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Sparse 
Matrices

Parallel Compu7ng

Applications

• Parallel data structures
• Parallel programming
• Communica3on bounds

• New sparse data structures and algorithms 
• Identification of computational primitives

GraphBLAS: graphs in the 
language of linear algebra

hAp://graphblas.org

Communica3on-avoiding 
algorithms for sparse matrices
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Sparse Matrices

“I observed that most of the 
coefficients in our matrices were 
zero; i.e., the nonzeros were ‘sparse’ 
in the matrix, and that typically the 
triangular matrices associated with 
the forward and back solution 
provided by Gaussian elimination 
would remain sparse if pivot 
elements were chosen with care”

- Harry Markowitz, describing the 1950s 
work on portfolio theory that won 
the 1990 Nobel Prize for Economics



Sparse Matrices in Simula=ons

Original: Ax = b (hard to solve directly)
Factored: LUx = b (solvable by direct substitution) 
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High-level outline

• Sparse matrices for graph algorithms
• Sparse matrices for computational biology
• Sparse matrices for machine learning
• Parallel algorithms for sparse matrix primitives
• Available software



Sparse Matrices for Graphs

• MoDvaDon
• Case studies: 

A. Graph traversals: Breadth-first search
• Mo#f: Sparse matrix #mes sparse vector (SpMSpV)

B. Maximal Independent Sets: Luby’s algorithm
• Mo#f: SpMSpV

C. Triangle Coun?ng
• Mo#f: SpGEMM

D. Betweenness Centrality: Brandes’ algorithm
• Mo#f: SpMSpV or sparse matrix-matrix mul#ply (SpGEMM)



Large graphs in scientific computing
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Matching in bipartite graphs: Permuting to heavy diagonal or block triangular form 

Graph partitioning: Dynamic 
load balancing in parallel 
simulations 
Picture (left) credit: Sanders and Schulz

Problem size: as big as the sparse 
linear system to be solved or the 
simulation to be performed



Manifold Learning

Isomap (Nonlinear dimensionality reduc4on): Preserves the 
intrinsic geometry of the data by using the geodesic distances 
on manifold between all pairs of points
Tools used or desired: - K-nearest neighbors

- All pairs shortest paths (APSP)
- Top-k eigenvalues

Tenenbaum, Joshua B., Vin De Silva, and John C. Langford. "A global geometric framework for 
nonlinear dimensionality reduction." Science 290.5500 (2000): 2319-2323.



Large graphs in Biology

Schatz et al. (2010) Perspective: Assembly of Large Genomes 
w/2nd-Gen Seq.  Genome Res. (figure reference)

Whole genome assembly 
Graph Theoretical 
analysis of Brain 

Connectivity

Poten7ally millions of 
neurons and billions of edges 
with developing technologies

26 billion (8B of which are non-erroneous) 
unique k-mers (vertices) in the hexaploit
wheat genome W7984 for k=51

Ver7ces: k-mers

Ver7ces: reads



The case for sparse matrices

Many irregular applications contain coarse-grained parallelism 
that can be exploited by abstractions at the proper level.

Traditional graph 
computations

Graphs in the language of 
linear algebra

Data driven,
unpredictable communication.

Fixed communication patterns

Irregular and unstructured, 
poor locality of reference

Operations on matrix blocks 
exploit memory hierarchy

Fine grained data accesses, 
dominated by latency

Coarse grained parallelism, 
bandwidth limited



Sparse matrix X sparse matrix

x

Sparse matrix X sparse vector

x

.*

Linear-algebraic primi=ves for graphs

Element-wise operations Sparse matrix indexing

Is think-like-a-vertex really more productive? 
“Our mission is to build up a linear algebra sense to the extent that 
vector-level thinking becomes as natural as scalar-level thinking.”
- Charles Van Loan



Examples of semirings in graph algorithms

Real field: (R, +, x) Classical numerical linear algebra

Boolean algebra:  ({0 1}, |, &) Graph connectivity

Tropical semiring: (R U {∞}, min, +) Shortest paths

(S, select, select) Select subgraph, or contract nodes to 
form quotient graph

(edge/vertex attributes, vertex data 
aggregation, edge data processing)

Schema for user-specified 
computation at vertices and edges

(R, max, +) Graph matching &network alignment

(R, min, times) Maximal independent set

• Shortened semiring nota>on: (Set, Add, Mul>ply). Both iden##es omiLed. 
• Add: Traverses edges, Mul>ply: Combines edges/paths at a vertex
• Neither add nor mul#ply needs to have an inverse.  
• Both add and mul>ply are associa>ve, mul>ply distributes over add



Graph Algorithms on GraphBLAS

Sparse -
Dense Matrix 

Product
(SpDM3)

Sparse -
Sparse Matrix 

Product
(SpGEMM)

Sparse Matrix 
Times Multiple 
Dense Vectors

(SpMM)

Sparse Matrix-
Dense Vector 

(SpMV)

Sparse Matrix-
Sparse Vector 

(SpMSpV)

GraphBLAS primitives in increasing arithmetic intensity

Shortest paths 
(all-pairs, 

single-source, 
temporal)

Graph clustering 
(Markov cluster, 
peer pressure, 
spectral, local)

Miscellaneous: 
connec7vity, traversal 

(BFS), independent sets 
(MIS), graph matching 

Centrality
(PageRank, 

betweenness, 
closeness)

http://graphblas.org

http://graphblas.org/


The GraphBLAS forum

Abstract-- It is our view that the state of the art in constructing a large collection of 
graph algorithms in terms of linear algebraic operations is mature enough to 
support the emergence of a standard set of primitive building blocks. This paper is 
a position paper defining the problem and announcing our intention to launch an 
open effort to define this standard.

“If you want to go fast, go alone. If you want to go far, go together.”  -- unknown
https://graphblas.github.io/

https://graphblas.github.io/


• Goal: A crucial piece of the GraphBLAS effort is to translate the mathema7cal 
specifica7on to an actual Applica7on Programming Interface (API) that 
i. is faithful to the mathema7cs as much as possible, and
ii. enables efficient implementa7ons on modern hardware. 

• Impact: All graph and machine learning algorithms that can be expressed in the 
language of linear algebra

• InnovaDon: Func7on signatures (e.g. mxm, vxm, assign, extract), parallelism constructs 
(blocking v. non-blocking), fundamental objects (masks, matrices, vectors, descriptors), a 
hierarchy of algebras (func7ons, monoids, and semiring)

A.Buluç, T. Mattson, S. McMillan, J. Moreira, C. Yang. “The GraphBLAS C API Specification”, version 1.3.0

GrB_info GrB_mxm(GrB_Matrix *C,      // destination

const GrB_Matrix Mask,

const GrB_BinaryOp accum,

const GrB_Semiring op,

const GrB_Matrix A,

const GrB_Matrix B

[, const Descriptor          desc]);

C(¬M) ⊕= AT ⊕.⊗ BT

GraphBLAS C API Specification
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Single-source traversal: 
BFS, connected components, matching, ordering, etc. 

GrB_mxv(y, p, <semiring>, A, x, <desc>)
A: sparse adjacency matrix
x: sparse input vector (previous frontier)
p: mask (already discovered vertices)

Pattern 1: Sparse matrix times
sparse vector (SpMSpV)
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Breadth-first search in 
the language of matrices
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Particular semiring operations: 
Multiply: select2nd
Add: minimum

0
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• Masks avoid formation of 
temporaries and can enable 
automatic direction optimization

• These footballs are nonzeros that 
are masked out by the parents array
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Output sparsity via masks

• The actual operation is x = ATx .* p
p is the parents array and .* is elementwise multiplication

• At first, our vision was limited: we only thought about eliminating 
temporaries in GrB_mxv

• But it was important enough to motivate the inclusion of masks 
into the GraphBLAS spec, though in limited form

Column-based matvec w/ mask

Idea was to run the same 
column-based algorithm, 
but checking against a mask 
before writing to output



Push-pull ≡ column-row matvec

• Carl Yang and I pondered quite a bit on whether it was 
possible to implement direction optimization in the 
language of matrices *

• Push-pull (also known as direction optimization) was just 
about running a row- vs. column-based matvec

• But it wouldn’t be competitive it its pure form because you 
were pulling from every vertex, not just unexplored ones.

• A year or so later, GraphBLAS had “masks”
• Now it was totally obvious how to make push-pull 

competitive in GraphBLAS

This is a story on how languages (and in this case APIs) 
change our thinking and drive our creative process



Enter “masks”



Masks make “pull” implementable
competitively in GraphBLAS

Row-based matvec w/ mask Column-based matvec w/ mask

• Pull is better for sufficiently sparse masks; push otherwise
• Claim: “direction optimization” would have been discovered 

automatically by the GraphBLAS runtime if we designed the 
interface back half a decade ago.

Yang, C., Buluc, A. and Owens, J.D.,  Implementing Push-Pull Efficiently in GraphBLAS. ICPP’18



B.2 Example: BFS in GraphBLAS using apply

1 #include <s t d l i b . h>
2 #include <s t d i o . h>
3 #include <s t d i n t . h>
4 #include <s tdboo l . h>
5 #include ”GraphBLAS . h”

6

7 i n t 3 2 t l e v e l = 0 ; // l e v e l = depth in BFS t ra v e r s a l , roo t s=1, unv i s i t e d=0

8 void r e t u r n l e v e l (void ⇤out , const void ⇤ in ) {
9 bool element = ⇤( bool ⇤) in ;

10 ⇤( i n t 3 2 t ⇤) out = l e v e l ;

11 }
12

13 /⇤
14 ⇤ Given a boolean n x n adjacency matrix A and a source v e r t e x s , performs a BFS t r a v e r s a l

15 ⇤ o f the graph and s e t s v [ i ] to the l e v e l in which ve r t e x i i s v i s i t e d ( v [ s ] == 1) .

16 ⇤ I f i i s not reacheab l e from s , then v [ i ] = 0. ( Vector v shou ld be empty on input . )

17 ⇤/
18 GrB Info BFS(GrB Vector ⇤v , const GrB Matrix A, GrB Index s )

19 {
20 GrB Index n ;

21 GrB Matrix nrows(&n ,A) ; // n = # of rows o f A

22

23 GrB Vector new (v , GrB INT32 , n ) ; // Vector<i n t 32 t> v (n) = 0

24

25 GrB Vector q ; // v e r t i c e s v i s i t e d in each l e v e l

26 GrB Vector new(&q ,GrB BOOL, n ) ; // Vector<bool> q (n) = f a l s e

27 GrB Vector setElement (q , ( bool ) true , s ) ; // q [ s ] = true , f a l s e everywhere e l s e

28

29 GrB Monoid Lor ; // Logica l�or monoid

30 GrB Monoid new(&Lor ,GrB LOR, f a l s e ) ;

31

32 GrB Semiring Boolean ; // Boolean semiring

33 GrB Semiring new(&Boolean , Lor ,GrB LAND) ;

34

35 GrB Descr iptor desc ; // Descr ip tor f o r vxm

36 GrB Descriptor new(&desc ) ;

37 GrB Desc r ip tor se t ( desc ,GrB MASK,GrB SCMP) ; // i n v e r t the mask

38 GrB Desc r ip tor se t ( desc ,GrB OUTP,GrB REPLACE) ; // c l e a r the output b e f o r e assignment

39

40 GrB UnaryOp app l y l e v e l ;

41 GrB UnaryOp new(&app l y l e v e l , r e t u r n l e v e l , GrB INT32 ,GrB BOOL) ;

42

43 /⇤
44 ⇤ BFS t r a v e r s a l and l a b e l the v e r t i c e s .

45 ⇤/
46 l e v e l = 0 ;

47 GrB Index nva l s ;

48 do {
49 ++l e v e l ; // next l e v e l ( s t a r t wi th 1)

50 GrB apply (⇤v ,GrB NULL,GrB PLUS INT32 , app l y l e v e l , q ,GrB NULL ) ; // v [ q ] = l e v e l

51 GrB vxm(q ,⇤ v ,GrB NULL, Boolean , q ,A, desc ) ; // q [ ! v ] = q | | .&& A ; f i n d s a l l the

52 // unv i s i t e d succe s sor s from current q

53 GrB Vector nvals (&nvals , q ) ;

54 } while ( nva l s ) ; // i f t he re i s no succes sor in q , we are done .

55

56 GrB free(&q ) ; // q vec to r no longer needed

57 GrB free(&Lor ) ; // Log ica l or monoid no longer needed

58 GrB free(&Boolean ) ; // Boolean semiring no longer needed

59 GrB free(&desc ) ; // de s c r i p t o r no longer needed

60

61 return GrB SUCCESS ;

62 }

183

Breadth-First Search in GraphBLAS



Maximal Independent Set

1

87
65

43

2
• Graph with vertices V = {1,2,…,n}

• A set S of vertices is independent if no
two vertices in S are neighbors.

• An independent set S is maximal if it is
impossible to add another vertex and
stay independent

• An independent set S is maximum
if no other independent set has more
vertices

• Finding a maximum independent set is
intractably difficult (NP-hard)

• Finding a maximal independent set is
easy, at least on one processor.

The set of red vertices 
S = {4, 5} is independent

and is maximal
but not maximum



Parallel, Randomized MIS Algorithm
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21. S = empty set;  C = V;

2. while  C is not empty {

3. label each v in C with a random r(v);

4. for all v in C in parallel {

5. if r(v) < min( r(neighbors of v) ) {

6. move v from C to S;

7. remove neighbors of v from C;

8. }

9. }

10. }

S = { }

C = { 1, 2, 3, 4, 5, 6, 7, 8 }

M. Luby.  "A Simple Parallel Algorithm for the Maximal Independent Set 
Problem". SIAM Journal on Computing 15 (4): 1036–1053, 1986
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21. S = empty set;  C = V;

2. while  C is not empty {

3. label each v in C with a random r(v);

4. for all v in C in parallel {

5. if r(v) < min( r(neighbors of v) ) {

6. move v from C to S;

7. remove neighbors of v from C;

8. }

9. }

10. }

S = { }

C = { 1, 2, 3, 4, 5, 6, 7, 8 }

Parallel, Randomized MIS Algorithm
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21. S = empty set;  C = V;

2. while  C is not empty {

3. label each v in C with a random r(v);

4. for all v in C in parallel {

5. if r(v) < min( r(neighbors of v) ) {

6. move v from C to S;

7. remove neighbors of v from C;

8. }

9. }

10. }

S = { }

C = { 1, 2, 3, 4, 5, 6, 7, 8 }
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Parallel, Randomized MIS Algorithm
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21. S = empty set;  C = V;

2. while  C is not empty {

3. label each v in C with a random r(v);

4. for all v in C in parallel {

5. if r(v) < min( r(neighbors of v) ) {

6. move v from C to S;

7. remove neighbors of v from C;

8. }

9. }

10. }

S = { 1, 5 }

C = { 6, 8 }

2.6 4.1

5.9 3.1

1.2
5.8

9.39.7

Parallel, Randomized MIS Algorithm
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21. S = empty set;  C = V;

2. while  C is not empty {

3. label each v in C with a random r(v);

4. for all v in C in parallel {

5. if r(v) < min( r(neighbors of v) ) {

6. move v from C to S;

7. remove neighbors of v from C;

8. }

9. }

10. }

S = { 1, 5 }

C = { 6, 8 }

2.7

1.8

Parallel, Randomized MIS Algorithm
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21. S = empty set;  C = V;

2. while  C is not empty {

3. label each v in C with a random r(v);

4. for all v in C in parallel {

5. if r(v) < min( r(neighbors of v) ) {

6. move v from C to S;

7. remove neighbors of v from C;

8. }

9. }

10. }

S = { 1, 5, 8 }

C = { }

2.7

1.8

Parallel, Randomized MIS Algorithm
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21. S = empty set;  C = V;

2. while  C is not empty {

3. label each v in C with a random r(v);

4. for all v in C in parallel {

5. if r(v) < min( r(neighbors of v) ) {

6. move v from C to S;

7. remove neighbors of v from C;

8. }

9. }

10. }

Theorem:  This algorithm 
“very probably” finishes 
within O(log n) rounds.

work ~ O(n log n),  but  span ~O(log n)

Parallel, Randomized MIS Algorithm



A Variant of Luby’s Algorithm in GraphBLAS

63 GrB Desc r ip tor se t ( s r de s c ,GrB OUTP,GrB REPLACE) ;

64

65 GrB UnaryOp set random ;

66 GrB UnaryOp new(&set random , setRandom ,GrB FP32 ,GrB UINT32 ) ;

67

68 // compute the degree o f each ve r t e x .

69 GrB Vector degree s ;

70 GrB Vector new(&degrees , GrB FP64 , n ) ;

71 GrB reduce ( degrees ,GrB NULL,GrB NULL,GrB PLUS FP64 ,A,GrB NULL ) ;

72

73 // I s o l a t e d v e r t i c e s are not cand ida tes : cand ida tes [ degrees != 0] = true

74 GrB assign ( candidates , degrees ,GrB NULL, true ,GrB ALL , n ,GrB NULL ) ;

75

76 // add a l l s i n g l e t o n s to i s e t : i s e t [ degree == 0] = 1

77 GrB assign (⇤ i s e t , degrees ,GrB NULL, true ,GrB ALL , n , s r d e s c ) ;

78

79 // I t e r a t e wh i l e the re are cand ida tes to check .

80 GrB Index nva l s ;

81 GrB Vector nvals (&nvals , cand idate s ) ;

82 while ( nva l s > 0) {
83 // compute a random p r o b a b i l i t y s ca l ed by inve r s e o f degree

84 GrB apply ( prob , candidates ,GrB NULL, set random , degrees , r d e s c ) ;

85

86 // compute the max p r o b a b i l i t y o f a l l ne ighbors

87 GrB mxv( neighbor max , candidates ,GrB NULL, maxSelect2nd ,A, prob , r d e s c ) ;

88

89 // s e l e c t v e r t e x i f i t s p r o b a b i l i t y i s l a r g e r than a l l i t s a c t i v e neighbors ,

90 // and app ly a ”masked no�op” to remove s to red f a l s e s

91 GrB eWiseAdd (new members ,GrB NULL,GrB NULL,GrB GT FP64 , prob , neighbor max ,GrB NULL ) ;

92 GrB apply ( new members , new members ,GrB NULL,GrB IDENTITY BOOL, new members , r d e s c ) ;

93

94 // add new members to independent s e t .

95 GrB eWiseAdd(⇤ i s e t ,GrB NULL,GrB NULL,GrB LOR,⇤ i s e t , new members ,GrB NULL ) ;

96

97 // remove new members from se t o f cand ida tes c = c & ! new

98 GrB eWiseMult ( candidates , new members ,GrB NULL,

99 GrB LAND, candidates , candidates , s r d e s c ) ;

100

101 GrB Vector nvals (&nvals , cand idate s ) ;

102 i f ( nva l s == 0) { break ; } // ea r l y e x i t cond i t i on

103

104 // Neighbors o f new members can a l s o be removed from candida tes

105 GrB mxv( new neighbors , candidates ,GrB NULL, Boolean ,A, new members ,GrB NULL ) ;

106 GrB eWiseMult ( candidates , new neighbors ,GrB NULL,

107 GrB LAND, candidates , candidates , s r d e s c ) ;

108

109 GrB Vector nvals (&nvals , cand idate s ) ;

110 }
111

112 GrB free(&neighbor max ) ; // f r e e a l l o b j e c t s ”new ’ ed”

113 GrB free(&new members ) ;

114 GrB free(&new neighbors ) ;

115 GrB free(&prob ) ;

116 GrB free(&cand idate s ) ;

117 GrB free(&maxSelect2nd ) ;

118 GrB free(&Boolean ) ;

119 GrB free(&Max) ;

120 GrB free(&Lor ) ;

121 GrB free(& s r d e s c ) ;

122 GrB free(& r de s c ) ;

123 GrB free(&set random ) ;

124 GrB free(&degree s ) ;

125

126 return GrB SUCCESS ;

127 }

189

http://graphblas.org

http://graphblas.org/


Mul>-source traversal:
Ex: mul7-source BFS, betweenness centrality, triangle coun7ng*, Markov clustering*

GrB_mxm(Y, P, <semiring>, A, X, <desc>)

A: sparse adjacency matrix
X: sparse input matrix (previous fron7er), n-by-b where b is the #sources
P: mask (already discovered ver7ces), mul7-vector version of p from previous slide

PaVern 2: Sparse matrix Dmes
sparse matrix (SpGEMM)
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A L U
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C

A = L + U      (hi->lo  +  lo->hi)
L × U = B       (wedge, low hinge)
A ∧ B = C       (closed wedge)
sum(C)/2  =     4 triangles
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B, C

Triangle counDng is also mulD-source(in fact, all sources) traversal:
It just stops afer one traversal itera7on only, discovering all wedges

GrB_mxm(C, A, <semiring>, L, U, <desc>)

Pattern 2: Sparse matrix times
sparse matrix (SpGEMM)



Counting triangles

A

5

6

3

1 2

4
Clustering coefficient:

• Pr (wedge i-j-k makes a triangle with edge i-k)

• 3 *  # triangles / # wedges

• 3 * 4 / 19 = 0.63 in example

• may want to compute for each vertex j

Cohen’s algorithm to count triangles: 
- Count triangles by lowest-degree vertex.     

- Enumerate “low-hinged” wedges.

- Keep wedges that close.

hi hi
lo
hi hi

lo
hihi

lo



Triangle CounGng in GraphBLAS

http://graphblas.org

B.6 Example: counting triangles in GraphBLAS

1 #include <s t d l i b . h>
2 #include <s t d i o . h>
3 #include <s t d i n t . h>
4 #include <s tdboo l . h>
5 #include ”GraphBLAS . h”

6

7 /⇤
8 ⇤ Given , L, the lower t r i an gu l a r por t ion o f n x n adjacency matrix A ( o f and

9 ⇤ und irec ted graph ) , computes the number o f t r i a n g l e s in the graph .

10 ⇤/
11 u in t 64 t t r i a n g l e c oun t (GrB Matrix L) // L: NxN, lower�t r i angu l a r , boo l

12 {
13 GrB Index n ;

14 GrB Matrix nrows(&n , L ) ; // n = # of v e r t i c e s

15

16 GrB Matrix C;

17 GrB Matrix new(&C, GrB UINT64 , n , n ) ;

18

19 GrB Monoid UInt64Plus ; // in t e g e r p lu s monoid

20 GrB Monoid new(&UInt64Plus , GrB PLUS UINT64 , 0 u l ) ;

21

22 GrB Semiring UInt64Arithmetic ; // in t e g e r a r i t hme t i c semiring

23 GrB Semiring new(&UInt64Arithmetic , UInt64Plus , GrB TIMES UINT64 ) ;

24

25 GrB Descr iptor de s c tb ; // Descr ip tor f o r mxm

26 GrB Descriptor new(&desc tb ) ;

27 GrB Desc r ip tor se t ( desc tb , GrB INP1 ,GrB TRAN) ; // transpose the second matrix

28

29 GrB mxm(C, L , GrB NULL, UInt64Arithmetic , L , L , de s c tb ) ; // C<L> = L ⇤.+ L ’

30

31 u in t 64 t count ;

32 GrB reduce(&count , GrB NULL, UInt64Plus , C, GrB NULL ) ; // 1�norm of C

33

34 GrB free(&C) ; // C matrix no longer needed

35 GrB free(&UInt64Arithmetic ) ; // Semiring no longer needed

36 GrB free(&UInt64Plus ) ; // Monoid no longer needed

37 GrB free(&desc tb ) ; // de s c r i p t o r no longer needed

38

39 return count ;

40 }
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High-level outline

• Sparse matrices for graph algorithms
• Sparse matrices for computational biology
• Sparse matrices for machine learning
• Parallel algorithms for sparse matrix primitives
• Available software



10 minutes break

• Coffee
• Bathroom
• Mingling



Genome assembly pipeline



BELLA: Berkeley Long-read to Long-read 
Aligner and Overlapper

Guidi G, Ellis M, Rokhsar D, Yelick K, Buluç A. BELLA: Berkeley Efficient Long-Read to Long-Read Aligner 
and Overlapper. SIAM Conference on Applied and Computational Discrete Algorithms (ACDA), 2021

Giulia Guidi 
gguidi@berkeley.edu

!1

Proposed model

!

Number of states:
Legend:

State: correct bases on readi and readj

Slides by Giulia Guidi 
giulia.guidi@mail.polimi.it
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• How to choose the right set of k-
mers, otherwise there are too 
many of them?

• How to use alignment score to tell 
true alignments from false 
positives?

Seed-and-extend  
pairwise alignment

BELLA

Feasibility of
a k-mer seed based approach

Novel procedure for  
pruning k-mers

Overlap detection
via sparse matrix multiplication



SpGEMM use case #1: read overlapping

AAT(i,j) = # shared k-mers 
between reads i and j, plus 
their posi7ons in the reads

Use any fast SpGEMM algorithm, as long as it runs on arbitrary semirings

R1 R2 R3 R4 R5

R1 R2 R3 R4 R5

R1

R2

R3

R4

R5

R1

R2

R3

R4

R5

K1 K2 K3 K4 K5

K1

K2

K3

K4

K5

1

2

A AT

• Overlapping is the most computationally expensive step in the 
overwhelming majority of long read assemblers.

• Imagine each read is a sample, its k-mer profile is its feature set
• Create a reads-by-kmers (sparse) matrix



diBELLA.2D performance results 

diBELLA.2D: distributed-memory version of BELLA on 2D process grid
Performs overlap detection plus transitive reduction (overlap to string graph)
https://github.com/PASSIONLab/diBELLA.2D

Giulia Guidi, Oguz Selvitopi, Marquita Ellis, Leonid Oliker, Katherine Yelick, Aydin Buluç. Parallel 
String Graph ConstrucQon and TransiQve ReducQon for De Novo Genome Assembly. IPDPS 2021

https://github.com/PASSIONLab/diBELLA.2D


Is the sparse matrix approach better?

• Comparing the sparse matrix abstraction (diBELLA 2D [2], weeks of effort) 
with a direct implementation (diBELLA 1D [1], years of effort). Both use MPI

• Sparse matrices reduce communication via 2D sparse SpGEMM

[1] Marquita Ellis, Giulia Guidi, Aydin Buluç, Leonid Oliker, and Katherine Yelick. "diBELLA: Distributed long 
read to long read alignment." ICPP 2019
[2] Giulia Guidi, Oguz Selvitopi, Marquita Ellis, Leonid Oliker, Katherine Yelick, Aydin Buluç. Parallel String 
Graph ConstrucQon and TransiQve ReducQon for De Novo Genome Assembly. IPDPS 2021



Sparse matrix approach for assembly 
with long reads

reads

k-mers

read-read
alignments

scaffolds

1

2

4

3
read-read
alignments

2) Sparse matrix building
A: reads-by-kmers

1) K-mer Analysis
K-mer histogram

3) Overlapping via SpGEMM C 
= AAT : reads-by-reads

4) X-drop alignments
M = filter(C, alignment_score)

5) Transitive Reduction
Mi+1 = Prune(MiMi⊙Mi)

6) Contig generation [3]
o Remove forks
o Find connected components (CCs)
o Local traversal of CCs

[3] Giulia Guidi, Gabriel Raulet, Daniel Rokhsar, Leonid Oliker, Katherine Yelick, and Aydın Buluç. Distributed-
memory parallel conQg generaQon for de novo long-read genome assembly. In ICPP, 2022



Protein Family IdenKficaKon

• Problem: Given a large collection of proteins, identify groups of 
proteins that are homologous (i.e. descended from a common 
ancestor). 

• Homologous proteins often have the same function (think of 
different variants of hemoglobin in many species)

• Often, only sequences (and not structure) of the proteins are 
available, so we infer homology via sequence similarity

PASTIS HipMCL



Protein Family Identification

• Many one-step approaches are possible that trade accuracy for 
lower memory consumpMon and faster execuMon (e.g., CD-HIT). 

• The approach that seems to lead to highest accuracy:
• Construct a similarity network over protein sequences using many-to-

many sequence search (PASTIS)
• Cluster this network to discover possible protein families (HipMCL)

PASTIS HipMCL



SpGEMM use case #2: many-to-many
protein alignment 

• Idea similar to BELLA, but removing 
the exact match restriction

• For homology detection, need to 
catch weaker signal (~30% ANI)

• K-mers with substitutes may be more 
valuable than exact matches!

1 substitute 2 substitutes



SpGEMM for many-to-many
protein alignment 

Introduce new sparse matrix S
Contains substitution information
Each entry has substitution cost

Exact k-mers à C=AAT

Substitute k-mers à C=ASAT

New semiring

Oguz Selvitopi, Saliya Ekanayake, Giulia Guidi, Georgios Pavlopoulos, Ariful Azad, and Aydın Buluç. 
Distributed Many-to-Many Protein Sequence Alignment Using Sparse Matrices. SC’20.

PASTIS (https://github.com/PASSIONLab/PASTIS) does distributed 
many-to-many protein sequence similarity search using sparse matrices

https://github.com/PASSIONLab/PASTIS


PASTIS performance and accuracy

• Protein similarity search is the first and most time-consuming step in 
discovering protein families (proteins evolved from a common ancestor 
and who likely have the same function)

• Protein family identification is a key step in protein function discovery and 
taxonomic assignment of newly sequenced organisms
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PASTIS in 2022

Extreme-scale many-against-many protein similarity
search

Oguz Selvitopi⇤, Saliya Ekanayake†, Giulia Guidi‡, Muaaz G. Awan§, Georgios A. Pavlopoulos¶, Ariful Azadk,
Nikos Kyrpides⇤⇤, Leonid Oliker⇤, Katherine Yelick‡⇤, Aydın Buluç⇤‡

⇤Applied Mathematics & Computational Research Division, Lawrence Berkeley National Laboratory, USA
†Microsoft Corporation, USA

‡University of California, Berkeley, USA
§NERSC, Lawrence Berkeley National Laboratory, USA

¶Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, 34 Fleming Street, 16672, Vari, Greece
kIndiana University, USA

⇤⇤Joint Genome Institute, Lawrence Berkeley National Laboratory, USA
roselvitopi@lbl.gov

Abstract—Similarity search is one of the most fundamental

computations that are regularly performed on ever-increasing

protein datasets. Scalability is of paramount importance for

uncovering novel phenomena that occurs at very large scales.

We unleash the power of over 12,000 GPUs to perform all-vs-all

protein similarity search on one of the largest publicly available

datasets with 313 million proteins, in less than 4 hours, cutting the

time-to-solution for many use cases from weeks. The variability

of protein sequence lengths, as well as the sparsity of the space

of pairwise comparisons, make this a challenging problem in

distributed memory. Due to the need to construct and maintain

a data structure holding indices to all other sequences, this

application has a huge memory footprint that makes it hard to

scale the problem sizes. We overcome this memory limitation by

innovative matrix-based blocking techniques, without introducing

additional load imbalance.

I. JUSTIFICATION FOR ACM GORDON BELL PRIZE

We unleash the power of over 12,000 GPUs to perform
many-against-many protein similarity search on one of the
largest publicly available datasets with 313 million proteins
in 3.9 hours with an unprecedented rate of 320 million
alignments per second, cutting the time-to-solution for many
use cases from weeks.

II. PERFORMANCE ATTRIBUTES

Performance Attribute Value

Category of achievement Time to solution, alignments per seconds,
cell updates per second (CUPs)

Type of method used N/A

Results reported on the
basis of

Whole application for time to solution
and alignments per second.
Kernel time for cell updates per second

Precision reported Integer

System scale 2025 nodes
(85,050 CPU cores and 12,150 GPUs)

Measurement mechanism Timers

III. OVERVIEW OF THE PROBLEM

Comparative genomics studies the evolutionary and biolog-
ical relationships between different organisms by exploiting
similarities over the genome sequences. A common task, for
example, is to find out the functional or taxonomic contents
of the samples collected from an environment often by query-
ing the collected sequences against an established reference
database. The importance of enabling and building of fast com-
putational infrastructure for comparative genomics becomes
more critical as more and more genomes are sequenced.

Our work addresses the computational challenges posed
by searching similarities between two sets of proteins in the
sequence domain. The use cases of this task in computa-
tional biology are numerous and include functional annota-
tion [1], gene localization and studying protein evolution [2].
In metagenomics the DNA sequences collected from the
environment enable the study of a diverse microbial genome
pool that is often missed by the cultivation-based methods.
Such samples contain millions of protein sequences [3] and
a major component of many biological workflows is to find
out the existing genes by aligning them against a reference
database. With the sequencing costs dropping and the tech-
nology becoming more available, the bottlenecks in metage-
nomics research are gradually shifting towards computation
and storage [4], [5].

We focus on the problem of aligning a set of sequences
against another set of sequences. This problem often occurs
within the context of identifying sequences in one set (set of
query sequences) by using another set of sequences whose
functions are already known (set of reference sequences).
Another context is to find the similar sequences in a given
set by clustering them. In this variant, a many-against-many
search is performed over a set of sequences to find the
similar sequences in the set (often followed by clustering of
sequences). This variant can also be seen as aligning the given
set against itself where the query and the reference set is the

Abstract-- … We unleash the power of over 12,000 GPUs to perform all-vs-all protein similarity 
search on one of the largest publicly available datasets with 313 million proteins, in less than 4 
hours, cutting the time-to-solution for many use cases from weeks. The variability of protein 
sequence lengths, as well as the sparsity of the space of pairwise comparisons, make this a 
challenging problem in distributed memory. …

Hot off the press: Finalist for the 2022 ACM Gordon Bell Prize 
https://en.wikipedia.org/wiki/Gordon_Bell_Prize

https://en.wikipedia.org/wiki/Gordon_Bell_Prize
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Itera&on 1 Itera&on 2 Iteration 3Initial network

Markov clustering is also mul2-source (in fact, all sources) traversal:
It alternates between SpGEMM and element-wise or column-wise pruning

GrB_mxm(C, GrB_NULL, <semiring>, A, A, <desc>)
A: sparse normalized adjacency matrix
C: denser (but s7ll sparse) pre-pruned matrix for next itera7on

At each iteration:
Step 1 (Expansion): Squaring the matrix while pruning (a) small entries, (b) denser columns
Naïve implementation: sparse matrix-matrix product (SpGEMM), followed by column-wise 
top-K selection and column-wise pruning
Step 2 (Inflation) : taking powers entry-wise

SpGEMM use case #3: Markov Clustering



The Markov Cluster Algorithm (MCL)

The number of edges or higher-length paths between two arbitrary 
nodes in a cluster is greater than the number of paths between 
nodes from different clusters

Random walks on the graph will frequently remains within a cluster

The algorithm computes the probability of  random walks through 
the graph and removes lower probability terms to form clusters

Widely popular and successful algorithm for 
discovering clusters (e.g. protein families) in 
protein interaction and protein sequence 
similarity networks



A combined expansion and pruning step

x =
Prune

A A2 C = Prune(A2)

b

Ab

b b

q b: number of columns in the output constructed at once
– Smaller b: less parallelism, memory efficient (b=1 is equivalent 

to sparse matrix-sparse vector multiplication used in MCL)
– Larger b: more parallelism, memory intensive 



A combined expansion and pruning step

x =
Prune

A A2 C = Prune(A2)

b

Ab

b b

q b: number of columns in the output constructed at once
– HipMCL selects b dynamically as permiOed by the available 

memory 
– The algorithm works in h=N/b phases where N is the number of 

columns (verRces in the network) in the matrix



HipMCL: High-performance MCL

• HipMCL uses the most popular variant of Sparse SUMMA
• Both input matrices are broadcasted in stages and owners of 

output submatrices perform local sparse matrix mulRplicaRons
• When the number of phases increase (b decreases), A is re-

broadcasted for each phase, increasing communicaRon

A. Azad, G. Pavlopoulos, C. Ouzounis, N. Kyrpides, A. Buluç; HipMCL: a high-performance parallel 
implementation of the Markov clustering algorithm for large-scale networks, Nucleic Acids Research, 2018
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HipMCL on large networks

61

Data Proteins Edges #Clusters HipMCL
time platform

Isolate-1 47M 7 B 1.6M 1 hr 1024 nodes 
Edison

Isolate-2 69M 12 B 3.4M 1.66 hr 1024 nodes
Edison

Isolate-3 70M 68 B 2.9M 2.41 hr 2048 nodes 
Cori KNL

MetaClust50 282M 37B 41.5M 3.23 hr 2048 nodes 
Cori KNL

MCL can not cluster these networks



Recap: Protein family identification using
sparse matrices

62

2) Sparse matrix building
A: proteins-by-kmers

protein 
sequences

k-mers

protein-protein
alignments

1

2

1) K-mer Analysis
K-mer histogram

3) Overlapping via SpGEMM C 
= AAT (or ASAT)

4) Pairwise alignments
M = filter(C, alignment_score)

5) MCL iteration via SpGEMM
Mi+1 = Prune(MiMi)

3

4

protein
similarity 
network 5

PASTIS + HipMCL approach for protein family identification

SpGEMM: Sparse matrix @mes sparse matrix



High-level outline

• Sparse matrices for graph algorithms
• Sparse matrices for computational biology
• Sparse matrices for machine learning
• Parallel algorithms for sparse matrix primitives
• Available software



Motivation for Graph Neural Networks

“GNNs are among the most general class of deep learning architectures 
currently in existence, […] and most other deep learning architectures can 
be understood as a special case of the GNN with additional geometric 
structure” Bronstein, Michael M., et al. "Geometric Deep Learning: 

Grids, Groups, Graphs, Geodesics, and Gauges." (2021)

This is a graph neural network

… we pose chip floorplanning as a 
reinforcement learning problem, 
and develop an edge-based graph 
convolutional neural network
architecture… 



Graph Neural Networks (GNNs) 

Electric Grid

Transportation

Proteomics

Power Grid

Materials Discovery

Particle Physics

GNNs are finding 
success in many 

challenging scientific 
problems that involve 
interconnected data. 

GNNs are computationally intensive to train. Distributed training need to 
scale to large GPU/node counts despite challenging sparsity.

• Graph classification
• Edge classification
• Node classification



What can I do with a GNN?
How to use GNNs?

Figure source: Petar Veličković



Full-graph vs. mini-batch SGD

Full-graph training: 
• Train on entire training set
• Slower convergence per epoch
• Faster training per epoch
• Focus of this work

0

1

2
3

Vertices Images

Mini-batch SGD:
• Train on mul#ple samples from 

training set
• Faster convergence per epoch
• Slower training per epoch
• Requires graph sampling, which 

effects accuracy and performance

0

1

2
3

Vertices Images

samples



Full-graph vs. mini-batch SGD

• Vertices (unlike images) are dependent on each other
• L-layer GNN uses L-hop neighbors for vertices in batch
• Even for small L, must store ~whole graph for any minibatch for power-law graphs
• How to subsample from aggregated L-hop neighborhood and keep accuracy?
• CAGNET (Communication-Avoiding Graph Neural nETworks) full gradient descent 

to avoid such issues: https://github.com/PASSIONLab/CAGNET/

No dependencies Layered dependencies

sample

https://github.com/PASSIONLab/CAGNET/


Graph convolution illustrated
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Illustration of the information flow in a Graph Neural Network (GNN). On the left is the graph in 
its natural form. The features (the shaded boxes) of vertices v and q are aggregated at vertex 
1 through intermediate (green) vertices and edges. Features of other nodes are not shown but 
are also propagated. During training, the error is backpropagated in the opposite direction in 
the neural network, where each layer of the neural network propagates one hop of information. 
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• Recall that a CNN can have different *channel* dimension at each layer.
• GNNs also have different embedding dimension at each layer

Graph convoluKon illustrated



Memory cost of full-batch GCN training
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Say n = 100M, L = 4, f = 256, we are looking at 100B words, or 800GB



GNN Training

• Each node is initialized with a feature vector
– 𝐻! has initial feature vector per node (𝑛 𝑥 𝑓)

• Each node aggregates vectors of its neighbors, applies a weight
• Each layer computes gradients

𝐴 ∈ 𝑛 𝑥 𝑛

𝐻$ ∈ 𝑛 𝑥 𝑓$

𝐺$ ∈ 𝑛 𝑥 𝑓$

for i = 1 … E
for l = 1 … L

Zl = AT * Hl-1 * Wl
Hl = σ (Zl)

...
for l = L-1 … 1

Gl = A * Gl+1 * (Wl+1)T ⊙ σ’(Zl)
dH/dW = (Hl-1)T * A * Gl

𝑊$ ∈ 𝑓$ %! 𝑥 𝑓$

• A is sparse and f << n, so the main workhorse is SpMM (sparse 
matrix times tall-skinny dense matrix)



CommunicaKon avoidance (CA)
In GNN Training

Alok Tripathy, Katherine Yelick, Aydın Buluç. Reducing Communication in Graph Neural Network Training. SC’20

§ Scales with both P (GPUs – x axis) and c (replication layers in CA algorithms)
§ This is 1 GPU/node on Summit (all GPUs per node results in paper)
§ Expect to scale with all GPUs / node with future architectures (e.g. Perlmutter)
§ More results (2D and 3D algorithm) and 6 GPUs/node in the paper



Bottleneck of full-graph GCN training
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Cost(SpMM) >>> Cost(DGEMM)

(mostly because W is so small) 



Feature aggrega2on from neighbors:
Used in Graph neural networks, graph embedding, etc.

GrB_mxm(W, GrB_NULL, <semiring>, A, H, <desc>)

A: sparse adjacency matrix, n-by-n
H: input dense matrix, n-by-f where f << n is the feature dimension
W: output dense matrix, new features

Pattern 3: Sparse matrix times tall-skinny 
dense matrix (SpMM)

v1

v2

v5
v3

3.2  5.4  …   1.3

O(f) feature vector

v4v6

3.2  5.4  …   1.3
…

2.7  1.6  …   4.1
…

0.9  2.1  …   3.8
…

AT H

0.9  2.1  …   3.8
2.7  1.6  …   4.1



Expressiveness of GNNs: semirings 
for algorithmic alignment
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• Consider shortest paths on a graph, a 
problem with lots of applica#ons

• Most algorithms are based on applying the 
following relaxa#on in an intelligent way

function Relax ( e(u,v) )
d(v) = min { d(v), d(u) + w(u, v) } 

Xu K, et al. How neural networks extrapolate: From feedforward to graph neural networks. ICLR’21



Expressiveness of GNNs: semirings 
for algorithmic alignment

GraphBLAS *API* naturally supports any user-defined function:
GraphBLAS semiring: S = ⟨D1, D2, D3, ⊕, ⊗, 0[, 1]⟩ is defined by three 
domains D1, D2 and D3, an additive operation ⊕ : D3 × D3 → D3, a 
multiplicative operation ⊗ : D1×D2 →D3, an element 0∈D3

• Virtually all sparse matrix codes only support floating-point arithmetic
• Hence almost all GRL libraries only support neighborhood aggregation and 

pooling operations that can be represented as floating-point arithmetic 

Bars show mean average percentage error 
(MAPE), figure from Xu et al. (2021)

How about 
implementations?

NEW! NVIDIA’s cuSPARSE now has custom operators for SpMM: cusparseSpMMOp()

https://docs.nvidia.com/cuda/cusparse/index.html


[More Sparse] Kernels in 
Machine Learning

• Sampled Dense-Dense Matrix Multiplication (SDDMM) and 
Sparse-times-Dense Matrix Multiplication (SpMM) appear in a 
variety of applications:
– Graph Neural Networks with Self-Attention
– Collaborative Filtering with Alternating Least Squares
– Document Clustering by Wordmover’s Distance

• Both kernels involve a single sparse matrix and two (typically 
tall-skinny) dense matrices. Typically, applications use both 
operations in sequence.

• When the sparse matrix is the adjacency matrix of a graph, we 
interpret the kernels as follows:
– SDDMM generates a message on each edge
– SpMM aggregates messages from incident edges

Message Genera7on

Message Aggregation



Graph attention: making edge weights
learnable

SDDMM: Sampled dense-dense 
matrix multiplication

GrB_mxm(W, A, H, H, … );

2

3

4

6

1 h1

h4h2

h3 h6

w21

w41

w31 w61

h1
h2

w21= ⨂

⨂

A H

HT

W

=
w21 w31w41 w61

Sparse

same structure 
with A

)(∘



SpMM and SDDMM algorithmic duality

SDDMM and SpMM have identical data access patterns. 
Consider serial algorithms for both kernels:

for 𝑖, 𝑗 ∈ 𝑆
𝑅&' ≔ 𝑆&'(𝐴&: ⋅ 𝐵':))

R ≔ SDDMM 𝑆, 𝐴, 𝐵

for 𝑖, 𝑗 ∈ 𝑆
𝐴&: += 𝑆&'𝐵':

A ≔ SpMMA 𝑆, 𝐵

Every nonzero (i, j) requires an interaction between row i of A and row j of B. 

As a result:

Every distributed algorithm for SpMM can be converted to an algorithm for 
SDDMM with identical communication characteristics, and vice-versa.

V. Bharadwaj, A. Buluc, J. Demmel, "Distributed Memory Sparse Kernels for Machine Learning," 2022 IEEE 
International Parallel and Distributed Processing Symposium (IPDPS), 2022



Creating a parallel SDDMM algorithm 
from an SpMM algorithm
Consider any distributed algorithm for SpMMA that performs no 
replicaMon. For all indices 𝑘 ∈ [1, 𝑟], the algorithm must (at some point)

• Co-locate 𝑆!", 𝐴!#, 𝐵"# on a single processor
• Perform the update 𝐴!# += 𝑆!"𝐵"#

Transform this algorithm as follows:
1. Change the input sparse matrix 𝑆 to an output that is iniMalized to 0.
2. Change 𝐴 from an output to an input.
3. Have each processor execute the local update: 𝑆"# += 𝐴"$𝐵#$

The resul/ng algorithm performs SDDMM (up to mul/plica/on with 
the values ini/ally in 𝑺) with communica/on characteris/cs and data 

layout iden/cal to the original.



Communication Eliding Strategies for 
FusedMM: SDDMM+SpMM

Mutually 
exclusive 
op#miza#ons



Distributed FusedMM performance
Ti

m
e

𝜙 =
nnz 𝑆
𝑛𝑟

remains constant 

𝜙 =
nnz 𝑆
𝑛𝑟

doubles at each process 
count quadrupling 



High-level outline

• Sparse matrices for graph algorithms
• Sparse matrices for computaRonal biology
• Sparse matrices for machine learning
• Parallel algorithms for sparse matrix primi?ves
• Available sodware



Sparse matrix-matrix multiplication

A

C(¬M) ⊕= AT⊕.⊗ BT

M B.*( )C

M: the output mask (also called a sampling matrix), always sparse if present
A, B: input matrices, at least one is sparse unless the mask is present 
C: output matrix

SpGEMM: A, B are sparse, C can be sparse or dense (depending on shape)
Masked-SpGEMM: Same as SpGEMM, with mask (M) present
SpMM: A sparse, B and C dense (tall skinny), ofen no mask (M)
SDDMM: A, B are dense, M present, C sparse
SpMV: degenerate case of SpMM with B and C having 1 column
SpMSpV: degenerate case of SpGEMM with B, C, (possibly M) having 1 column



Basic serial SpGEMM
(Gustavson, 1978)

B

= x

C A

SPA

gather scatter/ 
accumulate

• Implemented in Matlab & other popular software
• Not directly applicable to multithreading: SPA falls out of cache and takes 

up too much space in aggregate

Optimal as long as 
flops > nnz, n



More parallelizable SpGEMM
(Azad et al., 2016)

• Implemented in CombBLAS and SparseSuite:GraphBLAS
• Memory efficient and suitable for multithreading
• Not great for high compression ratio cases (more later)

B"

= x"

C" A"
Heap%size%
nnz(B(:,i))%



New shared-memory SpGEMM kernels

■ Optimizing algorithms for Intel architectures
■ Heap [Azad, 2016]

– Priority queue indexed by column indices
– Requires logarithmic time to extract elements
– Space efficient: O(nnz(ai*))
■ Better cache utilization

■ Hash [Nagasaka, 2016]
– Uses hash table for accumulator, based on GPU work
■ Low memory usage and high performance

– Each thread once allocates the hash table and reuses it
– Extended to HashVector to exploit wide vector register



Fast shared-memory SpGEMM kernels

• Compression ra,o (CR): 
flops/nnz(C)

• Combinatorial BLAS and
HipMCL used to use heap

• Stable performance but 
significant gap in high CR

• HipMCL inputs have high CR

Yusuke Nagasaka, Satoshi Matsuoka, Ariful
Azad, and Aydin Buluc. Performance 
optimization, modeling and analysis of sparse 
matrix-matrix products on multi-core and 
many-core processors. Parallel Computing, 
90:102545, 2019. 

• We integrated hash 
algorithms to CombBLAS
and HipMCL



• bhsparse [1]
– Hybrid method for result matrix pre-allocation

• 3 strategies (heap-based, 

– Parallel insert operations via fast merging
– Heuristic-based load balancing (bins)

• rmerge2 [2]
– Iterative row-merging
– Aggregate duplicate column indices via warp 

shuffles (merge 𝑊 = 32 rows)
– Requires no shared memory but many registers
– Grouping into cases for load balancing

[1] Liu, Weifeng, and Brian Vinter. "An efficient GPU general sparse matrix-matrix 
multiplication for irregular data." In Parallel and Distributed Processing Symposium, 2014 IEEE 
28th International, pp. 370-381. IEEE, 2014.

[2] Gremse, Felix, Kerstin Küpper, and Uwe Naumann. "Memory-Efficient Sparse Matrix-Matrix 
Multiplication by Row Merging on Many-Core Architectures." SIAM Journal on Scientific 
Computing 40, no. 4 (2018): C429-C449.

[3] Nagasaka, Yusuke, Akira Nukada, and Satoshi Matsuoka. "High-Performance and Memory-
Saving Sparse General Matrix-Matrix Multiplication for NVIDIA Pascal GPU." In 2017 46th 
International Conference on Parallel Processing (ICPP), pp. 101-110. IEEE, 2017.

• nsparse [3]
• Linear probing shared-memory hash table
• Row grouping based on number of nonzero 

elements or intermediate products (load 
balancing)

• Warp shuffle and shared memory for 
accumula3ons

• Concurrent kernel execu3on via streams

• Performance might differ depending on
• Compression rate
• Matrix structure 
• GPU microarchitecture

SpGEMM on GPUs: many libraries

This list is circa 2018, today we have 
more codes such as AC-SpGEMM

We are doing great compared to 10+ 
years ago when the SpGEMM 
primi7ve wasn’t popular.



New algorithms for Masked SpGEMM

for i = 1:n 
  Ci* = Mi* .* (Ai* x B) 

m

c

mask A B Accumulator

a1

a3

a4

a7

C

A B AB

mask mask ⊙ AB

plain

masked

Main Idea: When certain output 
entries of SpGEMM  are not needed 
(masked out), it is wasteful to 
materialize/compute the product 
first and then to mask out entries

• Row-wise Masked SpGEMM using an accumulator to compute output row C𝑖∗. 
• The rows corresponding to the column indices of entries in row A𝑖∗are merged and 

filtered through the respective mask entries to compute C𝑖∗. 
• This merging and filtering process can be performed in a number of ways. 



Masked Sparse Accumulator (MSA)

states

values

setAllowed()

mask B1*

states

values

B3*

states

values

B4* B7*

v

values values values

states states states

mask

insert() insert()

insert() insert() remove()

SPA SPASPA

SPA SPA SPA

Execu,on of 1 row of SpGEMM with Masked Sparse Accumulator (MSA)
(a) ini7alize (b) MSA+=u1 B1* (c) MSA+=u3 B3* (d) MSA+=u4 ×B4* (e) MSA+=u7 ×B7* (f) output

Srdjan Milakovic ́, Oguz Selvitopi, Israt Nisa, Zoran Budimlic ́, and Aydın Buluç. Parallel algorithms for masked sparse 
matrix-matrix products. arXiv preprint arXiv:2111.09947, 2021 (Poster at PPOPP’22, to appear at ICPP’22)



Performance of Masked SpGEMM algorithms

Srdjan Milakovic ́, Oguz Selvitopi, Israt Nisa, Zoran Budimlic ́, and Aydın Buluç. Parallel algorithms for masked sparse 
matrix-matrix products. arXiv preprint arXiv:2111.09947, 2021 (Poster at PPOPP’22, to appear at ICPP’22)
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Distributed SpMM algorithms

• 1D algorithm not shown, degeneration of sA-1.5D for the c=1 case
• Right before reduction, sA-1.5D uses c times more dense-matrix memory

• Stationary A, 1.5D algorithm
• A is split on a p/c-by-c grid 

• Sta#onary C, 2D algorithm
• Memory op#mal

A is sparse, B and C are dense



Could we do SpMM differently?

Oguz Selvitopi , Benjamin Brock, Israt Nisa, Alok Tripathy, Katherine Yelick, Aydın Buluç. Distributed-Memory 
Parallel Algorithms for Sparse Times Tall-Skinny-Dense Matrix MulQplicaQon. ICS’21
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High-level outline

• Sparse matrices for graph algorithms
• Sparse matrices for computational biology
• Sparse matrices for machine learning
• Parallel algorithms for sparse matrix primitives
• Available software



Combinatorial BLAS 2.0 innovations

• communica#on avoiding algorithms, 
• hierarchical parallelism via in-node mul#threading, 
• accelerator support via GPU kernels, 
• generalized semiring support, 
• implementa#ons of key data structures and func#ons, 
• scalable distributed I/O opera#ons for human-readable files

Combinatorial BLAS 2.0: Scaling Combinatorial
Algorithms on Distributed-Memory Systems

Ariful Azad , Oguz Selvitopi , Md Taufique Hussain, John R. Gilbert, and Aydın Buluç

Abstract—Combinatorial algorithms such as those that arise in graph analysis, modeling of discrete systems, bioinformatics, and
chemistry, are often hard to parallelize. The Combinatorial BLAS library implements key computational primitives for rapid development
of combinatorial algorithms in distributed-memory systems. During the decade since its first introduction, the Combinatorial BLAS
library has evolved and expanded significantly. This article details many of the key technical features of Combinatorial BLAS version
2.0, such as communication avoidance, hierarchical parallelism via in-node multithreading, accelerator support via GPU kernels,
generalized semiring support, implementations of key data structures and functions, and scalable distributed I/O operations for human-
readable files. Our article also presents several rules of thumb for choosing the right data structures and functions in Combinatorial
BLAS 2.0, under various common application scenarios.

Index Terms—Sparse matrices, parallel computing, combinatorics, graph theory, communication-avoidance algorithms

Ç

1 INTRODUCTION

COMBINATORIAL BLAS, or CombBLAS for short, is a distrib-
uted-memory library that provides a set of matrix and

vector data structures as well as highly-optimized implemen-
tations of fundamental operations on and among those data
structures. The original purpose of CombBLAS was to pro-
vide a proof-of-concept implementation of graph algorithms
in the language of linear algebra, demonstrating the feasibility
of this approach and the scalability of the resulting implemen-
tation. CombBLAS has been used as a benchmark by compet-
ing distributed-memory graph libraries. Since launch of the
GraphBLAS standardization effort [1], the API development
team [2] relied on the design and naming choices made by
CombBLAS.

Since its inception a decade ago [3], CombBLAS has been
used in awide variety of distributed data analytics and scien-
tific computing applications. CombBLAS has also evolved
heavily to take advantage of the developments in distributed
algorithms and architectures. This paper describes the evolu-
tion of CombBLAS over the last decade. The introduction
surveys the main contributions; the later sections go into
their detail.

Avoiding Communication. Communication is the primary
bottleneck in scaling data-intensive applications to exascale.
Communication-avoiding (CA) algorithms reorganize
the computation to reduce communication costs, often
asymptotically, and expose more parallelism. CombBLAS

was the first library to include a 3D (or 2.5D) sparse matrix-
matrix (SpGEMM) multiplication algorithm and since then
the algorithm has been expanded to minimize communica-
tion under a given (often tight) memory budget. We discuss
this integrated CA algorithm in Section 3. Recently, we also
integrated a 1.5D sparse times tall-skinny dense matrix mul-
tiplication (SpMM) algorithm into CombBLAS.

Hierarchical Parallelism. Exascale computers are going to
be based on either accelerators or multi-core CPUs. Original
CombBLAS used to run on a so-called “flat-MPI” model
where each core was tasked with running an MPI process.
With the core counts per compute node increasing from sin-
gle digits to almost triple digits, a flat MPI model is now
known to be unscalable due to increased communication
bottlenecks in Network Interface Card (NIC) [4]. Several
hierarchical programming models have been proposed
where the inter-node communication is handled by either
MPI or a different distributed communication library, and
the intra-node parallelism is handled via a multithreading
platform such as OpenMP. It is also possible to use MPI
hierarchically where a smaller MPI communicator is used
within a node, an approach known as MPI+MPI.

CombBLAS 2.0 follows the most popular paradigm of
using OpenMP parallelism within a node, and MPI for com-
munication across nodes. One reason we avoided a process-
based MPI+MPI approach is load imbalance. While Comb-
BLAS avoids most load balance issues by randomly permut-
ing sparse matrices during their assembly, the load
imbalance can still hurt the performance if the library runs on
100,000 processes. The use of OpenMP within a node allows
CombBLAS to rein in load imbalance since it reduces the
number of partitions of a sparse matrix by a factor propor-
tional to the degree of on-node multithreading. Furthermore,
popular sparse data structures such as Compressed Sparse
Columns (CSC) [5] becomewasteful as local matrices become
hypersparse [6] due to 2D or 3D decomposition on large
numbers of partitions. CombBLAS tames hypersparsity
either by specialized data structures such as Doubly-
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(a) A 12⇥12 sparse
matrix distributed
in a 2D 6 ⇥ 6 grid
of 36 processes.

(b) A 3D grid of
36 processes orga-
nized in four 2D
3⇥ 3 grids

(c) Partitioning A
into the 3D grid
by splitting up the
columns

(d) Partitioning B
into the 3D grid
by splitting up the
rows

(e) Converting
a 6⇥6 grid to a
4⇥3⇥3 grid in the
regular way

(f) Conversion
from 2D to 3D
grid using reduced
communicators

Fig. 1: 2D and 3D distribution of a sparse matrix in CombBLAS. Purple, blue, yellow and green colors represent the first,
second, third and fourth layers respectively.

Fig. 2: Execution of the communication avoiding SpGEMM
for multiplying sparse matrix A with B to get C on a c ⇥p
p/c⇥

p
p/c process grid. Shown operations are involved

to generate the local portion of C only for the processes at
the second row and the second column of each layer during
the first stage of the algorithm.

(along the process column). The received submatrices are
locally multiplied by each process using a multithreaded
SpGEMM algorithm (Section ??). After

p
p stages, partial

results from all stages are merged to obtain the final result.
The costs of broadcasting input matrices in 2D SUMMA

quickly become a performance bottleneck at extreme
scale [?], [?]. To alleviate this bottleneck, CombBLAS 2.0
includes CA SpGEMM algorithms, following the success of
CA algorithms in dense linear algebra [?]. Our CA SpGEMM
algorithms distribute matrices on a c⇥

p
p/c⇥

p
p/c process

grid, where c denotes the number of layers in the third di-
mension. Fig. ?? shows an example of a 3D process grid with
four layers, where each layer is equivalent to a

p
p/c⇥

p
p/c

2D process grid. To facilitate 2D SUMMA algorithm in each
layer, we split A along the column and B along the row
into c pieces and then distribute different pieces to different
layers as illustrated in Figs. ?? and ??.

After input matrices are distributed on a 3D process grid,
each layer runs an instance of the 2D SUMMA algorithm
to obtain intermediate per-layer results Cint as shown in
Fig. ??. Here, each layer broadcasts submatrices of A along
the process row and submatrices of B along the process
columns on the 2D grid represented by the layer. Since these

broadcasts materialize on a smaller (by a factor of
p
c) com-

municator, their costs are reduced at extreme scale [?]. After
each layer completes their 2D multiplications, the partial
results are communicated across layers via an Alltoall com-
munication. We form the final result C by merging pieces
received from all layers. Since A and B are distributed
differently on the 3D grid, we distribute C like A (as shown
Fig. ??).

Guideline on selecting the number of layers (c). Unlike
dense CA algorithms [?] that replicate input matrices to
reduce communication, our CA SpGEMM splits input ma-
trices and does not require any extra memory for inputs
with increasing numbers of layers. Generally, the time re-
quired to broadcast A and B decreases as we increase c

( e.g., we could completely eliminate broadcasts by using
an p ⇥ 1 ⇥ 1 grid). However, as c increases, the costs of
inter-layer Alltoall communication and the final merging
also increase. Furthermore, the memory required to store
intermediate results increases with increasing number of
layers. Therefore, it is challenging to find the optimum c

as it depends on the tradeoff between broadcasts and inter-
layer Alltoall costs, as well as the available memory. Our
general guideline is to select c with c  3

p
p so that inter-

layer Alltoall does not dominate intra-layer broadcasts.

Conversion between 2D and 3D distributions. At present,
CombBLAS performs I/O only with 2D matrices (Sec-
tion ??). In order to use CA SpGEMM algorithms, we
convert matrices from a

p
p⇥p

p process grid to a
c⇥

p
p/c⇥

p
p/c grid. Fig. ?? and Fig. ?? show an example

how a 12⇥12 sparse matrix is converted from a 6⇥6 grid
to a 4⇥3⇥3 grid. CombBLAS provides two ways to create
3D matrices from 2D matrices. Fig. ?? shows how the con-
version is done in the regular way where processes on a 2D
grid are numbered in the row-major order. Next, we place
p/c processes numbered {i, i+1, ..., i+p/c�1} into the ith
layer. This conversion redistributes a 2D matrix on a 3D
grid using an Alltoallv operation among all processes. In
the second approach, we reinterpret the whole 2D grid as ap
p/c ⇥

p
p/c supergrid (shown with thick lines in Fig. ??)

where each cell of the supergrid has a
p
c⇥

p
c subgrid of

the 2D grid. Thus, each supergrid cell corresponds to one
cell in each layer of the 3D grid. We then assign each cell of
a subgrid to the corresponding cell in each layer of 3D grid
as shown in Fig. ??. Here, p/c Alltoallv calls run in parallel
with each Alltoallv involving c processes. By operating on
a reduced communicator, the latter approach reduces the
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GraphBLAST

• First “high-performance” GraphBLAS implementation on the GPU
• Optimized to take advantage of both input and output sparsity
• Automatic direction-optimization through the use of masks
• Competitive with fastest GPU (Gunrock) and CPU (Ligra) codes
• Outperforms multithreaded SuiteSparse::GraphBLAS
Design principles:

1. Exploit input sparsity => direction-optimization
2. Exploit output sparsity => masking
3. Proper load-balancing => key for GPU implementations

Extensively evaluated on (more implemented, google for github repo)
• Breadth-first-search (BFS)
• Single-source shortest-path (SSSP)
• PageRank (PR)
• Triangle counting (TC)

Yang, Buluc, Owens, “GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU”, 
ACM Transactions on Mathematical Software (TOMS), 2022 

hsps://github.com/gunrock/graphblast

https://github.com/gunrock/graphblast




More GraphBLAS implementaKons

SuiteSparse library (Texas A&M): First fully conforming GraphBLAS release
http://faculty.cse.tamu.edu/davis/suitesparse.html

GraphBLAS C (IBM): the second fully conforming release
https://github.com/IBM/ibmgraphblas

GBTL: GraphBLAS Template Library (CMU/SEI/IU/PNNL): GraphBLAS C++ implementation
https://github.com/cmu-sei/gbtl

ALP/GraphBLAS (Huawei): GraphBLAS C++ implementation
https://gitee.com/CSL-ALP/graphblas.git

Python bindings:
PyGB: A python wrapper around GBTL (UW/PNNL/CMU)

https://github.com/jessecoleman/gbtl-python-binding
pygraphblas: A python wrapper around SuiteSparse GraphBLAS

https://github.com/michelp/pygraphblas
grblas: Anaconda’s python wrapper around SuiteSparse GraphBLAS

https://github.com/metagraph-dev/grblas
pggraphblas: A PostgreSQL wrapper around Suite Sparse GraphBLAS

https://github.com/michelp/pggraphblas

Julia wrapper around SuiteSparse
SuiteSparseGraphBLAS.jl

Matlab and Julia wrappers around SuiteSparse GraphBLAS
https://aldenmath.com

http://faculty.cse.tamu.edu/davis/suitesparse.html
https://github.com/IBM/ibmgraphblas
https://github.com/cmu-sei/gbtl
https://github.com/jessecoleman/gbtl-python-binding
https://github.com/michelp/pygraphblas
https://github.com/metagraph-dev/grblas
https://github.com/michelp/pggraphblas
https://aldenmath.com/


Suitesparse:GraphBLAS



pygraphblas

Pygraphblas Documentation at:  https://graphegon.github.io/pygraphblas/pygraphblas/index.html

https://graphegon.github.io/pygraphblas/pygraphblas/index.html


Conclusions

• Sparse matrix techniques underlie computations from disparate 
fields: 

a. Scientific computing
b. Machine learning
c. Graph analysis
d. Bioinformatics

• GraphBLAS already seem to have the right abstraction with its 
flexible masks and semirings to be the default backend of many 
of these computations

• Extreme parallelism and data, and hence the need for distributed 
memory parallelism is here to stay and will get worse

• Communication-avoiding algorithms, and novel data 
structures for sparse matrices will be the key to overcome these 
adverse technological trends
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