milakovic ́, Oguz Selvitopi, Israt Nisa, Zoran Budimlic ́, and Aydın Buluç. Parallel algorithms for 
masked sparse matrix-matrix products. arXiv preprint arXiv:2111.09947, 2021 (Poster at PPOPP’22)
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Motivation for Graph Neural Networks

“GNNs are among the most general class of deep learning architectures 
currently in existence, […] and most other deep learning architectures can 
be understood as a special case of the GNN with additional geometric 
structure” Bronstein, Michael M., et al. "Geometric Deep Learning: 

Grids, Groups, Graphs, Geodesics, and Gauges." (2021)

This is a graph neural network

… we pose chip floorplanning as a 
reinforcement learning problem, 
and develop an edge-based graph 
convolutional neural network
architecture… 



Graph Neural Networks (GNNs) 

Electric Grid

Transportation

Proteomics

Power Grid

Materials Discovery

Particle Physics

GNNs are finding success in 
many challenging scien5fic 

problems that involve 
interconnected data. 

Interdependencies between 
samples (nodes of the graph) 

make stochastic gradient 
non-trivial without graph 

sampling 

• GNNs are computa.onally intensive to train. Distributed training need to 
scale to large GPU/node counts despite challenging sparsity.

• CAGNET (Communica.on-Avoiding Graph Neural nETworks) full gradient 
descent to avoid inaccurate (and expensive) graph sampling

hJps://github.com/PASSIONLab/CAGNET/

https://github.com/PASSIONLab/CAGNET/


What can I do with a GNN?
How to use GNNs?

Figure source: Petar Veličković



Full-graph vs. mini-batch SGD

Full-graph training: 
• Train on entire training set
• Slower convergence per epoch
• Faster training per epoch
• Focus of this work
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Mini-batch SGD:
• Train on mul.ple samples from 

training set
• Faster convergence per epoch
• Slower training per epoch
• Requires graph sampling, which 

effects accuracy and performance
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Full-graph vs. mini-batch SGD

• Vertices (unlike images) are dependent on each other
• L-layer GNN uses L-hop neighbors for vertices in batch
• Even for small L, must store ~whole graph for any minibatch for power-law graphs
• How to subsample from aggregated L-hop neighborhood and keep accuracy?
• CAGNET (Communication-Avoiding Graph Neural nETworks) full gradient descent 

to avoid such issues: https://github.com/PASSIONLab/CAGNET/

No dependencies Layered dependencies

sample

https://github.com/PASSIONLab/CAGNET/


Graph convolu3on: Feature aggrega3on from neighbors

Graph convolutions

v1

v2

v5
v3

3.2  5.4  …   1.3

O(f) feature vector

v4v6

3.2  5.4  …   1.3
…

2.7  1.6  …   4.1
…

0.9  2.1  …   3.8
…

AT H

W =

0.9  2.1  …   3.8
2.7  1.6  …   4.1

• GNN is an umbrella term for any neural network that performs graph 
representaKon learning.

• CAGNET focuses on Graph ConvoluKonal Networks (GCNs)
• We are working on adding graph aPenKon layers



Graph convolutions
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• Recall that a CNN can have different *channel* dimension at each layer.
• GNNs also have different embedding dimension at each layer



Memory cost of full-batch GCN training
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GNN Training

• Each node is initialized with a feature vector
– 𝐻! has initial feature vector per node (𝑛 𝑥 𝑓)

• Each node aggregates vectors of its neighbors, applies a weight
• Each layer computes gradients

𝐴 ∈ 𝑛 𝑥 𝑛

𝐻! ∈ 𝑛 𝑥 𝑓!

𝐺! ∈ 𝑛 𝑥 𝑓!

for i = 1 … E
for l = 1 … L

Zl = AT * Hl-1 * Wl
Hl = σ (Zl)

...
for l = L-1 … 1

Gl = A * Gl+1 * (Wl+1)T ⊙ σ’(Zl)
dH/dW = (Hl-1)T * A * Gl

𝑊! ∈ 𝑓! "# 𝑥 𝑓!

• A is sparse and f << n, so the main workhorse is SpMM (sparse 
matrix times tall-skinny dense matrix)



Communication avoidance (CA)
In GNN Training

Alok Tripathy, Katherine Yelick, Aydın Buluç. Reducing CommunicaNon in Graph Neural Network Training. SC’20

§ Scales with both P (GPUs – x axis) and c (replication layers in CA algorithms)
§ This is 1 GPU/node on Summit (all GPUs per node results in paper)
§ Expect to scale with all GPUs / node with future architectures (e.g. Perlmutter)
§ More results (2D and 3D algorithm) and 6 GPUs/node in the paper



Distributed SpMM algorithms

• 1D algorithm not shown, degeneration of sA-1.5D for the c=1 case
• Right before reduction, sA-1.5D uses c times more dense-matrix memory

• Sta.onary A, 1.5D algorithm
• A is split on a p/c-by-c grid 

• Sta.onary C, 2D algorithm
• Memory op.mal

A is sparse, B and C are dense



Could we do SpMM differently?

Oguz Selvitopi , Benjamin Brock, Israt Nisa, Alok Tripathy, Katherine Yelick, Aydın Buluç. Distributed-Memory 
Parallel Algorithms for Sparse Times Tall-Skinny-Dense Matrix MulNplicaNon. ICS’21
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Sparse Kernels in Machine Learning

• Sampled Dense-Dense Matrix Multiplication (SDDMM) and 
Sparse-times-Dense Matrix Multiplication (SpMM) appear in a 
variety of applications:
– Graph Neural Networks with Self-Attention
– Collaborative Filtering with Alternating Least Squares
– Document Clustering by Wordmover’s Distance

• Both kernels involve a single sparse matrix and two (typically 
tall-skinny) dense matrices. Typically, applications use both 
operations in sequence.

• When the sparse matrix is the adjacency matrix of a graph, we 
interpret the kernels as follows:
– SDDMM generates a message on each edge
– SpMM aggregates messages from incident edges

Message Genera5on

Message Aggrega5on



SpMM and SDDMM algorithmic duality

SDDMM and SpMM have identical data access patterns. 
Consider serial algorithms for both kernels:

for 𝑖, 𝑗 ∈ 𝑆
𝑅$% ≔ 𝑆$%(𝐴$: ⋅ 𝐵%:')

R ≔ SDDMM 𝑆, 𝐴, 𝐵

for 𝑖, 𝑗 ∈ 𝑆
𝐴$: += 𝑆$%𝐵%:

A ≔ SpMMA 𝑆, 𝐵

Every nonzero (i, j) requires an interac.on between row i of A and row j of B. 

As a result:

Every distributed algorithm for SpMM can be converted to an algorithm for 
SDDMM with idenFcal communicaFon characterisFcs, and vice-versa.

V. Bharadwaj, A. Buluc, J. Demmel, "Distributed Memory Sparse Kernels for Machine Learning," 2022 IEEE 
InternaNonal Parallel and Distributed Processing Symposium (IPDPS), 2022



Creating a parallel SDDMM algorithm 
from an SpMM algorithm
Consider any distributed algorithm for SpMMA that performs no 
replication. For all indices 𝑘 ∈ [1, 𝑟], the algorithm must (at some point)

• Co-locate 𝑆"#, 𝐴"$, 𝐵#$ on a single processor
• Perform the update 𝐴"$ += 𝑆"#𝐵#$

Transform this algorithm as follows:
1. Change the input sparse matrix 𝑆 to an output that is initialized to 0.
2. Change 𝐴 from an output to an input.
3. Have each processor execute the local update: 𝑆!" += 𝐴!#𝐵"#

The resulting algorithm performs SDDMM (up to multiplication with 
the values initially in 𝑺) with communication characteristics and data 

layout identical to the original.



Communica)on Eliding Strategies for 
FusedMM: SDDMM+SpMM

Mutually 
exclusive 
optimizations



Replica)on and Propaga)on Choices

The optimal algorithm choice depends on the ratio between the nonzero count of the 
sparse matrix and the total entries in either dense matrix.



Distributed FusedMM performance
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GraphBLAS C API Spec 
(hEp://graphblas.org)
• Goal: A crucial piece of the GraphBLAS effort is to translate the mathematical 

specification to an actual Application Programming Interface (API) that 
i. is faithful to the mathematics as much as possible, and
ii. enables efficient implementations on modern hardware. 

• Impact: All graph and machine learning algorithms that can be expressed in the 
language of linear algebra

• Innovation: Function signatures (e.g. mxm, vxm, assign, extract), parallelism constructs 
(blocking v. non-blocking), fundamental objects (masks, matrices, vectors, descriptors), a 
hierarchy of algebras (functions, monoids, and semiring)

A.Buluç, T. Malson, S. McMillan, J. Moreira, C. Yang. “The GraphBLAS C API SpecificaNon”, version 1.3.0

GrB_info GrB_mxm(GrB_Matrix *C,      // destination

const GrB_Matrix Mask,

const GrB_BinaryOp accum,

const GrB_Semiring op,

const GrB_Matrix A,

const GrB_Matrix B

[, const Descriptor          desc]);

C(¬M) ⊕= AT ⊕.⊗ BT



Combinatorial BLAS (historical slide)

• Aimed at graph algorithm designers/programmers who are not 
expert in mapping algorithms to parallel hardware.

• Flexible templated C++ interface; 2D data decomposition
• Scalable performance from laptop to 100,000-processor HPC.
• Open source software (v1.4.0 released January, 2014)

An extensible distributed-memory library offering a 
small but powerful set of linear algebraic 

operations specifically targeting graph analytics.



Combinatorial BLAS 2.0 innovaSons

• communication avoiding algorithms, 
• hierarchical parallelism via in-node multithreading, 
• accelerator support via GPU kernels, 
• generalized semiring support, 
• implementations of key data structures and functions, 
• scalable distributed I/O operations for human-readable files

Combinatorial BLAS 2.0: Scaling Combinatorial
Algorithms on Distributed-Memory Systems

Ariful Azad , Oguz Selvitopi , Md Taufique Hussain, John R. Gilbert, and Aydın Buluç

Abstract—Combinatorial algorithms such as those that arise in graph analysis, modeling of discrete systems, bioinformatics, and
chemistry, are often hard to parallelize. The Combinatorial BLAS library implements key computational primitives for rapid development
of combinatorial algorithms in distributed-memory systems. During the decade since its first introduction, the Combinatorial BLAS
library has evolved and expanded significantly. This article details many of the key technical features of Combinatorial BLAS version
2.0, such as communication avoidance, hierarchical parallelism via in-node multithreading, accelerator support via GPU kernels,
generalized semiring support, implementations of key data structures and functions, and scalable distributed I/O operations for human-
readable files. Our article also presents several rules of thumb for choosing the right data structures and functions in Combinatorial
BLAS 2.0, under various common application scenarios.

Index Terms—Sparse matrices, parallel computing, combinatorics, graph theory, communication-avoidance algorithms

Ç

1 INTRODUCTION

COMBINATORIAL BLAS, or CombBLAS for short, is a distrib-
uted-memory library that provides a set of matrix and

vector data structures as well as highly-optimized implemen-
tations of fundamental operations on and among those data
structures. The original purpose of CombBLAS was to pro-
vide a proof-of-concept implementation of graph algorithms
in the language of linear algebra, demonstrating the feasibility
of this approach and the scalability of the resulting implemen-
tation. CombBLAS has been used as a benchmark by compet-
ing distributed-memory graph libraries. Since launch of the
GraphBLAS standardization effort [1], the API development
team [2] relied on the design and naming choices made by
CombBLAS.

Since its inception a decade ago [3], CombBLAS has been
used in awide variety of distributed data analytics and scien-
tific computing applications. CombBLAS has also evolved
heavily to take advantage of the developments in distributed
algorithms and architectures. This paper describes the evolu-
tion of CombBLAS over the last decade. The introduction
surveys the main contributions; the later sections go into
their detail.

Avoiding Communication. Communication is the primary
bottleneck in scaling data-intensive applications to exascale.
Communication-avoiding (CA) algorithms reorganize
the computation to reduce communication costs, often
asymptotically, and expose more parallelism. CombBLAS

was the first library to include a 3D (or 2.5D) sparse matrix-
matrix (SpGEMM) multiplication algorithm and since then
the algorithm has been expanded to minimize communica-
tion under a given (often tight) memory budget. We discuss
this integrated CA algorithm in Section 3. Recently, we also
integrated a 1.5D sparse times tall-skinny dense matrix mul-
tiplication (SpMM) algorithm into CombBLAS.

Hierarchical Parallelism. Exascale computers are going to
be based on either accelerators or multi-core CPUs. Original
CombBLAS used to run on a so-called “flat-MPI” model
where each core was tasked with running an MPI process.
With the core counts per compute node increasing from sin-
gle digits to almost triple digits, a flat MPI model is now
known to be unscalable due to increased communication
bottlenecks in Network Interface Card (NIC) [4]. Several
hierarchical programming models have been proposed
where the inter-node communication is handled by either
MPI or a different distributed communication library, and
the intra-node parallelism is handled via a multithreading
platform such as OpenMP. It is also possible to use MPI
hierarchically where a smaller MPI communicator is used
within a node, an approach known as MPI+MPI.

CombBLAS 2.0 follows the most popular paradigm of
using OpenMP parallelism within a node, and MPI for com-
munication across nodes. One reason we avoided a process-
based MPI+MPI approach is load imbalance. While Comb-
BLAS avoids most load balance issues by randomly permut-
ing sparse matrices during their assembly, the load
imbalance can still hurt the performance if the library runs on
100,000 processes. The use of OpenMP within a node allows
CombBLAS to rein in load imbalance since it reduces the
number of partitions of a sparse matrix by a factor propor-
tional to the degree of on-node multithreading. Furthermore,
popular sparse data structures such as Compressed Sparse
Columns (CSC) [5] becomewasteful as local matrices become
hypersparse [6] due to 2D or 3D decomposition on large
numbers of partitions. CombBLAS tames hypersparsity
either by specialized data structures such as Doubly-
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! Oguz Selvitopi and Aydın Buluç are with the Lawrence Berkeley National
Laboratory, Berkeley, CA 94720USA. E-mail: {roselvitopi, abuluc}@lbl.gov.

! John R. Gilbert is with the University of California, Santa Barbara, Santa
Barbara, CA 93106 USA. E-mail: gilbert@cs.ucsb.edu.

Manuscript received 25 Feb. 2021; revised 15 June 2021; accepted 16 June 2021.
Date of publication 1 July 2021; date of current version 15 Oct. 2021.
(Corresponding author: Aydın Buluç.)
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(a) A 12⇥12 sparse
matrix distributed
in a 2D 6 ⇥ 6 grid
of 36 processes.

(b) A 3D grid of
36 processes orga-
nized in four 2D
3⇥ 3 grids

(c) Partitioning A
into the 3D grid
by splitting up the
columns

(d) Partitioning B
into the 3D grid
by splitting up the
rows

(e) Converting
a 6⇥6 grid to a
4⇥3⇥3 grid in the
regular way

(f) Conversion
from 2D to 3D
grid using reduced
communicators

Fig. 1: 2D and 3D distribution of a sparse matrix in CombBLAS. Purple, blue, yellow and green colors represent the first,
second, third and fourth layers respectively.

Fig. 2: Execution of the communication avoiding SpGEMM
for multiplying sparse matrix A with B to get C on a c ⇥p
p/c⇥

p
p/c process grid. Shown operations are involved

to generate the local portion of C only for the processes at
the second row and the second column of each layer during
the first stage of the algorithm.

(along the process column). The received submatrices are
locally multiplied by each process using a multithreaded
SpGEMM algorithm (Section ??). After

p
p stages, partial

results from all stages are merged to obtain the final result.
The costs of broadcasting input matrices in 2D SUMMA

quickly become a performance bottleneck at extreme
scale [?], [?]. To alleviate this bottleneck, CombBLAS 2.0
includes CA SpGEMM algorithms, following the success of
CA algorithms in dense linear algebra [?]. Our CA SpGEMM
algorithms distribute matrices on a c⇥

p
p/c⇥

p
p/c process

grid, where c denotes the number of layers in the third di-
mension. Fig. ?? shows an example of a 3D process grid with
four layers, where each layer is equivalent to a

p
p/c⇥

p
p/c

2D process grid. To facilitate 2D SUMMA algorithm in each
layer, we split A along the column and B along the row
into c pieces and then distribute different pieces to different
layers as illustrated in Figs. ?? and ??.

After input matrices are distributed on a 3D process grid,
each layer runs an instance of the 2D SUMMA algorithm
to obtain intermediate per-layer results Cint as shown in
Fig. ??. Here, each layer broadcasts submatrices of A along
the process row and submatrices of B along the process
columns on the 2D grid represented by the layer. Since these

broadcasts materialize on a smaller (by a factor of
p
c) com-

municator, their costs are reduced at extreme scale [?]. After
each layer completes their 2D multiplications, the partial
results are communicated across layers via an Alltoall com-
munication. We form the final result C by merging pieces
received from all layers. Since A and B are distributed
differently on the 3D grid, we distribute C like A (as shown
Fig. ??).

Guideline on selecting the number of layers (c). Unlike
dense CA algorithms [?] that replicate input matrices to
reduce communication, our CA SpGEMM splits input ma-
trices and does not require any extra memory for inputs
with increasing numbers of layers. Generally, the time re-
quired to broadcast A and B decreases as we increase c

( e.g., we could completely eliminate broadcasts by using
an p ⇥ 1 ⇥ 1 grid). However, as c increases, the costs of
inter-layer Alltoall communication and the final merging
also increase. Furthermore, the memory required to store
intermediate results increases with increasing number of
layers. Therefore, it is challenging to find the optimum c

as it depends on the tradeoff between broadcasts and inter-
layer Alltoall costs, as well as the available memory. Our
general guideline is to select c with c  3

p
p so that inter-

layer Alltoall does not dominate intra-layer broadcasts.

Conversion between 2D and 3D distributions. At present,
CombBLAS performs I/O only with 2D matrices (Sec-
tion ??). In order to use CA SpGEMM algorithms, we
convert matrices from a

p
p⇥p

p process grid to a
c⇥

p
p/c⇥

p
p/c grid. Fig. ?? and Fig. ?? show an example

how a 12⇥12 sparse matrix is converted from a 6⇥6 grid
to a 4⇥3⇥3 grid. CombBLAS provides two ways to create
3D matrices from 2D matrices. Fig. ?? shows how the con-
version is done in the regular way where processes on a 2D
grid are numbered in the row-major order. Next, we place
p/c processes numbered {i, i+1, ..., i+p/c�1} into the ith
layer. This conversion redistributes a 2D matrix on a 3D
grid using an Alltoallv operation among all processes. In
the second approach, we reinterpret the whole 2D grid as ap
p/c ⇥

p
p/c supergrid (shown with thick lines in Fig. ??)

where each cell of the supergrid has a
p
c⇥

p
c subgrid of

the 2D grid. Thus, each supergrid cell corresponds to one
cell in each layer of the 3D grid. We then assign each cell of
a subgrid to the corresponding cell in each layer of 3D grid
as shown in Fig. ??. Here, p/c Alltoallv calls run in parallel
with each Alltoallv involving c processes. By operating on
a reduced communicator, the latter approach reduces the
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GraphBLAST

• First “high-performance” GraphBLAS implementation on the GPU
• Optimized to take advantage of both input and output sparsity
• Automatic direction-optimization through the use of masks
• Competitive with fastest GPU (Gunrock) and CPU (Ligra) codes
• Outperforms multithreaded SuiteSparse::GraphBLAS
Design principles:

1. Exploit input sparsity => direction-optimization
2. Exploit output sparsity => masking
3. Proper load-balancing => key for GPU implementations

Extensively evaluated on (more implemented, google for github repo)
• Breadth-first-search (BFS)
• Single-source shortest-path (SSSP)
• PageRank (PR)
• Triangle counting (TC)

Yang, Buluc, Owens, “GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU”, 
ACM TransacNons on MathemaNcal Soqware (TOMS), 2022 

https://github.com/gunrock/graphblast

https://github.com/gunrock/graphblast




Conclusions

• Sparse matrix techniques underlie computations from disparate 
fields: 

a. Scientific computing
b. Machine learning
c. Graph analysis
d. Bioinformatics

• GraphBLAS already seem to have the right abstraction with its 
flexible masks and semirings to be the default backend of many 
of these computations

• Extreme parallelism and data, and hence the need for distributed 
memory parallelism is here to stay and will get worse

• Communication-avoiding algorithms, and novel data 
structures for sparse matrices will be the key to overcome these 
adverse technological trends
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