] Berleley

UNIVERSITY OF CALIFORNIA
BERKELEY LAB

Sparse matrices powering three pillars of
science: simulation, data, and learning

Aydin Bulucg
Lawrence Berkeley National Laboratory & UC Berkeley
Tutorial at ISSAC, Lille, France PEE—_—_

B =

Some background

| w El Cerrito
Mill Valley Paradise Cay.
- Strawberry
" @ @ | Albany
N Tiburon
Muir Beach -

--_Golden Gate

Soda HallQQ Lawre

Natior
550/
. National @)
Recreation *
i Area A\ [19A] B
S -
@Golden Gate Bridge Piedmor
& 46 min
Central 28 miles
1 Embarcadero
)¢S Piers Historic
& o Alameda
‘ San Frangisco
.
{ D020}
(o1
©) Bay Farm D020}
S Island r
@ «ceali
0-7]
N Hastane
250/
Daly|City.) 2% =3
e e Brisbane Alkent 2000
@ 101
oba
D100] Buyukgekmece
San Brino
o ® 358 San Francisco
280/
P"’ if . International Airpart
acifica e Go gle

9 Layers

AvCitAR =

Yenikoy

istanbul
Havalimani

107]

Arnavutkoy Goktirk
Merkez
10-7] { 0020 |
Samlar
0-7]

Bagaksehir
{ E80

0-3]
0-7}

SCALE 2022

Kumkoy

Zekeriyakoy
Bahgekoy
Merkez

Maslak

Adalar

> Gebze Technical

Riva
Sahilkdy:
10-7}

Alacali

Cumbhuriyet
Polonezkoy
Tabiat Parki

Omerli

0-7]

Nisantepe

Samandira (52

>

.

| Giizelyal
I
]

Google

Kirazpin
Gebze

Darica

| University
i

|
\ \
\ \
\)

PASSION Lab Research Agenda

http://passion.lbl.gov

Overlap-Layout-Consensus

10K bases
Reads

Overlaps identified [| ‘-\ ‘ Layout identified
- -

Consensus sequence
— I . I

* New sparse data structures and algorithms
* |[dentification of computational primitives

AT

* Genomics
* Graph analysis

ATX
* Proteomics Applicati Sparse i
Ications : . ;
¢ Machine PP Matrices GraphBLAS: graphs in the
learning language of linear algebra
EUCLIDEAN GRAPH KERNEL (RKHS) http://graphblas'org

PROBABILISTIC INTERPRETATION

individual simultaneous
graphs random walk

moOZr—n—0
3o
5
z
g

Communication-avoiding
algorithms for sparse matrices

0000
158188881
llolellelelol)

0000000000 OOO0OQ
90OOOOOOOOOOOO©DO©
OPOOOOOO OGO OOO©

Parallel Computing

mroz>

& C,‘,'L‘=J§A,,,‘B,/k
 Parallel data structures A

* Parallel programming
* Communication bounds

http://graphblas.org/
http://passion.lbl.gov/

PASSION Lab People

Aydin Bulug (Principal Investigator)
 Staff Scientist, AMCRD, Lawrence Berkeley National Laboratory
* Adjunct Assistant Professor, EECS Department (CS division), UC Berkeley

UC Berkeley PhD Students (co-advised)

Undergraduate researchers:
* Richard Lettich
* Ujjaini Mukhopadhyay

Ben Brock Giulia Guidi Alok Tripathy Vivek Bharadwaj

LBNL Research Scientists, Engineers, Postdocs, Visiting Fellows

b

Oguz Selvitopi Yu-Hang Tang Can Kizilkale Helen Xu |

Gabriel Raulet Koby Hayashi

Sparse Matrices

“I observed that most of the
coefficients in our matrices wetre

\ zero; 1.e., the nonzeros were ‘sparse
& in the matrix, and that typically the
triangular matrices associated with
the forward and back solution
provided by Gaussian elimination
would remain sparse if pivot
elements were chosen with care”

>

as

- Harry Markowitz, describing the 1950s
work on portfolio theory that won
the 1990 Nobel Prize for Economics / %

Sparse Matrices in Simulations

1 6 0o o 1 0 © [
2 [[® 2,06 O o [
3 o o 3 o o
4 @ © o 4 @ © ®
[[® 5 |0 [
® 6 ® ® 6,6 6 6 6 (606 60 O
7 ® O 7 ® O
[[® 0606|0606 6 6(0 38 0 O
® ® 9 ® © 6 6 6 9 O
o o ® 10 o ® ® 0 10
Original matrix A Factors L+U

Original: Ax = b (hard to solve directly)

Factored: LUx = b (solvable by direct substitution)

High-level outline

Sparse matrices for graph algorithms

Sparse matrices for computational biology

Sparse matrices for machine learning

Parallel algorithms for sparse matrix primitives

Available software

Sparse Matrices for Graphs

e Motivation

* Case studies:
A. Graph traversals: Breadth-first search
Motif: Sparse matrix times sparse vector (SpMSpV)
B. Maximal Independent Sets: Luby’s algorithm
* Motif: SpMSpV
C. Triangle Counting
* Motif: Sp GEMM
D. Betweenness Centrality: Brandes’ algorithm
Motif: SpMSpV or sparse matrix-matrix multiply (Sp GEMM)

Large graphs in scientific computing

1 2 3 4 5 1 2 3 4 5
1@ ° 1 1 4o @
2 o0 0 2 2 51 @ °
3 o o ; 3 3 o o
4le @ 1@ o
5| @ ° 4 4 2 o0 o

5 5
A PA

Matching in bipartite graphs: Permuting to heavy diagonal or block triangular form

Graph partitioning: Dynamic
load balancing in parallel
simulations

Picture (left) credit: Sanders and Schulz

Problem size: as big as the sparse
oo oo linear system to be solved or the
L) simulation to be performed

Manifold Learning

Isomap (Nonlinear dimensionality reduction): Preserves the
intrinsic geometry of the data by using the geodesic distances
on manifold between all pairs of points

Tools used or desired: - K-nearest neighbors
- All pairs shortest paths (APSP)
- Top-k eigenvalues

C.

Tenenbaum, Joshua B., Vin De Silva, and John C. Langford. "A global geometric framework for
nonlinear dimensionality reduction." Science 290.5500 (2000): 2319-2323.

Large graphs in Biology

Whole genome assembly

A Read Layout B Overlap Graph

. ".C
R,: GACCTACA Vertices: reads .
R,: ACCTACAA B
CCTACAAG * A o
R,: CTACAAGT _ ‘ Y
A: TACAAGTT Ry "Ry —* Ry ~*R,
B: ACAAGTTA \: ¥ |
C: CAAGTTAG w\
X: TACAAGTC ’w\‘ .
Y: ACAAGTCC NN
Z: CAAGTCCG w
C de Bruijn Graph ., TAG
Vertices: k-mers A
. GTT
GAC)/ M ACC) ™ CCT*CTA) *(TAC) *ACA) *CAA/MAAG MAGT,
26 billion (8B of which are non-erroneous) -

unique k-mers (vertices) in the hexaploit
wheat genome W7984 for k=51

Schatz et al. (2010) Perspective: Assembly of Large Genomes
w/2nd-Gen Seq. Genome Res. (figure reference)

90|
80 |
70}

50

30

20 -

Graph Theoretical
analysis of Brain
Connectivity

40—

&8
'«?9‘\“ -33‘ m\“ \umm

i |WI‘ h.\\
) .

Potentially millions of
neurons and billions of edges
with developing technologies

The case for sparse matrices

Many irregular applications contain coarse-grained parallelism
that can be exploited by abstractions at the proper level.

Traditional graph Graphs in the language of
computations linear algebra
Data driven, Fixed communication patterns
unpredictable communication.
Irregular and unstructured, Operations on matrix blocks
poor locality of reference exploit memory hierarchy
Fine grained data accesses, Coarse grained parallelism,

dominated by latency bandwidth limited

Linear-algebraic primitives for graphs

Sparse matrix X sparse matrix Sparse matrix X sparse vector
®) ® ® o)) ® P
o o X o o X
® O o ® ® ® O o
® O ® O ® O ®
o o
Element-wise operations Sparse matrix indexing
o o o o o o o o
o o * o o ® & o o o
o0 o oo o e o o0 °
® O L ® O ® O

|s think-like-a-vertex really more productive?
“Our mission is to build up a linear algebra sense to the extent that

vector-level thinking becomes as natural as scalar-level thinking.”
- Charles Van Loan

Examples of semirings in graph algorithms

Real field: (R, +, X)

Classical numerical linear algebra

Boolean algebra: ({01}, |, &)

Graph connectivity

Tropical semiring: (R U {0}, min, +)

Shortest paths

(S, select, select)

Select subgraph, or contract nodes to
form quotient graph

(edge/vertex attributes, vertex data
aggregation, edge data processing)

Schema for user-specified
computation at vertices and edges

(R, max, +)

Graph matching &network alignment

(R, min, times)

Maximal independent set

Shortened semiring notation: (Set, Add, Multiply). Both identities omitted.
Add: Traverses edges, Multiply: Combines edges/paths at a vertex

Neither add nor multiply needs to have an inverse.

Both add and multiply are associative, multiply distributes over add

Graph Algorithms on GraphBLAS

http://graphblas.org

Miscellaneous: Centrality Graph clustering Shortest paths
connectivity, traversal (PageRank, (Markov cluster, (all-pairs,

(BFS), independent sets betweenness, peer pressure, single-source,
(MIS), graph matching closeness) spectral, local) temporal)

J3SZT)\
=9\

Sparse Matrix Sparse -
Times Multiple Sparse Matrix
Dense Vectors Product

Sparse -

Sparse Matrix- Sparse Matrix- Dense Matrix

Sparse Vector Dense Vector
(SpMSpV) (SpMV)

Product
(SpDM3)

(SpMM) (SpGEMM)

GraphBLAS primitives in increasing arithmetic intensity

http://graphblas.org/

The GraphBLAS forum

Standards for Graph Algorithm Primitives

Tim Mattson (Intel Corporation), David Bader (Georgia Institute of Technology), Jon Berry (Sandia National
Laboratory), Aydin Buluc (Lawrence Berkeley National Laboratory), Jack Dongarra (University of Tennessee),
Christos Faloutsos (Carnegie Melon University), John Feo (Pacific Northwest National Laboratory), John Gilbert
(University of California at Santa Barbara), Joseph Gonzalez (University of California at Berkeley), Bruce
Hendrickson (Sandia National Laboratory), Jeremy Kepner (Massachusetts Institute of Technology). Charles
Leiserson (Massachusetts Institute of Technology), Andrew Lumsdaine (Indiana University), David Padua (University
of Illinois at Urbana-Champaign), Stephen Poole (Oak Ridge National Laboratory), Steve Reinhardt (Cray
Corporation), Mike Stonebraker (Massachusetts Institute of Technology), Steve Wallach (Convey Corporation),
Andrew Yoo (Lawrence Livermore National Laboratory)

Abstract-- It is our view that the state of the art in constructing a large collection of
graph algorithms in terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive building blocks. This paper is

a position paper defining the problem and announcing our intention to launch an
open effort to define this standard.

“If you want to go fast, go alone. If you want to go far, go together.” -- unknown
https://graphblas.github.io/

https://graphblas.github.io/

GraphBLAS C API Specification

* Goal: A crucial piece of the GraphBLAS effort is to translate the mathematical
specification to an actual Application Programming Interface (API) that

i is faithful to the mathematics as much as possible, and
ii. enables efficient implementations on modern hardware.

* Impact: All graph and machine learning algorithms that can be expressed in the
language of linear algebra

* Innovation: Function signatures (e.g. mxm, vxm, assign, extract), parallelism constructs
(blocking v. non-blocking), fundamental objects (masks, matrices, vectors, descriptors), a
hierarchy of algebras (functions, monoids, and semiring)

GrB_info GrB mxm(GrB Matrix *C, // destination
const GrB Matrix Mask,
const GrB_ BinaryOp accum,
const GrB Semiring op, C(_'M) @: AT @*@ BT
const GrB Matrix A,
const GrB Matrix B
[, const Descriptor desc]) ;

A.Bulug, T. Mattson, S. McMillan, J. Moreira, C. Yang. “The GraphBLAS C API Specification”, version 1.3.0

Pattern 1: Sparse matrix times

sparse vector (SpMSpV)

Single-source traversal:
BFS, connected components, matching, ordering, etc.

GrB_mxv(y, p, <semiring>, A, x, <desc>)

A: sparse adjacency matrix
X: sparse input vector (previous frontier)
p: mask (already discovered vertices)

parents (p):

)

Breadth-first search in
the language of matrices

from

Particular semiring operations:
Multiply: select2nd
Add: minimum

from

parents: e

Select vertex with
minimum label as parent

from

parents:

S

* Masks avoid formation of
temporaries and can enable
automatic direction optimization

* These footballs are nonzeros that
are masked out by the parents array

from

parents:

S & O & 0

o @

Output sparsity via masks

« The actual operation is x =A'x .* p
p is the parents array and .* is elementwise multiplication

« At first, our vision was limited: we only thought about eliminating
temporaries in GrB_mxv

« But it was important enough to motivate the inclusion of masks
into the GraphBLAS spec, though in limited form

input
mask adjacency matrix vector

ldea was to run the same
column-based algorithm,

X x =1 .* but checking against a mask
before writing to output

Yvy \ 4

Column-based matvec w/ mask

Push-pull = column-row matvec

This is a story on how languages (and in this case APIs)
change our thinking and drive our creative process

« Carl Yang and | pondered quite a bit on whether it was
possible to implement direction optimization in the
language of matrices *

* Push-pull (also known as direction optimization) was just
about running a row- vs. column-based matvec

« But it wouldn’t be competitive it its pure form because you
were pulling from every vertex, not just unexplored ones.

« Avyear or so later, GraphBLAS had “masks”

« Now it was totally obvious how to make push-pull
competitive in GraphBLAS

adjacency matrix

transpose
unvisited vertices mask
HE N
O ® -
_ |
O " "
HER
N |
HEE N
input output
current frontier vector next frontier vector
—
O O - " @ -
- (|

|” .

Masks make “pull” implementable

competitively in GraphBLAS

input output input
mask adjacency matrix vector vector mask adjacency matrix vector
.* X e _* X = X
. >
>
>
< v _ YVYVY | [] v
Row-based matvec w/ mask Column-based matvec w/ mask

* Pullis better for sufficiently sparse masks; push otherwise
e Claim: “direction optimization” would have been discovered
automatically by the GraphBLAS runtime if we designed the

interface back half a decade ago.

Yang, C., Buluc, A. and Owens, J.D., Implementing Push-Pull Efficiently in GraphBLAS. ICPP’18

Breadth-First Search in GraphBLAS

GrB_Vector q; // wvertices wvisited in each level
GrB_Vector_new(&q,GrB.BOOL,n); // Vector<bool> q(n) = false
GrB_Vector_setElement (q,(bool)true,s); // q[s] = true, false everywhere else
GrB_Monoid Lor; // Logical—or monoid

GrB_Monoid_new(&Lor ,GrB_LOR, false);

GrB_Semiring Boolean; // Boolean semiring
GrB_Semiring_new(&Boolean , Lor ,GrB_.LAND) ;

GrB_Descriptor desc; // Descriptor for vzm
GrB_Descriptor_new(&desc);
GrB_Descriptor_set (desc ,GrB.MASK, GrB_SCMP) ; // invert the mask

GrB_Descriptor_set (desc ,GrB.OUTP,GrB.REPLACE); // clear the output before assignment

GrB_UnaryOp apply_level;
GrB_UnaryOp_new(&apply_level ;return_level ,GrB_. INT32,GrB_.BOOL) ;

/%

* BFS traversal and label the wvertices.

*/

level = 0;
GrB_Index nvals;
do {
+tlevel; next level (start with 1)
GrB_apply (xv,GrB.NULL, GrB_.PLUS_INT32, apply_-level ,q,GrB.NULL); // v/[q] = level
GrB_vxm(q,*v,GrB_.NULL, Boolean ,q,A, desc); J/ q[lv] = q ||.66 A ; finds all the
// unvisited successors from current q

GrB_Vector_nvals(&nvals, q);
} while (nvals); // if there is no successor in q, we are done.

Maximal Independent Set

Graph with vertices V ={1,2,...,n}

A set S of vertices is independent if no
two vertices in S are neighbors.

An independent set S is maximal if it is
impossible to add another vertex and

stay independent
| 5 oL
An independent set S is maximum

if no other independent set has more
vertices

Finding a maximum independent set is The set of red vertices
intractably difficult (NP-hard) S = {4, 5} is independent
Finding a maximal independent set is and is maximal
easy, at least on one processor. but not maximum

Parallel, Randomized MIS Algorithm

1. S=emptyset; C=YV,

2. while C is not empty {

3 label each v in C with a random r(v);

4 for all v in C in parallel { 5 “ D‘ 6
5 if r(v) < min(r(neighbors of v)) {

6. move v from C to S;

7 remove neighbors of v from C;

5.) S={}

9 } C={1,2,3,4,5,6,7,8}
10. } M. Luby. "A Simple Parallel Algorithm for the Maximal Independent Set |

Problem". SIAM Journal on Computing 15 (4): 1036—1053, 1986

Parallel, Randomized MIS Algorithm

1

2
3
4
3
6.
!
8
9
1

0.}

. S=emptyset; C=YV,
while C is not empty {

label each v in C with a random r(v);

for all vin C in parallel { 5 ‘

if r(v) < min(r(neighbors of v)) {
move v from C to S;

remove neighbors of v from C;

S={}
C={1,2,3,4,56,7,8}

Parallel, Randomized MIS Algorithm

2.6 4.1
1. S=emptyset; C=YV,
2. while C is not empty {
3 label each v in C with a random r(v);
4 for all vin C in parallel { 5() 5'3
5 if r(v) < min(r(neighbors of v)) {
6. move v from C to S; 9.7 9.3
7 remove neighbors of v from C;
3 } S={}
9 } C={1,2,3,4,5,6,7,8}
10. }

Parallel, Randomized MIS Algorithm

2.6 4.1
1. S=emptyset; C=V,
2. while C is not empty {
3 label each v in C with a random r(v);
4 for all vin C in parallel { 5 ‘ 5'3
5 if r(v) < min(r(neighbors of v)) {
6. move v from C to S; 9.7 9.3
I remove neighbors of v from C;
8 } S={1,5}
o } C={6,8}
10. }

Parallel, Randomized MIS Algorithm

1. S=emptyset; C=V,

2. while C is not empty {

3 label each v in C with a random r(v); 57
4 for all vin C in parallel { 5 ‘ ‘ 6
5 if r(v) < min(r(neighbors of v)) {

6. move v from C to S; 1.8

I remove neighbors of v from C;

3 } S={1,5}

9 } C={6,8}

10. }

Parallel, Randomized MIS Algorithm

1. S=emptyset; C=V,

2. while C is not empty {

3 label each v in C with a random r(v); 57
4 for all vin C in parallel { 5() ()6
5. if r(v) < min(r(neighbors of v)) {

6 move v from C to S; 1.8

7 remove neighbors of v from C;

3 } S={1,5,8}

o) C={}

10.)

Parallel, Randomized MIS Algorithm

1. S=emptyset; C=YV,

2. while C is not empty {

3 label each v in C with a random r(v);

4 for all vin C in parallel { 5 “ D‘ 6

5 if r(v) < min(r(neighbors of v)) {

6. move v from C to S;

7 remove neighbors of v from C;

3 } Theorem: This algorithm
“very probably” finishes

9 } within O(log n) rounds.

10. }

work ~ O(n log n), but span ~O(log n)

A Variant of Luby’s Algorithm in GraphBLAS

// Iterate while there are candidates to check.

GrB_Index nvals;

GrB_Vector_nvals(&nvals, candidates);

while (nvals > 0) {
// compute a random probability scaled by inverse of degree
GrB_apply (prob,candidates ,GrB.NULL, set_random ,degrees ,r_desc);

// compute the max probability of all neighbors
GrB_mxv(neighbor_max , candidates ,GrB_NULL, maxSelect2nd ,A, prob,r_desc);

// select wvertex if its probability is larger than all its active mneighbors,

// and apply a "masked no—op” to remove stored falses

GrB_eWiseAdd (new_members , GrB_.NULL, GrB_.NULL, GrB_.GT_FP64 , prob , neighbor_max , GrB_NULL) ;
GrB_apply (new_members ,new_members , GrB.NULL , GrB_ IDENTITY_BOOL, new_members , r_desc);

// add nmew members to independent set.
GrB_eWiseAdd (xiset ,GrB.NULL,GrB_NULL,GrB_LOR, * iset ,new_members , GrB_.NULL) ;

// remove new members from set of candidates ¢ = ¢ & Inew
GrB_eWiseMult (candidates ,new_members , GrB_.NULL,
GrB_LAND, candidates ,candidates ,sr_desc);

GrB_Vector_nvals(&nvals, candidates);
if (nvals = 0) { break; } // early exit condition

// Neighbors of mew members can also be removed from candidates
GrB_mxv(new_neighbors ,candidates ,GrB.NULL, Boolean ,A, new_members , GrB_.NULL) ;
GrB_eWiseMult (candidates ,new_neighbors , GrB_NULL,

GrB_LAND, candidates ,candidates ,sr_desc);

GrB_Vector_nvals(&nvals, candidates); http//graphblasorg

http://graphblas.org/

Pattern 2: Sparse matrix times

sparse matrix (SpGEMM)

Multi-source traversal:
Ex: multi-source BFS, betweenness centrality, triangle counting”, Markov clustering”

GrB_mxm(Y, P, <semiring>, A, X, <desc>)
A: sparse adjacency matrix

X: sparse input matrix (previous frontier), n-by-b where b is the #sources
P: mask (already discovered vertices), multi-vector version of p from previous slide

Pattern 2: Sparse matrix times

sparse matrix (SpGEMM)

Triangle counting is also multi-source(in fact, all sources) traversal:
It just stops after one traversal iteration only, discovering all wedges

GrB_mxm(C, A, <semiring>, L, U, <desc>)

B, C

A=L+U (hi->lo + lo->hi) @
LXU=8B (wedge, low hinge)
ANB=C (closed wedge)
sum(C)/2 = 4 triangles

A . L u C
oo 0 oo o
° o0 ° o0 11
oo o o0 °

Counting triangles

Clustering coefficient:

« Pr (wedge i-j-k makes a triangle with edge i-k)
« 3* #triangles / # wedges
e 3%4/19=0.63in example

* may want to compute for each vertex |

Cohen’s algorithm to count triangles:

hi hi - Count triangles by lowest-degree vertex.
lo
hi hi - Enumerate “low-hinged” wedges.
lo

hR ,phj - Keep wedges that close.
lo

Triangle Counting in GraphBLAS

/%
x Given, L, the lower triangular portion of n z n adjacency matriz A (of and
x undirected graph), computes the number of triangles in the graph.

*/
uint64_t triangle_count (GrB_Matrix L) // L: NzN, lower—triangular , bool
{

GrB_Index n;

GrB_Matrix_nrows(&n, L); // n =# of vertices

GrB_Matrix C;
GrB_Matrix_new(&C, GrB_UINT64, n, n);

GrB_Monoid Ulnt64Plus; // integer plus monoid
GrB_Monoid_new (& UInt64Plus , GrB_.PLUS_UINT64,0 ul);

GrB_Semiring Ulnt64Arithmetic; // integer arithmetic semiring
GrB_Semiring_new (& UInt64Arithmetic , UInt64Plus , GrB_.TIMES_UINT64) ;

GrB_Descriptor desc_tb; // Descriptor for mam
GrB_Descriptor_new(&desc_tb);

GrB_Descriptor_set (desc_tb ,GrB_INP1,GrB.TRAN); // transpose the second matrix

GrBmxm(C, L, GrBNULL, Ulnt64Arithmetic, L, L, desc-tb); // (XI> =L *x.+ L’

uint64_t count;

GrB_reduce(&count , GrB.NULL, UlInt64Plus, C, GrBNULL); // 1—morm of C
GrB_free(&C); // C matriz no longer needed
GrB_free(&UInt64Arithmetic); // Semiring no longer needed
GrB_free(&UInt64Plus); // Monoid no longer needed
GrB_free(&desc_tb); // descriptor no longer needed

return count;

y http://graphblas.org

http://graphblas.org/

High-level outline

Sparse matrices for graph algorithms

Sparse matrices for computational biology
Sparse matrices for machine learning

Parallel algorithms for sparse matrix primitives
Available software

10 minutes break

 Coffee
« Bathroom
* Mingling

Genome assembly pipeline

. 0000000000000 00000O0
0000000000000 000000
0000000000000 00000O0

Overlap Detection j / Overlap Graph (R) m
Transitive Edge —»

Transitive Reduction j / String Graph () (O)—€)€)€)€)

Branch Vertex ‘

Contig Generation j 7/ Contig Set (L) O~)€)€)€ Oadndadandnd

Root Vertex Q

BELLA: Berkeley Long-read to Long-read

Aligner and Overlapper

Number of states: k + 1 hd HOW tO ChOOSG the I’Ight Set Of k'
Legend: 1 mers, otherwise there are too
@ State: correct bases on readi and read; p2 many Of them?

1-p? How to use alignment score to tell

true alignments from false

— b
C@:__.\Q?;@_, . _,@_, positives?

Feasibility of Overlap detection
a k-mer seed based approach via sparse matrix multiplication
BELLA ‘ ? l ?
Novel procedure for Seed-and-extend
pruning k-mers pairwise alignment

———

Guidi G, Ellis M, Rokhsar D, Yelick K, Bulug A. BELLA: Berkeley Efficient Long-Read to Long-Read Aligner
and Overlapper. SIAM Conference on Applied and Computational Discrete Algorithms (ACDA), 2021

SpGEMM use case #1: read overlapping

« Overlapping is the most computationally expensive step in the
overwhelming majority of long read assemblers.

« Imagine each read is a sample, its k-mer profile is its feature set
« Create a reads-by-kmers (sparse) matrix

°i ie

I 1 A |@ AT Ri R2 R3 R4 RS
il s O L ®] LN sl SO Wl SO SO R1| @ o o
R2 P e Kk ; : BESRGEE L [REEEEE SELEERE boeeeeeed

"""""""""" T el el R2 N s .
Wl SN Mol UUUS SN N VOO S Mol U T RN NN OO OO] AAT(i,j) = # shared k-mers
all NN D N DR TS R Wt B IO st IO R| @ ! ° . @ | between readsiandj, plus
R °l e é A e their positions in the reads

Ki K2 K3 K4 K5 Rl R2 R3 R4 R5 R4| @ o

R5 ° @
@

Use any fast SpGEMM algorithm, as long as it runs on arbitrary semirings

diBELLA.2D performance results

diBELLA .2D: distributed-memory version of BELLA on 2D process grid
Performs overlap detection plus transitive reduction (overlap to string graph)
https://github.com/PASSIONLab/diBELLA .2D

C. elegans Breakdown C. elegans Breakdown (Excl. Alignment)
Alignment HEm ReadFasta
EEE ReadFasta 501 B CountKmer
B CountKmer B CreateSpMat
200 I CreateSpMat s SpGEMM
s SpGEMM . ExchangeRead
m ExchangeRead 40/ mm TrReduction
B TrReduction
150
2 30
)
E
[

100- -
20

101

32 72 128 32 72 128
Nodes (32 MPI Rank/Node) Nodes (32 MPI Rank/Node)

Giulia Guidi, Oguz Selvitopi, Marquita Ellis, Leonid Oliker, Katherine Yelick, Aydin Bulug. Parallel
String Graph Construction and Transitive Reduction for De Novo Genome Assembly. IPDPS 2021

https://github.com/PASSIONLab/diBELLA.2D

Is the sparse matrix approach better?

* Comparing the sparse matrix abstraction (diBELLA 2D [2], weeks of effort)
with a direct implementation (diBELLA 1D [1], years of effort). Both use MPI
* Sparse matrices reduce communication via 2D sparse SpGEMM

Strong Scaling (C. elegans) Strong Scaling (H. sapiens)

—=— diBELLA 1D
—s— diBELLA 2D

—=— diBELLA 1D
—e— diBELLA 2D

------ Linear
103 .
&
g 103
2
102
8 32 72 128 50 72 128 200 338
Nodes (32 MPI Rank/Node) Nodes (32 MPI Rank/Node)

[1] Marquita Ellis, Giulia Guidi, Aydin Bulug, Leonid Oliker, and Katherine Yelick. "diBELLA: Distributed long
read to long read alignment." ICPP 2019

[2] Giulia Guidi, Oguz Selvitopi, Marquita Ellis, Leonid Oliker, Katherine Yelick, Aydin Bulug. Parallel String
Graph Construction and Transitive Reduction for De Novo Genome Assembly. IPDPS 2021

Sparse matrix approach for assembly

with long reads

1) K-mer Analysis
K-mer histogram

2) Sparse matrix building
S A: reads-by-kmers

e
—

reads —

—

R

3) Overlapping via SpGEMM C

k-mers ﬁ'ﬁ "%ﬁ = AAT : reads-by-reads

- 4) X-drop alignments
read-read N N S S M = fiIter(C, alignment_score)
alignments —— . N X I

5) Transitive Reduction

8- M*! = Prune(MIMIOM)

read-read - o e——
alignments TS S _ _
- 6) Contig generation [3]

= Em—]

- o Remove forks
o Find connected components (CCs)
o Local traversal of CCs

scaffolds

[3] Giulia Guidi, Gabriel Raulet, Daniel Rokhsar, Leonid Oliker, Katherine Yelick, and Aydin Bulug. Distributed-
memory parallel contig generation for de novo long-read genome assembly. In ICPP, 2022

Protein Family Identification

* Problem: Given a large collection of proteins, identify groups of
proteins that are homologous (i.e. descended from a common

ancestor).

 Homologous proteins often have the same function (think of
different variants of hemoglobin in many species)

e Often, only sequences (and not structure) of the proteins are
available, so we infer homology via sequence similarity

PASTIS HipMCL

PN
>APWor330. .
MCCIVSLHDSL. . Similarity Network —
>BioPla2.. Construction
NAAKIKERLR. . %@ %

Protein FASTA

Similarity Network Clusters in the Similarity Network

Protein Family Identification

 Many one-step approaches are possible that trade accuracy for
lower memory consumption and faster execution (e.g., CD-HIT).

 The approach that seems to lead to highest accuracy:

« Construct a similarity network over protein sequences using many-to-
many sequence search (PASTIS)
 Cluster this network to discover possible protein families (HipMCL)

PASTIS HipMCL

PN
>APWor330. .
MCCIVSLHDSL. . Similarity Network —
>BioPla2.. Construction
NAAKIKERLR. . % %

Protein FASTA

Similarity Network Clusters in the Similarity Network

SPGEMM use case #2: many-to-many

orotein alignment

* |dea similar to BELLA, but removing
the exact match restriction

BLOSUM 62 scoring matrix

(positive values are shaded)

* For homology detection, need to

catch weaker signal (~30% ANI)

« K-mers with substitutes may be more

valuable than exact matches!

<|<|E|4|w|v|n|Z|x|r|~|T|0|m|o [n|o|Z|n]>
b (=11 (] (=]) (=Y [] (=Y [= [~ /o [) =) [S (=)] [(=Y 2 S
Fo (0] 10 () 1SS 1 11 1 159) N1 (Y B (N1 2= e e) £

] NERK K '
Zlw|n(plornv|w|ivio|w|lwik|o|lo|o [wk|e
NI NIRRT AR '
Olwlw|a|m|o|=|lw|lw|=|s|w|=|~|N|o |w|e

cla oo bbb e e e]

O~ NN R |w|N|R|w|R R |lw|w|d|w |©
] mn K !

O [N [~ [V o= |wlor|v|wlov [N |a

(NN ER K [N KR K 1 '

IR NERERKR R RE
Owlw|nvnvo|v|wlw|in|sav|e

' c o e e
T(wN[N NN = w|w (e
e '
W= W= v wlo|R|w NS

e e | '
== (N = w|o|NNv B

AR R
AInvNv|w|=|o|R|w|~ |0
e[| S| [N]o o

I (P N NN)

]
VIN|W[D == N
0 [[ro[o [&

o [b|N[a

[
HMEN
N

'
[

4|

MSNKKRISVQKICYHFLD

/ 1 subsﬁthNksubstltutes
match score

SEDNISVNQICFHDEKRCFN Y Q

SpGEMM for many-to-many

protein alighment

PASTIS (https://github.com/PASSIONLab/PASTIS) does distributed
many-to-many protein sequence similarity search using sparse matrices

Introduce new sparse matrix S

T 2 2 £
Contains substitution information " < < o >
. - \
Each entry has substitution cost T / I
Exact k-mers = C=AAT
YYY

Substitute k-mers > C=ASAT . 22 x 24"

New semiring

Oguz Selvitopi, Saliya Ekanayake, Giulia Guidi, Georgios Pavlopoulos, Ariful Azad, and Aydin Bulug.
Distributed Many-to-Many Protein Sequence Alignment Using Sparse Matrices. SC’20.

https://github.com/PASSIONLab/PASTIS

PASTIS performance and accuracy

Strong scaling

2541
SCOPe
0.90
¢ O A
As .
0.85
“na T
A Ax o % 635
A A © —
.5 0.80 B 8
8 cf o 1581
A, 075 -
ﬁf =)
0.70 &
391
0.65 ;
0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 . . , ; ; ;
Recall i i i i i i
64 128 256 512 1024 2048
B PASTIS-SW-ANI A PASTIS-XD-ANI @ MMscqs2-ANI
[] PASTIS-SW-NS A PASTIS-XD-NS O MMseqs2-NS Number Of nOdeS

PASTIS-SW-ANI-CK A PASTIS-XD-ANI-CK # LAST-ANI

* Protein similarity search is the first and most time-consuming step in
discovering protein families (proteins evolved from a common ancestor
and who likely have the same function)

* Protein family identification is a key step in protein function discovery and
taxonomic assignment of newly sequenced organisms

PASTIS in 2022

Hot off the press: Finalist for the 2022 ACM Gordon Bell Prize
https://en.wikipedia.org/wiki/Gordon Bell Prize

Extreme-scale many-against-many protein similarity
search

Oguz Selvitopi*, Saliya Ekanayake®, Giulia Guidi*, Muaaz G. Awan®, Georgios A. Pavlopoulos¥, Ariful Azadl,
Nikos Kyrpides**, Leonid Oliker*, Katherine Yelick**, Aydin Bulug*?

*Applied Mathematics & Computational Research Division, Lawrence Berkeley National Laboratory, USA
TMicrosoft Corporation, USA
iUniversiz‘y of California, Berkeley, USA
§NERSC, Lawrence Berkeley National Laboratory, USA
Yinstitute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, 34 Fleming Street, 16672, Vari, Greece
I ndiana University, USA
**Joint Genome Institute, Lawrence Berkeley National Laboratory, USA
roselvitopi @1bl.gov

Abstract-- ... We unleash the power of over 12,000 GPUs to perform all-vs-all protein similarity
search on one of the largest publicly available datasets with 313 million proteins, in less than 4
hours, cutting the time-to-solution for many use cases from weeks. The variability of protein

sequence lengths, as well as the sparsity of the space of pairwise comparisons, make this a
challenging problem in distributed memory. ...

https://en.wikipedia.org/wiki/Gordon_Bell_Prize

SpGEMM use case #3: Markov Clustering

Markov clustering is also multi-source (in fact, all sources) traversal:
It alternates between SpGEMM and element-wise or column-wise pruning

GrB_mxm(C, GrB_NULL, <semiring>, A, A, <desc>)

A: sparse normalized adjacency matrix
C: denser (but still sparse) pre-pruned matrix for next iteration

Initial network Iteration 1 Iteration 2 Iteration 3

At each iteration:

Step 1 (Expansion): Squaring the matrix while pruning (a) small entries, (b) denser columns
Naive implementation: sparse matrix-matrix product (Sp GEMM), followed by column-wise
top-K selection and column-wise pruning

Step 2 (Inflation) : taking powers entry-wise

The Markov Cluster Algorithm (MCL)

Widely popular and successful algorithm for
discovering clusters (e.g. protein families) in
protein interaction and protein sequence
similarity networks

The number of edges or higher-length paths between two arbitrary
nodes in a cluster is greater than the number of paths between
nodes from different clusters

. 4

Random walks on the graph will frequently remains within a cluster

¥
The algorithm computes the probability of random walks through
the graph and removes lower probability terms to form clusters

A combined expansion and pruning step

b b
—
DEDEEEEDED
.. s . °
e | |e Prune |

- 1 x P~ =)

. 8 ® s 0 o

i I R L

A J A2 C = Prune(A?)

Ab

Q b: number of columns in the output constructed at once

— Smaller b: less parallelism, memory efficient (b=1 is equivalent
to sparse matrix-sparse vector multiplication used in MCL)

— Larger b: more parallelism, memory intensive

A combined expansion and pruning step

A — A2 C = Prune(A?)

Q b: number of columns in the output constructed at once

— HipMCL selects b dynamically as permitted by the available
memory

— The algorithm works in h=N/b phases where N is the number of
columns (vertices in the network) in the matrix

HipMCL: High-performance MCL

* HipMCL uses the most popular variant of Sparse SUMMA

* Both input matrices are broadcasted in stages and owners of
output submatrices perform local sparse matrix multiplications

 When the number of phases increase (b decreases), A is re-
broadcasted for each phase, increasing communication

A0\

Process column

Process row

\/;x\/; Process Grid
12 2]

———

| A.Azad, G. Pavlopoulos, C. Ouzounis, N. Kyrpides, A. Bulug; HipMCL: a high-performance parallel
. implementation of the Markov clustering algorithm for large-scale networks, Nucleic Acids Research, 2018

HipMCL on large networks

HipMCL

Proteins Edges #Clusters .
time

platform

Isolate-1 47M 7B 1.6M 1 hr 1024 nodes
Edison
Isolate-2 69M 12 B 3.4M 1.66 hr 1024 nodes
Edison
Isolate-3 70M 68 B 2.9M 2.41 hr 2048 nodes
Cori KNL
MetaClust50 282M 37B 41.5M 3.23 hr 2048 nodes
Cori KNL

MCL can not cluster these networks

Recap: Protein family identification using

sparse matrices

PASTIS + HipMCL approach for protein family identification

protein e e B E—
sequences

S

protein-protein - — —— E—§
alignments e == =

protein
similarity
network

SpGEMM: Sparse matrix times sparse matrix

1) K-mer Analysis
K-mer histogram

2) Sparse matrix building
A: proteins-by-kmers

3) Overlapping via SpGEMM C
= AAT (or ASAT)

4) Pairwise alignments
M = filter(C, alignment_score)

5) MCL iteration via SpoGEMM
Mi*1 = Prune(M'M)

High-level outline

Sparse matrices for graph algorithms

Sparse matrices for computational biology

Sparse matrices for machine learning

Parallel algorithms for sparse matrix primitives

Available software

Motivation for Graph Neural Networks

“GNNs are among the most general class of deep learning architectures
currently in existence, [...] and most other deep learning architectures can
be understood as a special case of the GNN with additional geometric

structure” Bronstein, Michael M., et al. "Geometric Deep Learning:
Grids, Groups, Graphs, Geodesics, and Gauges." (2021)

NEWS - 20 FEBRUARY 2020 ol o
.
° ° ° ° ° 3 gl
Powerful antibiotics discovered using Al @Nﬁ
Machine learning spots molecules that work even against ‘untreatable’ strains of C\a H
N\zﬁ'\\s Training set
i 4 (10* molecules)

bacteria. / :
1
This is a graph neural network C& P

Model validation

/" ese .
N A AN

[antibiotic]

Article | Published: 09 June 2021
A graph placement methodology for fast chip design ... we pose chip floorplanning as a

Azalia Mirhoseini &, Anna Goldie &, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang, rel nfO rcement Iea rni ng prObIem’
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa, and dGVElOp an EdgE'based graph

William Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter & Jeff Dean convolutional neural network

Nature 594, 207-212 (2021) | Cite this article architecture...

Graph Neural Networks (GNNs)

_ Materials Discovery
Proteomics

GNNs are finding
success in many
challenging scientific
problems that involve
"/ Power Grid interconnected data.

Graph classification
Edge classification
Node classification

Particle Physics

GNNs are computationally intensive to train. Distributed training need to
scale to large GPU/node counts despite challenging sparsity.

What can | do with a GNN?

Node classification

Z; = f(hi)

. Graph classification

20 = F (@i i)

Wt) B e N i o) i it B i i it R N Pl)] B St M e

Latents

(X,A) (H, A)

.| Link prediction
zi; = f(hi, hy, e;)

Figure source: Petar Velickovic¢

Full-graph vs. mini-batch SGD

Vertices

Full-graph training:

Train on entire training set
Slower convergence per epoch
Faster training per epoch
Focus of this work

samples

/

Vertices

Mini-batch SGD:

e Train on multiple samples from
training set

» Faster convergence per epoch

e Slower training per epoch
* Requires graph sampling, which

effects accuracy and performance

Full-graph vs. mini-batch SGD

CRENSABMASR 20 2B AN AABGT] Dl
ERHAGE MRS © g ﬁgﬁﬁ!ﬂ L

: 31 el
=L ADRAS SAOSER] Earasn
genean ialﬂi‘!ﬂ.ﬂ!ﬂl-ﬂkﬁ-ﬁﬂl

JENEALR 712 1T Lol A~ Ce? & ENRAG) 20 =t &

31 79 3]
e
_ 19801l
AP O R (e P
BRIAE. 8L O BT
PRAREGTHOE 2 ADke

202

an

L20) ,
a. A 2L
B8 Qe D SR

5]
P
E
SHABABY. s ARNEELS2EACARL AR

No dependencies

sample

Layered dependencies

* Vertices (unlike images) are dependent on each other

e L-layer GNN uses L-hop neighbors for vertices in batch

* Even for small L, must store ~whole graph for any minibatch for power-law graphs

* How to subsample from aggregated L-hop neighborhood and keep accuracy?

 CAGNET (Communication-Avoiding Graph Neural nETworks) full gradient descent
to avoid such issues: https://github.com/PASSIONLab/CAGNET/

https://github.com/PASSIONLab/CAGNET/

Graph convolution illustrated

\\\

o8

\!
—n N D

.

c

N I< Ix IS I

lllustration of the information flow in a Graph Neural Network (GNN). On the left is the graph in
its natural form. The features (the shaded boxes) of vertices v and q are aggregated at vertex
1 through intermediate (green) vertices and edges. Features of other nodes are not shown but
are also propagated. During training, the error is backpropagated in the opposite direction in
the neural network, where each layer of the neural network propagates one hop of information.

Graph convolution illustrated

—

Input Graph GNN of Input Graph

* Recall that a CNN can have different *channel* dimension at each layer.
* GNNs also have different embedding dimension at each layer

Memory cost of full-batch GCN training

Storage= Y/, nf"

~ 0(nLf)

L i
Where f = 2=/

L layers

Say n =100M, L =4, f = 256, we are looking at 100B words, or 800GB

GNN Training

« Each node is initialized with a feature vector
— HY has initial feature vector per node (nx f)
Each node aggregates vectors of its neighbors, applies a weight

« Each layer computes gradients

for 1 =1 .. E AEnxn
for 1 =1 ..L
Zl = AT * Hi-1 *x |yl
M = o (7)) H'enx f!
for 1 =L1L-1 ..1 l l
Gl = A ¥ Gl+1 % (W1+1)T @01(21) G ETle
dH/dW = (H!1)T * A * @Gl
() Wl Efl—lel

A is sparse and f << n, so the main workhorse is SpMM (sparse
matrix times tall-skinny dense matrix)

Communication avoidance (CA)

In GNN Training

I reduce [dbcast B local
- 2.0:- i 1.50 g
(&) — I = PJ
1.5" o) o)
~ I &
3 0 = N 0 1.00-C 'y I
Q o~
£21.0 o~ m 0.75- ~ Y S
")) %) o o
qE) 0.50- &
0.5
0.25-
i Y
0.0 ~ ' ‘ 0.00 - ' '
16 36 64 100 36 64 100
amazon protein

= Scales with both P (GPUs — x axis) and c (replication layers in CA algorithms)

= Thisis 1 GPU/node on Summit (all GPUs per node results in paper)

= Expect to scale with all GPUs / node with future architectures (e.g. Perlmutter)
= More results (2D and 3D algorithm) and 6 GPUs/node in the paper

Alok Tripathy, Katherine Yelick, Aydin Bulug. Reducing Communication in Graph Neural Network Training. SC’20

Bottleneck of full-graph GCN training

Zl AT Hl—l Wl

Cost(SpMM) >>> Cost(DGEMM)

(mostly because W is so small)

Pattern 3: Sparse matrix times tall-skinny

dense matrix (SpMM)

Feature aggregation from neighbors:
Used in Graph neural networks, graph embedding, etc.

GrB_mxm(W, GrB_NULL, <semiring>, A, H, <desc>)

A: sparse adjacency matrix, n-by-n
H: input dense matrix, n-by-f where f << n is the feature dimension
W: output dense matrix, new features

O(f) feature vector

3254 .. 1.3 00 [3254 . 13
v ' [
Ve 4 0 o0 27 1.6 .. 4.1
0 PY 0921 .. 3.8
Vv
2 () (] ()
AT H
V3
Vs
27 16 .. 41

09 2.1 .. 3.8

Expressiveness of GNNs: semirings

for algorithmic alignment

0.05 * Consider shortest paths on a graph, a

problem with lots of applications
* Most algorithms are based on applying the
following relaxation in an intelligent way

function Relax (e(u,v))
d(v) = min { d(v), d(u) + w(u, v) }

GNN Architectures DP Algorithm S - hard for extratpolatlz;n
(Target Function) x » fIG)

“l B MLP'b(h‘* 1 hlk 1) “{‘ u)}

x MLP has to learn non-linear steps o dlk]["]= m N G:input graph g: easle’: lL:T;:;?;L:ﬂ
1@ =[S0 MLPP (A A% v) [k 11wl w 5
| e L R | b, W) —> A(G)
v’ MLP learns linear steps . ~
(a) Network architecture (b) Input representation

Xu K, et al. How neural networks extrapolate: From feedforward to graph neural networks. ICLR’21

Expressiveness of GNNs: semirings

for algorithmic alignment

* Virtually all sparse matrix codes only support floating-point arithmetic

* Hence almost all GRL libraries only support neighborhood aggregation and
pooling operations that can be represented as floating-point arithmetic

- sum pooling max/min pooling
70.6
438
6.5 6.1
0.0 L 0.0 0.0 — 0.0
How about extrapolate Interpolate extrapolate interpolate
implementations? max degree shortest path

Bars show mean average percentage error
5) (MAPE), figure from Xu et al. (2021)

GraphBLAS *API* naturally supports any user-defined function:

GraphBLAS semiring: S = (D1, D2, D3, @, &, 0[, 1]) is defined by three
domains D1, D2 and D3, an additive operation @ : D3 x D3 - D3, a
multiplicative operation) : D1xD2 D3, an element 0€ED3

NEW! NVIDIA’s cuSPARSE now has custom operators for SpMM: cusparseSpMMOp()

https://docs.nvidia.com/cuda/cusparse/index.html

[More Sparse] Kernels in

Machine Learning

« Sampled Dense-Dense Matrix Multiplication (SDDMM) and
Sparse-times-Dense Matrix Multiplication (SpMM) appear in a
variety of applications:

— Graph Neural Networks with Self-Attention
— Collaborative Filtering with Alternating Least Squares
— Document Clustering by Wordmover’s Distance Message Generation

- Both kernels involve a single sparse matrix and two (typically
tall-skinny) dense matrices. Typically, applications use both \ /
operations in sequence.

* When the sparse matrix is the adjacency matrix of a graph, we T
interpret the kernels as follows:

— SDDMM generates a message on each edge
— SpMM aggregates messages from incident edges Message Aggregation

Graph attention: making edge weights
learnable

Wi W3 Wy Wey

Sparse

same structure
with A

W

h,

SDDMM: Sampled dense-dense
matrix multiplication

GrB_mxm(W, A, H, H, ...);

O

SpMM and SDDMM algorithmic duality

SDDMM and SpMM have identical data access patterns.
Consider serial algorithms for both kernels:

R := SDDMM(S, 4, B) A = SpMMA(S, B)
for (i,j) €S for (i,j) €S
Rij = Sij(Ai; - B}.) Ay += S5i;B;.

Every nonzero (i, j) requires an interaction between row i of A and row j of B.
As a result:

Every distributed algorithm for SpMM can be converted to an algorithm for
SDDMM with identical communication characteristics, and vice-versa.

V. Bharadwaj, A. Buluc, J. Demmel, "Distributed Memory Sparse Kernels for Machine Learning," 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2022

Creating a parallel SDDMM algorithm

from an SpMM algorit

Consider any distributed algorithm for SpMMA that performs no
replication. For all indices k € [1, 7], the algorithm must (at some point)

* Co-locate S;j, Ajk, Bji on a single processor

* Perform the update Ay, += S;;Bjy

Transform this algorithm as follows:

1. Change the input sparse matrix S to an output that is initialized to O.
2. Change A from an output to an input.

3. Have each processor execute the local update: S;; += A;; B

The resulting algorithm performs SDDMM (up to multiplication with
the values initially in) with communication characteristics and data
layout identical to the original.

Communication Eliding Strategies for

FusedMM: SDDMM+Sgp

SpMM Loop Finished?

SDMM Loop Finished?

=

»
> Ll

Yes

No
Unoptimized Back-to-back Calls
SDDMM Loop Finished? SpMM Loop Finished?

))

Local Local

Move Move

Data Data
— No — No

Replication Reuse \
Mutually

exclusive

Local SDDMM . . .
e optimizations

Combined Loop Finished?

Local Kernel Fusion

Distributed FusedMM performance

Weak Scaling Setup 1 Time Breakdown

%20

3

= 15 4

_ nnz(S)

é’ 10 nr

e remains constant
o 57

£

|_

1.5D Dense Shift 1.5D Dense Shift 1.5D Sparse Shift 2.5 Dense Repl. 2.5D Sparse Repl.
Replication Reuse Local Kernel Replication Replication No Elision
Fusion Reuse Reuse

—+— p~(1/2) Comm. Scaling —+— p~(1/3) Comm. Scaling I Replication [Propagation EEE Computation

Weak Scaling Setup 2

- 1.5D Dense Shift, No Elision
4] ~&~ 1.5D Dense Shift, Repl. Reuse
—&— 1.5D Dense Shift, Local Kernel Fusion
—a— 1.5D Sparse Shift, No Elision
(aé 3 =d —e— 15D Sparse Shift, Repl. Reuse
= ~@~ 2.5D Sparse Repl., No Elision
= 21 —&— 2.5D Dense Repl., Repl. Reuse nnZ(S)
~#— 2.5D Dense Repl., No Elision _
! nr

e
-
-
.

doubles at each process
count quadrupling

1 64 128 192 2561 64 128 192 256

High-level outline

Sparse matrices for graph algorithms

Sparse matrices for computational biology

Sparse matrices for machine learning

Parallel algorithms for sparse matrix primitives

Available software

Sparse matrix-matrix multiplication

C(-M) ©=A" D.X B!

M: the output mask (also called a sampling matrix), always sparse if present
A, B: input matrices, at least one is sparse unless the mask is present
C: output matrix

SPGEMM: A, B are sparse, C can be sparse or dense (depending on shape)
Masked-SpGEMM: Same as SpGEMM, with mask (M) present

SpMM: A sparse, B and C dense (tall skinny), often no mask (M)

SDDMM: A, B are dense, M present, C sparse

SpMV: degenerate case of SpMM with B and C having 1 column

SpMSpV: degenerate case of Sp GEMM with B, C, (possibly M) having 1 column

Basic serial SpGEMM

(Gustavson, 1978)

o o
v 4
X EEXIC oo |o oo o0
oo o o o oo
o o o0 ° ® o o ®
o0 0 ® = @ ® X ® ®
oo o o0 o o
o o ® ° ° o0
® o (oo o ° o(o0 ®
C X A B
O
+ ° scatter/
gather C.) accumulate Optimal as long as

flops > nnz, n

SPA

* Implemented in Matlab & other popular software
* Not directly applicable to multithreading: SPA falls out of cache and takes
up too much space in aggregate

More parallelizable Sp GEMM

(Azad et al., 2016)

o o o
¥ 1
® 00 o0 o o & o 00
e 0o o 8) C AN)
® ® [I o o) o o
e 0o 0 o — o o X o o
o0 o AN) o o
o ® ® o C)
(] (] ® ® @ Heapsize ®|&|® ®

c | K’ A B

* Implemented in CombBLAS and SparseSuite:GraphBLAS
* Memory efficient and suitable for multithreading
* Not great for high compression ratio cases (more later)

New shared-memory SpGEMM kernels

m Optimizing algorithms for Intel architectures

m Heap [Azad, 2016]

— Priority queue indexed by column indices
- Requires logarithmic time to extract elements
- Space efficient: O(nnz(a;.))

m Better cache utilization

m Hash [Nagasaka, 2016]

— Uses hash table for accumulator, based on GPU work
= Low memory usage and high performance

-~ Each thread once allocates the hash table and reuses it
- Extended to HashVector to exploit wide vector register

Fast shared-memory SpGEMM kernels

 Compression ratio (CR): .
flops/nnz(C) "
 Combinatorial BLAS and gzm
HipMCL used to use heap z*]
e Stable performance but >
significant gap in high CR 2" _ — MKL — Heap —— Hash —— HashVec
* HipMCL inputs have high CR 0 K 2 K 53 5

Compression Ratio

14
2 71 Unsorted

 We integrated hash
algorithms to CombBLAS

12]

2
4 and HipMCL
g 510]
= x Yusuke Nagasaka, Satoshi Matsuoka, Ariful
i ¢ ¢ — MKL — Hash Azad, and Aydin Buluc. Performance
58] — MKL-inspector —— HashVec optimization, modeling and analysis of sparse
[| —— Kokkos

matrix-matrix products on multi-core and

. ; , : . . many-core processors. Parallel Computing,
2° 73 2’ 2° o 5% | 90:102545, 2019.
Compression Ratio

SpGEMM on GPUs: many libraries

 bhsparse [1]
— Hybrid method for result matrix pre-allocation
* 3 strategies (heap-based,

— Parallel insert operations via fast merging
— Heuristic-based load balancing (bins)

* rmerge2 [2]
— Iterative row-merging

— Aggregate duplicate column indices via warp
shuffles (merge W = 32 rows) .

— Requires no shared memory but many registers .
— Grouping into cases for load balancing

* nsparse [3]

Linear probing shared-memory hash table

Row grouping based on number of nonzero
elements or intermediate products (load
balancing)

Warp shuffle and shared memory for
accumulations

Concurrent kernel execution via streams

* Performance might differ depending on

Compression rate
Matrix structure

GPU microarchitecture

[1] Liu, Weifeng, and Brian Vinter. "An efficient GPU general sparse matrix-matrix
multiplication for irregular data." In Parallel and Distributed Processing Symposium, 2014 IEEE
28th International, pp. 370-381. IEEE, 2014.

[2] Gremse, Felix, Kerstin Kupper, and Uwe Naumann. "Memory-Efficient Sparse Matrix-Matrix
Multiplication by Row Merging on Many-Core Architectures." SIAM Journal on Scientific
Computing 40, no. 4 (2018): C429-C449.

[3] Nagasaka, Yusuke, Akira Nukada, and Satoshi Matsuoka. "High-Performance and Memory-
Saving Sparse General Matrix-Matrix Multiplication for NVIDIA Pascal GPU." In 2017 46th
International Conference on Parallel Processing (ICPP), pp. 101-110. IEEE, 2017.

This list is circa 2018, today we have
more codes such as AC-SpGEMM

We are doing great compared to 10+
years ago when the SpGEMM
primitive wasn’t popular.

New algorithms for Masked SpGEMM

. : oe °° x PN, el
Main Idea: When certain output T et . .
entries of SoGEMM are not needed = * 5 \ s
(masked out), it is wasteful to S .
materialize/compute the product . .%.° masked . .
first and then to mask out entries e T e)

m.ask) masl.(OAB
for 1 = 1:n
Ci* = Mj* .* (Aji* X B) _L

a1 %O Ol

° e) = %O o

x O e o

o [J o O o o (N J o o o @ 7

7'} = @ x - = o lleo + X O [J

® m e o o |«
= c| o |
° o o |
C mask A B Accumulator

* Row-wise Masked SpGEMM using an accumulator to compute output row C..

* The rows corresponding to the column indices of entries in row A..are merged and
filtered through the respective mask entries to compute C..

* This merging and filtering process can be performed in a number of ways.

Masked Sparse Accumulator (MSA)

Execution of 1 row of Sp GEMM with Masked Sparse Accumulator (MSA)
(a) initialize (b) MSA+=u; By« (c) MSA+=u; B3« (d) MSA+=u, xB,+ (e) MSA+=u; xB« (f) output

mask | e o o | B+ (@ o Bz (@ o |

[setAllowed() | (insert()] | insert()]

states|[@ ® O ® O ® O ®|| states[[E @0 ® 0 ® O H|| states|[[@ @020 ® & |

SPA SPA SPA
values|| || values|| || values|| o |
By| @ o o | Bz« | ° ® | mask | o o o |
: || ! | 1 |
(insert()] insert() [remove() |
states|®(§0®.®.®| states|®®0<§>.®.®| states||@ ® ¥ @ ® @ Q@ ®|
SPA SPA SPA
values|| ® O || values|| ® o || values|| |
v | o o

Srdjan Milakovic , Oguz Selvitopi, Israt Nisa, Zoran Budimlic', and Aydin Bulug. Parallel algorithms for masked sparse
matrix-matrix products. arXiv preprint arXiv:2111.09947, 2021 (Poster at PPOPP’22, to appear at ICPP’22)

Performance of Masked SpGEMM algorithms

1.0 1.0 ¢
Reln 2] B
o7 8 ,
©06 20'6 I
=05 1 Q-
© | 05
Sos Hasnip - | g0
S MSA-2P —=— | 203|
£ 1 Hash-2P —— | Soaf MSA-1P —=— Inner-1P —~— |
‘ SS:ISAXPY - o Hash-1P —«— SS:SAXPY |
000 1.2 14 ool | | MCA-1P ——~— SS:DOT ——
Parallel runtime relative to the best 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Parallel runtime relative to the best
1.0 T
0o L Haswell
@08 Top (left): Betweenness Centrality
U) .
§o7 Top (right): k-truss
»0.6 | . .
L5 Bottom: Triangle counting
o
0.4
5 MSA-1P
503 Hash-1P —— : ; .
Soz (MOATP SS is the Suitesparse:GraphBLAS
'SAXPY | : _
01 | | | | ~§smpoT SS:DOT and Inner-1P do sparse dot products
0.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Parallel runtime relative to the best

Srdjan Milakovic , Oguz Selvitopi, Israt Nisa, Zoran Budimlic', and Aydin Bulug. Parallel algorithms for masked sparse
matrix-matrix products. arXiv preprint arXiv:2111.09947, 2021 (Poster at PPOPP’22, to appear at ICPP’22)

Distributed SpMM algorithms

A is sparse, B and C are dense

i
B k — k—
J' —k— [n

k n

| | ! C A) I
C A B

e Stationary A, 1.5D algorithm e Stationary C, 2D algorithm

e Aissplit on a p/c-by-c grid e Memory optimal

* 1D algorithm not shown, degeneration of sA-1.5D for the c=1 case
* Right before reduction, sA-1.5D uses c times more dense-matrix memory

Could we do SpMM differently?

BS: bulk-synchronous (MPI)
AS: asynchronous (RDMA)

—6— sA-1.5D-BS —H— sA-2D-BS —— sC-2D-BS —A— sC-2D-AS —— sA-2D-AS

k=128 amazon com-Orkut isolates

ko5 8 16 82 618 2% 512 8 16 @ 64 18 26 52 8§ 16 32 6 1% 26 512 8§ 16 32 64 128 236 512
125

2]

3 75

S .

D i}

95}

=z

[<b]

= 25

=

)

=

=

k=512 ° 16 32 64 128 256 512 8 16 32 64 128 256 512 8 16 32 64 128 256 512 8 16 32 64 128 256 512 8 16 32 64 128 256 512 8 16 32 64 128 256 512

8§ 16 32 64 128 256 512 8 16 32 64 128 256 512 8 16 32 64 128 256 512 8 16 32 64 128 256 512 8 16 32 G4 198 256 512 8 16 32 64 198 256 512

number of processes

Oguz Selvitopi , Benjamin Brock, Israt Nisa, Alok Tripathy, Katherine Yelick, Aydin Bulug. Distributed-Memory
Parallel Algorithms for Sparse Times Tall-Skinny-Dense Matrix Multiplication. ICS’21

High-level outline

Sparse matrices for graph algorithms

Sparse matrices for computational biology

Sparse matrices for machine learning

Parallel algorithms for sparse matrix primitives

Available software

Combinatorial BLAS 2.0 innovations

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022 989

Combinatorial BLAS 2.0: Scaling Combinatorial
Algorithms on Distributed-Memory Systems

Ariful Azad™, Oguz Selvitopi*, Md Taufique Hussain, John R. Gilbert, and Aydin Bulug

np=2 n/ype = 1 V=2
:‘1‘—: o e 0 Jp/c=3 D oTe

l% o oo . . .
S

3

p/c

-

(a) Al12x12sparse (b) A 3D grid of (c) Partitioning A (d) Partitioning B (e) Converting (f) Conversion
matrix distributed 36 processes orga- into the 3D grid into the 3D grid a 6x6 grid to a from 2D to 3D
ina 2D 6 x 6 grid nized in four 2D by splitting up the by splitting up the 4x3x3 grid in the grid using reduced
of 36 processes. 3 x 3 grids columns rows regular way communicators

* communication avoiding algorithms,

* hierarchical parallelism via in-node multithreading,

* accelerator support via GPU kernels,

e generalized semiring support,

* implementations of key data structures and functions,

» scalable distributed I/0 operations for human-readable files

Combinatorial BLAS 2.0 performance

Parallel Sp GEMM runtime of

B Communication B Computation
(a) Fricndster (b) Tsolates2 CombBLAS 1.0, 2.0, and other popular
(on 1024 Cori-KNL nodes) 1004 (on 1024 Cori-KNL nodes) pa ra”el spa rse Ilnear algebra Ilbra rles
—6— CombBLAS 2.0 —&— CTF —%— Trilinos

—»— CombBLAS 1.2 —4— PETSc

Time (sec)

50 1
Virus Eukarya
5120 e —
0 a
2D 2D 2D 3D 2D 2D 2D 3D
with with with with with with with with i
seq threaded threaded threaded seq threaded threaded threaded 2
heap heap hash hash heap heap hash hash g
Distributed SpGEMM performance evolution

1

number of nodes

—e— CombBLAS —=— CombBLAS-GPU

Eukarya

Archaea
1500

1200 1
900

5001
400 1

3001

Impact of GPU-
enabled and disabled

CombBLAS backends
for HipMCL

2001 6001

100 1
3001

1298 256

128 16 32 64 128 39 64
number of processes

16 32 64

GraphBLAST

* First “high-performance” GraphBLAS implementation on the GPU
« Optimized to take advantage of both input and output sparsity

« Automatic direction-optimization through the use of masks

« Competitive with fastest GPU (Gunrock) and CPU (Ligra) codes

» Outperforms multithreaded SuiteSparse::GraphBLAS

Design principles:
1. Exploit input sparsity => direction-optimization
2. Exploit output sparsity => masking
3. Proper load-balancing => key for GPU implementations

Extensively evaluated on (more implemented, google for github repo)
» Breadth-first-search (BFS)
» Single-source shortest-path (SSSP)
« PageRank (PR)
» Triangle counting (TC) https://github.com/gunrock/graphblast

Yang, Buluc, Owens, “GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU”,
ACM Transactions on Mathematical Software (TOMS), 2022

https://github.com/gunrock/graphblast

Library
CuSha

Galois

Gunrock

Hardwired

Ligra

Mapgraph

SuiteSparse

Dataset
hoY
Ir04
r%gatZ:Z3

cit-pat
coauthor
com-or

copaper
R8P
i04

I

a2
rmat23
rmat24
road_cent
road_usa
SocC-|
soc-ork
cit-pat
coauthor
com-or
copaper
hoBeP
104

I

r?ngat22
rmat23
rmat24
road_cent
road_usa
soc-lj’
soc-0rk
cit-pat
com-ork
h09

i04

I

r?ngat22
rmat23
rmat24
road_usa
soc-I|’
soc-ork

cit-pat
coauthor
com-or|

copaper
0B

104

I

r?ngat22

rmat23

rmat24

road_cent

road_usa

soc-lj’

soc-ork

0.1

00
O

BFS

1 10 100
Value

Op

-
o0
') oo Oo

0.1 1
Value

10 100

Algorithm

0.1

SSSP
[
[
)
)
)
®
()
[
®
®
[J
®
(0]
(e
[0]
)
(o]
®
®
)
[
[
®
(0}
®
®
®
®
(o)
]
1 10 100
Value

0.1

0000

TC

Oe

17 10 100
Value

Speedup
O <1
@ >=1

More GraphBLAS implementations

SuiteSparse library (Texas A&M): First fully conforming GraphBLAS release

http://faculty.cse.tamu.edu/davis/suitesparse.html

GraphBLAS C (IBM): the second fully conforming release
https://github.com/IBM/ibmgraphblas

GBTL: GraphBLAS Template Library (CMU/SEI/IU/PNNL): GraphBLAS C++ implementation
https://github.com/cmu-sei/gbtl

ALP/GraphBLAS (Huawei): GraphBLAS C++ implementation
https://gitee.com/CSL-ALP/graphblas.git

Python bindings:
PyGB: A python wrapper around GBTL (UW/PNNL/CMU)
https://github.com/jessecoleman/gbtl-python-binding
pygraphblas: A python wrapper around SuiteSparse GraphBLAS
https://github.com/michelp/pygraphblas
grblas: Anaconda’s python wrapper around SuiteSparse GraphBLAS
https://github.com/metagraph-dev/grblas
pggraphblas: A PostgreSQL wrapper around Suite Sparse GraphBLAS
https://github.com/michelp/pggraphblas

Julia wrapper around SuiteSparse
SuiteSparseGraphBLAS.jl

Matlab and Julia wrappers around SuiteSparse GraphBLAS
https://aldenmath.com

http://faculty.cse.tamu.edu/davis/suitesparse.html
https://github.com/IBM/ibmgraphblas
https://github.com/cmu-sei/gbtl
https://github.com/jessecoleman/gbtl-python-binding
https://github.com/michelp/pygraphblas
https://github.com/metagraph-dev/grblas
https://github.com/michelp/pggraphblas
https://aldenmath.com/

Suitesparse:GraphBLAS

Tim Davis
Texas A&M
University

GraphBLAS

Graph algorithms in the language of linear algebra

SuiteSparse:GraphBLAS : open-source GraphBLAS library with OpenMP (Apache 2.0)
e high performance, internal parallelism, allows for easy-to-code fast graph algorithms
o fully compliant with v1.3 C API
e MATLAB interface, many overloaded operators and functions (C(M)=A*B, etc)
e GxB extensions: ANY monoid, import/export, positional ops in semirings, scalars,
float and double complex, select operation, PAIR operator, type query, subassign, ...
e matrix data structures: sparse (CSR/CSC) / hypersparse / bitmap / full
e https://people.engr.tamu.edu/davis/GraphBLAS.html

logo: mathematical art by T. D. http://www.notesartstudio.com/sincere.html

pygraphblas

Graphegon

pygraphblas is developed by Graphegon.

e Open-source package using the

SuiteSparse:GraphBLAS library.

e Specializing in GraphBLAS solutions using

C, Python and PostgreSQL.

e htips://qithub.com/Grapheqgon/pyaraphblas

@ python

Pygraphblas Documentation at: https://graphegon.github.io/pygraphblas/pygraphblas/index.html

https://graphegon.github.io/pygraphblas/pygraphblas/index.html

Sparse matrix techniques underlie computations from disparate
fields:

a. Scientific computing

b. Machine learning

c. Graph analysis

d. Bioinformatics

GraphBLAS already seem to have the right abstraction with its
flexible masks and semirings to be the default backend of many

of these computations

Extreme parallelism and data, and hence the need for distributed
memory parallelism is here to stay and will get worse

Communication-avoiding algorithms, and novel data
structures for sparse matrices will be the key to overcome these
adverse technological trends

Acknowledgments

Ariful Azad, Vivek Bharadwaj, Ben Brock, Zoran Budimlic,
Tim Davis, James Demmel, Saliya Ekanayake, Marquita
Ellis, John Gilbert, Giulia Guidi, Md Taufique Hussain,
Jeremy Kepner, Nikos Krypides, Tim Mattson, Scott
McMillan, Srdan Milakovi¢, Jose Moreira, Israt Nisa, John
Owens, Georgios Pavlopoulos, Doru Popovici, Gabriel
Raulet, Dan Rokhsar, Oguz Selvitopi, Yu-Hang Tang, Alok
Tripathy, Carl Yang, Kathy Yelick.

Our Research Team: http://passion.lbl.gov

ZEW, U-S- DEPARTMENT OF Office of

@ ENERGY science

Our work is funded by

http://passion.lbl.gov/

