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De	novo	Genome	Assembly

1.	Three	copies	of	the	same	novel.

For all men tragically great are made so through a 
certain morbidness… all mortal greatness is but 
disease.

2.	Some	text	from	the	novel.	All	pages	will	be	randomly	cut	into	
strips	of	characters.	Random	typos	(errors) throughout	each	
novel.

For a

all men tragically g

ally great

great are made so

3.	A	few	strips	of	characters	from	one	page.

4.	All	of	the	strips	of	characters	from	the	3	
novels.

5.	Every	strip	must	be	assembled	as	shown	here	to	create	a	single	
copy	of	the	novel.

For all men tragically great are made so

For a ally great

great are made so all men tragically g

1.	Three	copies	of	the	same	DNA.

2.	Some	part	of	the	DNA	sequence.	It	will	be	read	into	strips.	
There	are	random	errors throughout	the	sequence.

ACCGTAGCAAAACCGGGTAGTCATACTACTACGTACTCATCT

3.	The	sequence	is	read	into	smaller	pieces	(reads).	Can	not	read	
whole	DNA	sequence	in	one	go.

ACCGTAGCAA

AAACCGGGTA TAGTCATACT

AAACCGGGTA

ACTACGTACT

4.	All	reads

5.	Reconstruct	original	DNA	sequence	from	the	read	set.

ACCGTAGCAAAACCGGGTAGTCATACTACTACGTACTCATCT

ACCGTAGCAA

AAACCGGGTA

GTAGTCATACT

CTACTACGTAC

CGTACTCATCT



• There is no genome reference! 
– In principle we want to reconstruct unknown genome sequence.

• Reads are significantly shorter than whole genome.
– Reads consist of 20 to 30K bases
– Genomes vary in length and complexity – up to 30G bases

• Reads include errors.

• Genomes have repetitive regions.
– Repetitive regions increase genome complexity.

De	novo	Genome	Assembly	is	hard



• Switchgrass:	1.4	Giga-base pairs	(Gbp)
• Maize:	2.4	Gbp
• Miscanthus:	2.5	Gbp
• Human	genome:	3	Gbp
• Barley	genome:	7	Gbp
• Wheat	genome:	17	Gbp
• Pine	genome:	20	Gbp
• Salamander:	20-30	Gbp

Genomes	vary	in	size



reads

contigs

scaffolds

k-mers

1

2

3

Input:	Reads	that	may	contain	errors

Chop	reads	into	k-mers,	process	
k-mers to	exclude	errors	

Construct	&	traverse	de	Bruijn graph	
of	k-mers,	generate	contigs

Leverage	read	information	to	link	
contigs and	generate	scaffolds.

Genome	Assembly	a	la	Meraculous

I/O,	bandwidth,	and	memory	intensive

Latency	bound	(irregular	accesses)

Compute	and	I/O	intensive



Meraculous	parallelization	with	UPC

• UPC is a PGAS (Partitioned Global Address Space) parallel 
language with one-sided communication.

• Core graph algorithms implemented in UPC (graph ó hash 
table).

• We need the notion of a huge global distributed hash table.
• Irregular access pattern in the the distributed hash table

– One-sided communication is handy!
• Portable implementation: can run any machine without change!
• Result of this work: Complete assembly of human genome in 

8.4 minutes using 15K cores

• Original code required 2 days and a large memory machine.



Reads

Parallel	k-mer analysis:	pass	1

P0

P1

Pn

…

Parse	to	k-mers

Hyperloglog

Hyperloglog

Hyperloglog

k-mer cardinality	
estimation

G	=	Global	
cardinality	
estimation

Parallel	Reduction

Bloom	Filter	of	
size	(G/n)

Bloom	Filter	of	
size	(G/n)

Bloom	Filter	of	
size	(G/n)

Create	local	
Bloom	filters

Also	identify	
high-frequency	k-mers

at	this	step



Reads

Parallel	k-mer analysis:	pass	2

P0

P1

Pn

…

Parse	to	k-mers

Hash	
k-mers

Hash	
k-mers

Hash	
k-mers

Hash	k-mers &	
find	owners

Received	
k-mers

Received	
k-mers

Received	
k-mers

All-to-all	
communication

of	k-mers

Bloom	
Filter

Bloom	
Filter

Bloom	
Filter

Local	
set

Local	
set

Local	
set

Store	a	k-mer in	the	
local	set	only	if	it	was	

seen	before

The	local	set	does	
the	actual	counting	

of	the	k-mers



Bloom	filter	is	a	probabilistic data	structure	used	for	
membership	queries
• Given	a	bloom	filter,	we	can	ask:	
“Have	we	seen	this	k-mer before?”
• No	false	negatives.
• May	have	false	positives
(in	practice	5%	false	positive	rate)

k-mers with	frequency	=1	are	useless	(either	error	or	can	not	
be	distinguished	from	error),	and	can	safely	be	eliminated.

Why	use	a	Bloom	filter?



Reads

Parallel	k-mer analysis:	pass	3

P0

P1

Pn

…

Parse	to	k-mers

Hash	
k-mers

Hash	
k-mers

Hash	
k-mers

Find	extensions	of	
k-mers,	hash	them	
&	find	their	owners

Received
k-mers &	
extensions

Received
k-mers &	
extensions

Received
k-mers &	
extensions

All-to-all	communication
of	k-mers and	extensions	

Keep	track	of	the	
number	of	occurrences	
of	each	extension	for	

each	k-mer

Local	
set

Local	
set

Local	
set

ACCCA			CT
CTTAG			CF
AACCT			TG
CGCAT			XA					

AGGCA			AT
GGTAG			FF
AAAAT			TG
CCCAT			XX					

TTCCA			GT
TTTGC			CA
AACTT			GG
CTTTT			CA					

Use	a	threshold	&	
find	the	high	

quality	extensions	
of	k-mers



High-frequency	k-mers

Long-tailed	distribution	for	genomes	with	repetitive	content:	
- The	maximum	count	for	any	k-mer in	the	wheat	dataset	is	451	million
- Our	original	scheme	(SC’14)	was	“owner	counts”,	after	an	all-to-all
- Counting	an	item	w/	451	million	occurrences	alone	is	load	imbalanced

Solution:	Quickly	identify	
high-frequency	k-mers using	
minimal	communication	
during	the	“cardinality	
estimation”	step	and	treat	
them	specially	by	using	local	
counters.



• In	Meraculous,	the	de	Bruijn graph	is	represented	as	a	hash	table

• K-mers are	both	nodes	in	the	graph	&	keys	in	the	hash	table

• An	edge	in	the	graph	connects	two	nodes	that	overlap	in	k-1	bases

• The	edges	in	the	graph	are	put	in	the	hash	table	by	storing	the	
extensions	of	the	k-mers as	their	corresponding	values

GAT ATC TCT CTG TGA

AAC

ACC

CCG

AAT

ATG

TGC

Parallel	De	Bruijn Graph	Construction



Parallel	De	Bruijn Graph	Construction

• Challenge 1: The hash table that represents the de Bruijn
graph is large (100s of GBs up to 10s of TBs !)
– Solution: Distribute the graph over multiple processors. 

The global address space of UPC is handy!

• Challenge 2: Parallel hash tables construction introduces 
communication and synchronization costs
– Solution: Aggregate messages to reduce number of 

messages and synchronization à 10x-20x performance 
improvement.



Pi

…

Local	buffer	for	P0

Local	buffer	for	P1

Local	buffer	for	Pn

Buffer	local	to	P0

Distributed
Hash	table

Local	to	P0

Local	to	P0

Local	to	P0

Local	to	P0

Aggregating	stores	optimization

P0

P0 stores	the	k-mers &	extensions
in	its	local	buckets	in	a	lock-free	&	
communication-free	fashion



Goal:	
• Traverse	the	de	Bruijn graph	and	find	UU	contigs (chains	of	UU	

nodes),	or	alternatively	
• find	the	connected	components	which	consist	of	the	UU	contigs.

• Main	idea:
– Pick	a	seed	
– Iteratively	extend	it	by	consecutive	lookups	in	the	distributed	hash	

table

GAT ATC TCT CTG TGA

AAC

ACC

CCG

AAT

ATG

TGC

Contig 1:	GATCTGA
Contig 2:	AACCG

Contig 3:	AATGC

Parallel	De	Bruijn Graph	Traversal



CGTATTGCCAATGCAACGTATCATGGCCAATCCGAT

Assume	one of	the	UU	contigs to	be	assembled	is:

Parallel	De	Bruijn Graph	Traversal



Parallel	De	Bruijn Graph	Traversal

CGTATTGCCAATGCAACGTATCATGGCCAATCCGAT

Processor	Pi picks	a	random	k-mer from	the	distributed	hash	table	as	seed:

Pi knows	that	forward	extension	is	A

Pi uses	the	last	k-1	bases	and	the	forward	extension	and	forms:	CAACGTATCA

Pi does	a	lookup	in	the	distributed	hash	table	for	CAACGTATCA

Pi iterates	this	process	until	it	reaches	the	“right”	endpoint	of	the	UU	contig

Pi also	iterates	this	process	backwards	until	it	reaches	the	“left”	endpoint	of	the	
UU	contig



Multiple	processors	
on	the	same	UU	contig

CGTATTGCCAATGCAACGTATCATGGCCAATCCGAT

However,	processors	Pi,	Pj and	Pt might	have	picked	initial	seeds	from	
the	same	UU	contig

Pi Pj Pt

• Processors	Pi,	Pj and	Pt have	to	collaborate	and	concatenate	subcontigs
in	order	to	avoid	redundant	work.

• Solution:	lightweight	synchronization	scheme	based	on	a	state	machine



reads

contigs

scaffolds

k-mers

1

2

3
PARALLELIZING	
SCAFFOLDING

Alignment	for	
De	novο Genome	Assembly

To	be	reused	for	
metagenomics	
w/	modifications	



Read 42

Contig 101 Contig 61

Read ID    start-pos end-pos Contig ID     start-pos end-pos
--------------------------------------------------------------------------------------------------
Read 42 1               4           Contig 101         152            155
Read 42        130            150         Contig 61            1              21
Read 90         1              150         Contig 500         101            250

Read 90

Contig 500

Queries
(Reads)

Targets
(Contigs)

• A	query	and	a	target	should	match	in	at	least	k	bases	in	order	to	be	aligned
• We	call	seed a	substring	of	a	sequence	(query	or	target)	with	length	equal	to	k

Aligning	queries	to	target	sequences



A  C  T  G  G    G  G  C  A Target 0: Target 1:

Seed Index

Building	seed	index



Seed: ACT

�

A  C  T  G  G    G  G  C  A Target 0: Target 1:

Seed Index

Building	seed	index



Seed: ACT

�
Seed: CTG

�

A  C  T  G  G    G  G  C  A Target 0: Target 1:

Seed Index

Building	seed	index



Seed: ACT

�
Seed: CTG

�
Seed: TGG

�

A  C  T  G  G    G  G  C  A Target 0: Target 1:

Seed Index

Building	seed	index



Seed: ACT

�
Seed: GGC

�
Seed: CTG

�
Seed: TGG

�

A  C  T  G  G    G  G  C  A Target 0: Target 1:

Seed Index

Building	seed	index



Seed: ACT

�
Seed: GGC

�
Seed: CTG

�
Seed: TGG

�
Seed: GCA

�

A  C  T  G  G    G  G  C  A Target 0: Target 1:

Seed Index

Building	seed	index



Seed: ACT

�
Seed: GGC

�
Seed: CTG

�
Seed: TGG

�
Seed: GCA

�

A  C  T  G  G    G  G  C  A Target 0: Target 1:

Seed Index

query sequence : G C  T  G

query’s seed

Lookup	seed	index

Seed	G	C	T	is	not	found	
in	seed	index



Seed: ACT

�
Seed: GGC

�
Seed: CTG

�
Seed: TGG

�
Seed: GCA

�

A  C  T  G  G    G  G  C  A Target 0: Target 1:

Seed Index

query sequence : G  C  T  G

query’s seed

Lookup	seed	index



• In	de	novo	assembly,	billions	of	reads	must	be	aligned	to	contigs
• First	aligner	to	parallelize	the	seed	index	construction	(“fully”	parallel)

Evangelos Georganas, Aydın Buluç,	Jarrod	Chapman,	Leonid	Oliker,	Daniel	Rokhsar,	and	Katherine	Yelick.	
meraligner:	A	fully	parallel	sequence	aligner.	In	Proceedings	of	the	IPDPS,	2015.	
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Parallel	Genome	Alignment	for	
De	novo	Assembly	



Scaffolding	beyond	alignment	

• High-level idea: Leverage read-to-contig information to 
generate links among contigs.
• Distributed hash tables to index the link information.

• Form	a	contig graph	by	using	the	links	and	traverse	it	to	form	
scaffolds.

contig i contig j 

LINK : < contig i ! contig j , link info >   

contig 1 contig 2 contig 3 contig 4 

tie 1!2 tie 2!3 tie 3!4 

Scaffold 
Link 1!2 Link 2!3 Link 3!4 



Scaffolding	beyond	alignment	

• Computing	contig depths	and	termination	states
• Contig bubble	identification	(for	diploid	genomes)
• Ordering	and	orientation	of	contigs	(inherently	serial	as	implemented)
• Insert	size	estimation
• Locating	splints and	spans	
• Contig link	generation	
• Gap	closing	
Conceptually:	Mini/local	assembly	
– embarrassingly	parallelizable	-

Tools	employed:
- Distributed	hash	tables
- Speculative	execution

read  
contig k 

contig m 

SPLINT 

read 1 read 2 

contig i 

contig j 

SPAN 
(a) (b) 

Gap 1 Gap 2 Gap 3 

Task 1 Task 2 Task 3 

Gap 
closing 

Assembled genome 



Strong	scaling	(wheat	genome)	
on	Cray	XC30
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• Complete	assembly	of	wheat	genome	in	39	minutes	(15K	cores).
• Original	Meraculous would	require	(projected	time)	a	week	(~300x	

slower) and	a	shared	memory	machine	with	1TB	memory.



Strong	scaling	(human	genome)	
on	Cray	XC30	@SC’15

• Complete	assembly	of	human	genome	in	8.4	minutes	(15K	cores).
• 350x	speedup	over	original	Meraculous	(took	2,880	minutes	and	a	

large	shared	memory	machine).

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 480  960  1920  3840  7680  15360

Se
co

nd
s

Number of Cores

overall time
kmer analysis

contig generation
scaffolding

ideal overall time



Strong	scaling	(human	genome)	
on	Cray	XC30	@Now

• Complete	assembly	of	human	genome	in	4 minutes	using	23K	cores.
• 700x	speedup	over	original	Meraculous (took	2,880	minutes	and	a	large	

shared	memory	machine).
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• Instead	of	multiple	copies	of	the	same	book,	how	you	have	the	
whole	library	to	assemble!

How	about	metagenomes?

• 1984	is	the	“dominant	species”	in	this	sample.	
• Too	easy: there	are	also	previously	unknown	books	in	the	mix.

Option	1:	Bin	the	reads	to	genomes;	run	single	genome	assembly	
L Reads	are	too	short	to	contain	enough	information	for	binning.
Option	2:	Generate	contigs and	bin	the	contigs
L How	do	you	eliminate	errors	for	low-coverage	organisms?



Metagenome	challenges

- Why	does	metagenome	assembly	benefits	from	explicit	error	
correction	when	single	genome	assembly	does	not?
+	Uneven	sequencing	depth:	Errors	in	high-depth	regions	might	
be	more	frequent	than	true	k-mers in	low-depth	regions.	
- Who	cares	about	low-depth	regions?	
+	In	fact,	that’s	what	matters	most.

Single	
genome Metagenome



Adapting	HipMer	to	metagenomes

persistent

contig
generation

alignment scaffolding

B
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k-mer
analysis Increase	k	

and	iterate

A
10TB

1TB

100GB

A

CCC

D
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A

C

D

F

D

Inputs:	(A) Short	reads	and	(F)	long	insert	(mate	paired)	libraries
Intermediate:	(B)	Error-free	k-mers w/	extensions	(a.k.a.	UFX),	(C)	contigs…
Output:	(G)	final	genome	scaffolds

Secret	
metagenome	
sauce	#1	



DEGAS	Berkeley	meeting
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Iterative	contig generation
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k-mer analysis 

De Bruijn graph traversal 

Bubble merging and hair removal 

Iterative graph pruning 

Local Assembly 

Iterate for larger k 

bubble 

hair 

Iterative	contig generation
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k-mer analysis 

De Bruijn graph traversal 
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Local Assembly 

Iterate for larger k 

bubble 

hair 
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HipMer	on	a	MOCK	community

– Mix	of	25	bacteria	with	different	abundancies (JGI	dataset)
– Dataset	size	~	100	GBytes

Statistics metaHipMer metaSPAdes

#	contigs 2,670 5,100

Total	length	> 10	kbp 92,245,198 92,152,728

Total	length	>	50	kbp 69,493,125 77,292,121

Misassemblies 58 134

Mismatches	per	100	kbp 3.48 77.05

Genomes	fraction	(%)	 92.10 91.10



Summary

• HipMer’s core	algorithms	scale	to	tens	of	thousands	of	cores	and	yield
performance	improvements	from	days/weeks	down	to	minutes.

• HipMer	breaks	the	hardware	limitations	by	enabling	distributed-
memory	scaling

• Use	of	de	novo	assembly	in	time	sensitive	applications	like	precision	
medicine	is	no	more	formidable!

• Source	release	of	HipMer	:	https://sourceforge.net/projects/hipmer/

• Ongoing	work:	Adapt	HipMer	for	metagenomic	analysis	(some	hints
and	preliminary	results	given	in	this	talk).	


