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Sparse Matrices

“I observed that most of the
coefficients in our matrices were

\ zero; 1.e., the nonzeros were ‘sparse
& in the matrix, and that typically the
triangular matrices associated with
the forward and back solution
provided by Gaussian elimination
would remain sparse if pivot
elements were chosen with care”

>

as

- Harry Markowitz, describing the 1950s
work on portfolio theory that won
the 1990 Nobel Prize for Economics & =




Sparse Matrices in Simulations
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Original matrix A Factors L+U

Original: Ax = b (hard to solve directly)

Factored: LUx = b (solvable by direct substitution)
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Parallel algorithms for sparse matrix primitives

Available software



The case for sparse matrices

Many irregular applications contain coarse-grained parallelism
that can be exploited by abstractions at the proper level.

Traditional graph Graphs in the language of
computations linear algebra
Data driven, Fixed communication patterns
unpredictable communication.
Irregular and unstructured, Operations on matrix blocks
poor locality of reference exploit memory hierarchy
Fine grained data accesses, Coarse grained parallelism,

dominated by latency bandwidth limited




Linear-algebraic primitives for graphs

Sparse matrix X sparse matrix Sparse matrix X sparse vector
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|s think-like-a-vertex really more productive?
“Our mission is to build up a linear algebra sense to the extent that

vector-level thinking becomes as natural as scalar-level thinking.”
- Charles Van Loan



Examples of semirings in graph algorithms

Real field: (R, +, X)

Classical numerical linear algebra

Boolean algebra: ({01}, |, &)

Graph connectivity

Tropical semiring: (R U {0}, min, +)

Shortest paths

(S, select, select)

Select subgraph, or contract nodes to
form quotient graph

(edge/vertex attributes, vertex data
aggregation, edge data processing)

Schema for user-specified
computation at vertices and edges

(R, max, +)

Graph matching &network alignment

(R, min, times)

Maximal independent set

Shortened semiring notation: (Set, Add, Multiply). Both identities omitted.
Add: Traverses edges, Multiply: Combines edges/paths at a vertex

Neither add nor multiply needs to have an inverse.

Both add and multiply are associative, multiply distributes over add




Graph Algorithms on GraphBLAS

http://graphblas.org

Miscellaneous: Centrality Graph clustering Shortest paths
connectivity, traversal (PageRank, (Markov cluster, (all-pairs,

(BFS), independent sets betweenness, peer pressure, single-source,
(MIS), graph matching closeness) spectral, local) temporal)
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Sparse Matrix Sparse -
Times Multiple Sparse Matrix
Dense Vectors Product

Sparse -

Sparse Matrix- Sparse Matrix- Dense Matrix

Sparse Vector Dense Vector
(SpMSpV) (SpMV)

Product
(SpDM3)

(SpMM) (SpGEMM)

GraphBLAS primitives in increasing arithmetic intensity
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The GraphBLAS forum

Standards for Graph Algorithm Primitives

Tim Mattson (Intel Corporation), David Bader (Georgia Institute of Technology), Jon Berry (Sandia National
Laboratory), Aydin Buluc (Lawrence Berkeley National Laboratory), Jack Dongarra (University of Tennessee),
Christos Faloutsos (Carnegie Melon University), John Feo (Pacific Northwest National Laboratory), John Gilbert
(University of California at Santa Barbara), Joseph Gonzalez (University of California at Berkeley), Bruce
Hendrickson (Sandia National Laboratory), Jeremy Kepner (Massachusetts Institute of Technology), Charles
Leiserson (Massachusetts Institute of Technology), Andrew Lumsdaine (Indiana University), David Padua (University
of Illinois at Urbana-Champaign). Stephen Poole (Oak Ridge National Laboratory), Steve Reinhardt (Cray
Corporation), Mike Stonebraker (Massachusetts Institute of Technology), Steve Wallach (Convey Corporation),
Andrew Yoo (Lawrence Livermore National Laboratory)

Abstract-- It is our view that the state of the art in constructing a large collection of
graph algorithms in terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive building blocks. This paper is

a position paper defining the problem and announcing our intention to launch an
open effort to define this standard.

“If you want to go fast, go alone. If you want to go far, go together.” -- unknown
https://graphblas.github.io/



https://graphblas.github.io/

GraphBLAS C API Specification

* Goal: A crucial piece of the GraphBLAS effort is to translate the mathematical
specification to an actual Application Programming Interface (API) that

i is faithful to the mathematics as much as possible, and
ii.  enables efficient implementations on modern hardware.

* Impact: All graph and machine learning algorithms that can be expressed in the
language of linear algebra

* Innovation: Function signatures (e.g. mxm, vxm, assign, extract), parallelism constructs
(blocking v. non-blocking), fundamental objects (masks, matrices, vectors, descriptors), a
hierarchy of algebras (functions, monoids, and semiring)

GrB_info GrB mxm(GrB Matrix *C, // destination
const GrB Matrix Mask,
const GrB_ BinaryOp accum,
const GrB Semiring op, C(_'M) @: AT @*@ BT
const GrB Matrix A,
const GrB Matrix B
[, const Descriptor desc]) ;

B. Brock, A. Bulug, T. Mattson, S. McMiillan, J. Moreira, “The GraphBLAS C API Specification”, version 2.0.0




Pattern 1: Sparse matrix times

sparse vector (SpMSpV)

Single-source traversal:
BFS, connected components, matching, ordering, etc.

GrB_mxv(y, p, <semiring>, A, x, <desc>)

A: sparse adjacency matrix
X: sparse input vector (previous frontier)
p: mask (already discovered vertices)

parents (p):

)



Breadth-first search in
the language of matrices

from



Particular semiring operations:
Multiply: select2nd
Add: minimum

from

parents: e




Select vertex with
minimum label as parent

from

parents:

S



* Masks avoid formation of
temporaries and can enable
automatic direction optimization

* These footballs are nonzeros that
are masked out by the parents array

from

parents:

S & O & 0

o @






Output sparsity via masks

« The actual operation is x = ATx .* p
p is the parents array and .* is elementwise multiplication

« At first, our vision was limited: we only thought about eliminating
temporaries in GrB_mxv

« But it was important enough to motivate the inclusion of masks
into the GraphBLAS spec, though in limited form

input
mask adjacency matrix vector

ldea was to run the same
column-based algorithm,

X x =1 .* but checking against a mask
before writing to output

Yvy \ 4

Column-based matvec w/ mask



Push-pull = column-row matvec

This is a story on how languages (and in this case APIs)
change our thinking and drive our creative process

« Carl Yang and | pondered quite a bit on whether it was
possible to implement direction optimization in the
language of matrices *

* Push-pull (also known as direction optimization) was just
about running a row- vs. column-based matvec

« But it wouldn’t be competitive it its pure form because you
were pulling from every vertex, not just unexplored ones.

« Avyear or so later, GraphBLAS had “masks”

« Now it was totally obvious how to make push-pull
competitive in GraphBLAS



adjacency matrix

transpose
unvisited vertices mask
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Masks make “pull” implementable

competitively in GraphBLAS

input output input
mask adjacency matrix vector vector mask adjacency matrix vector
.* X e _* X = X
. >
>
>
< v _ YVYVY | [ ] v
Row-based matvec w/ mask Column-based matvec w/ mask

* Pullis better for sufficiently sparse masks; push otherwise
e Claim: “direction optimization” would have been discovered
automatically by the GraphBLAS runtime if we designed the

interface back half a decade ago.

Yang, C., Buluc, A. and Owens, J.D., Implementing Push-Pull Efficiently in GraphBLAS. ICPP’18




Breadth-First Search in GraphBLAS

GrB_Vector q; // wvertices wvisited in each level
GrB_Vector_new(&q,GrB.BOOL,n); // Vector<bool> q(n) = false
GrB_Vector_setElement (q,( bool)true,s); // q[s] = true, false everywhere else
GrB_Monoid Lor; // Logical—or monoid

GrB_Monoid_new(&Lor ,GrB_LOR, false );

GrB_Semiring Boolean; // Boolean semiring
GrB_Semiring_new(&Boolean , Lor ,GrB_.LAND ) ;

GrB_Descriptor desc; // Descriptor for vzm
GrB_Descriptor_new(&desc);
GrB_Descriptor_set (desc ,GrB.MASK, GrB_SCMP ) ; // invert the mask

GrB_Descriptor_set (desc ,GrB.OUTP,GrB.REPLACE); // clear the output before assignment

GrB_UnaryOp apply_level;
GrB_UnaryOp_new(&apply_level ;return_level ,GrB_. INT32,GrB_.BOOL ) ;

/%

* BFS traversal and label the wvertices.

*/

level = 0;
GrB_Index nvals;
do {
+tlevel; next level (start with 1)
GrB_apply (xv,GrB.NULL, GrB_.PLUS_INT32, apply_-level ,q,GrB.NULL); // v/[q] = level
GrB_vxm(q,*v,GrB_.NULL, Boolean ,q,A, desc); J/ q[lv] = q ||.66 A ; finds all the
// unvisited successors from current q

GrB_Vector_nvals(&nvals, q);
} while (nvals); // if there is no successor in q, we are done.



Pattern 2: Sparse matrix times

sparse matrix (SpGEMM)

Multi-source traversal:
Ex: multi-source BFS, betweenness centrality, triangle counting”, Markov clustering”

GrB_mxm(Y, P, <semiring>, A, X, <desc>)
A: sparse adjacency matrix

X: sparse input matrix (previous frontier), n-by-b where b is the #sources
P: mask (already discovered vertices), multi-vector version of p from previous slide




Pattern 2: Sparse matrix times

sparse matrix (SpGEMM)

Triangle counting is also multi-source(in fact, all sources) traversal:
It just stops after one traversal iteration only, discovering all wedges

GrB_mxm(C, A, <semiring>, L, U, <desc>)

B, C

A=L+U (hi->lo + lo->hi) @
LXU=8B (wedge, low hinge)
ANB=C (closed wedge)
sum(C)/2 = 4 triangles

A . L u C
oo 0 oo o
° o0 ° o0 11
oo o o0 °



Counting triangles

Clustering coefficient:

« Pr (wedge i-j-k makes a triangle with edge i-k)
« 3* #triangles / # wedges
e 3%4/19=0.63in example

* may want to compute for each vertex |

Cohen’s algorithm to count triangles:

hi hi - Count triangles by lowest-degree vertex.
lo
hi hi - Enumerate “low-hinged” wedges.
lo

hR ,phj - Keep wedges that close.
lo




Triangle Counting in GraphBLAS

/%
x Given, L, the lower triangular portion of n z n adjacency matriz A (of and
x undirected graph), computes the number of triangles in the graph.

*/
uint64_t triangle_count (GrB_Matrix L) // L: NzN, lower—triangular , bool
{

GrB_Index n;

GrB_Matrix_nrows(&n, L); // n =# of vertices

GrB_Matrix C;
GrB_Matrix_new(&C, GrB_UINT64, n, n);

GrB_Monoid Ulnt64Plus; // integer plus monoid
GrB_Monoid_new (& UInt64Plus , GrB_.PLUS_UINT64,0 ul );

GrB_Semiring Ulnt64Arithmetic; // integer arithmetic semiring
GrB_Semiring_new (& UInt64Arithmetic , UInt64Plus , GrB_.TIMES_UINT64 ) ;

GrB_Descriptor desc_tb; // Descriptor for mam
GrB_Descriptor_new(&desc_tb );

GrB_Descriptor_set (desc_tb ,GrB_INP1,GrB.TRAN); // transpose the second matrix

GrBmxm(C, L, GrBNULL, Ulnt64Arithmetic, L, L, desc-tb); // (XI> =L *x.+ L’

uint64_t count;

GrB_reduce(&count , GrB.NULL, UlInt64Plus, C, GrBNULL); // 1—morm of C
GrB_free(&C); // C matriz no longer needed
GrB_free(&UInt64Arithmetic); // Semiring no longer needed
GrB_free(&UInt64Plus); // Monoid no longer needed
GrB_free(&desc_tb ); // descriptor no longer needed

return count;

y http://graphblas.org
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SpGEMM use case #3: Markov Clustering

Markov clustering is also multi-source (in fact, all sources) traversal:
It alternates between SpGEMM and element-wise or column-wise pruning

GrB_mxm(C, GrB_NULL, <semiring>, A, A, <desc>)

A: sparse normalized adjacency matrix
C: denser (but still sparse) pre-pruned matrix for next iteration

Initial network Iteration 1 Iteration 2 Iteration 3

At each iteration:

Step 1 (Expansion): Squaring the matrix while pruning (a) small entries, (b) denser columns
Naive implementation: sparse matrix-matrix product (Sp GEMM), followed by column-wise
top-K selection and column-wise pruning

Step 2 (Inflation) : taking powers entry-wise
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Motivation for Graph Neural Networks

“GNNs are among the most general class of deep learning architectures
currently in existence, [...] and most other deep learning architectures can
be understood as a special case of the GNN with additional geometric

structure” Bronstein, Michael M., et al. "Geometric Deep Learning:
Grids, Groups, Graphs, Geodesics, and Gauges." (2021)

NEWS - 20 FEBRUARY 2020 it
.
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Powerful antibiotics discovered using Al @Nﬁ
Machine learning spots molecules that work even against ‘untreatable’ strains of C\a H
N\zﬁ'\\s Training set
i 4 (10* molecules)
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1
This is a graph neural network C& P

Model validation
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Article | Published: 09 June 2021
A graph placement methodology for fast chip design ... we pose chip floorplanning as a

Azalia Mirhoseini &, Anna Goldie &, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang, rel nfO rcement Iea rni ng prObIem’
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa, and dGVElOp an EdgE'based graph

William Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter & Jeff Dean convolutional neural network

Nature 594, 207-212 (2021) | Cite this article architecture...



Graph Neural Networks (GNNs)

_ Materials Discovery
Proteomics

GNNs are finding
success in many
challenging scientific
problems that involve
"/ Power Grid interconnected data.

Graph classification
Edge classification
Node classification

Particle Physics

GNNs are computationally intensive to train. Distributed training need to
scale to large GPU/node counts despite challenging sparsity.



What can | do with a GNN?

Node classification

Z; = f(hi)

. Graph classification

20 = F (@i i)

Wt ) B e N i o ) i it B i i it R N Pl ) ] B St M e

Latents

(X,A) (H, A)

.| Link prediction
zi; = f(hi, hy, e;)

Figure source: Petar Velickovic¢



Full-graph vs. mini-batch SGD

Vertices

Full-graph training:

Train on entire training set
Slower convergence per epoch
Faster training per epoch
Focus of this work

samples

/

Vertices

Mini-batch SGD:

e Train on multiple samples from
training set

» Faster convergence per epoch

e Slower training per epoch
* Requires graph sampling, which

effects accuracy and performance



Full-graph vs. mini-batch SGD
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No dependencies
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Layered dependencies

* Vertices (unlike images) are dependent on each other

e L-layer GNN uses L-hop neighbors for vertices in batch

* Even for small L, must store ~whole graph for any minibatch for power-law graphs

* How to subsample from aggregated L-hop neighborhood and keep accuracy?

 CAGNET (Communication-Avoiding Graph Neural nETworks) full gradient descent
to avoid such issues: https://github.com/PASSIONLab/CAGNET/



https://github.com/PASSIONLab/CAGNET/

Graph convolution illustrated
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lllustration of the information flow in a Graph Neural Network (GNN). On the left is the graph in
its natural form. The features (the shaded boxes) of vertices v and q are aggregated at vertex
1 through intermediate (green) vertices and edges. Features of other nodes are not shown but
are also propagated. During training, the error is backpropagated in the opposite direction in
the neural network, where each layer of the neural network propagates one hop of information.



Graph convolution illustrated

—

Input Graph GNN of Input Graph

* Recall that a CNN can have different *channel* dimension at each layer.
* GNNs also have different embedding dimension at each layer



Memory cost of full-batch GCN training

Storage= Y/, nf"

~ 0(nLf)

L i
Where f = 2=/

L layers

Say n =100M, L =4, f = 256, we are looking at 100B words, or 800GB



GNN Training

« Each node is initialized with a feature vector
— HY has initial feature vector per node (nx f)
Each node aggregates vectors of its neighbors, applies a weight

« Each layer computes gradients

for 1 =1 .. E AEnxn
for 1 =1 ..L
Zl = AT * Hi-1 *x |yl
M = o (7)) H'enx f!
for 1 =L1L-1 ..1 l l
Gl = A ¥ Gl+1 % (W1+1)T @01(21) G ETle
dH/dW = (H!1)T * A * @Gl
( ) Wl Efl—lel

A is sparse and f << n, so the main workhorse is SpMM (sparse
matrix times tall-skinny dense matrix)



Communication avoidance (CA)

In GNN Training

I reduce [ dbcast B local
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= Scales with both P (GPUs — x axis) and c (replication layers in CA algorithms)

= Thisis 1 GPU/node on Summit (all GPUs per node results in paper)

= Expect to scale with all GPUs / node with future architectures (e.g. Perlmutter)
= More results (2D and 3D algorithm) and 6 GPUs/node in the paper

Alok Tripathy, Katherine Yelick, Aydin Bulug. Reducing Communication in Graph Neural Network Training. SC’20




Pattern 3: Sparse matrix times tall-skinny

dense matrix (SpMM)

Feature aggregation from neighbors:
Used in Graph neural networks, graph embedding, etc.

GrB_mxm(W, GrB_NULL, <semiring>, A, H, <desc>)

A: sparse adjacency matrix, n-by-n
H: input dense matrix, n-by-f where f << n is the feature dimension
W: output dense matrix, new features

O(f) feature vector

3254 .. 1.3 00 [ 3254 . 13
v ' [
Ve 4 0 o0 27 1.6 .. 4.1
0 PY 0921 .. 3.8
Vv
2 () (] ()
AT H
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27 16 .. 41
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[More] Sparse Kernels in

Graph Learning

« Sampled Dense-Dense Matrix Multiplication (SDDMM) and
Sparse-times-Dense Matrix Multiplication (SpMM) appear in a
variety of applications:

— Graph Neural Networks with Self-Attention
— Collaborative Filtering with Alternating Least Squares
— Document Clustering by Wordmover’s Distance Message Generation

- Both kernels involve a single sparse matrix and two (typically
tall-skinny) dense matrices. Typically, applications use both \ /
operations in sequence.

* When the sparse matrix is the adjacency matrix of a graph, we T
interpret the kernels as follows:

— SDDMM generates a message on each edge
— SpMM aggregates messages from incident edges Message Aggregation



Graph attention: making edge weights
learnable

Wi W3 Wy Wey

Sparse

same structure
with A

W

h,

SDDMM: Sampled dense-dense
matrix multiplication

GrB_mxm(W, A, H, H, ... );

O




SpMM and SDDMM algorithmic duality

SDDMM and SpMM have identical data access patterns.
Consider serial algorithms for both kernels:

R := SDDMM(S, 4, B) A = SpMMA(S, B)
for (i,j) €S for (i,j) €S
Rij = Sij(Ai; - B}.) Ay += S5i;B;.

Every nonzero (i, j) requires an interaction between row i of A and row j of B.
As a result:

Every distributed algorithm for SpMM can be converted to an algorithm for
SDDMM with identical communication characteristics, and vice-versa.

V. Bharadwaj, A. Buluc, J. Demmel, "Distributed Memory Sparse Kernels for Machine Learning," 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2022




Creating a parallel SDDMM algorithm

from an SpMM algorit

Consider any distributed algorithm for SpMMA that performs no
replication. For all indices k € [1, 7], the algorithm must (at some point)

* Co-locate S;j, Ajk, Bji on a single processor

*  Perform the update Ay, += S;;Bjy

Transform this algorithm as follows:

1. Change the input sparse matrix S to an output that is initialized to O.
2. Change A from an output to an input.

3. Have each processor execute the local update: S;; += A;; B

The resulting algorithm performs SDDMM (up to multiplication with
the values initially in ) with communication characteristics and data
layout identical to the original.



Communication Eliding Strategies for

FusedMM: SDDMM+Sp

SpMM Loop Finished?

SDMM Loop Finished?

=

»
> Ll

Yes

No
Unoptimized Back-to-back Calls
SDDMM Loop Finished? SpMM Loop Finished?

) )

Local Local

Move Move

Data Data
— No — No

Replication Reuse \
Mutually

exclusive

Local SDDMM . . .
+ SpMM optimizations

Combined Loop Finished?

Local Kernel Fusion



Distributed FusedMM performance

Weak Scaling Setup 1 Time Breakdown
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Sparse matrix-matrix multiplication

C(-M) ©=A"D.K B’

M: the output mask (also called a sampling matrix), always sparse if present
A, B: input matrices, at least one is sparse unless the mask is present
C: output matrix

SPGEMM: A, B are sparse, C can be sparse or dense (depending on shape)
Masked-SpGEMM: Same as SpGEMM, with mask (M) present

SpMM: A sparse, B and C dense (tall skinny), often no mask (M)

SDDMM: A, B are dense, M present, C sparse

SpMV: degenerate case of SpMM with B and C having 1 column

SpMSpV: degenerate case of Sp GEMM with B, C, (possibly M) having 1 column



Basic serial SpGEMM

(Gustavson, 1978)
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v 4
X EEXIC oo |o oo o0
oo o o o oo
o o o0 ° ® o o ®
o0 0 ® = @ ® X ® ®
oo o o0 o o
o o ® ° ° o0
® o (oo o ° o(o0 ®
C X A B
O
+ ° scatter/
gather C.) accumulate Optimal as long as

flops > nnz, n

SPA

* Implemented in Matlab & other popular software
* Not directly applicable to multithreading: SPA falls out of cache and takes
up too much space in aggregate



More parallelizable SpGEMM

(Azad et al., 2016)

o o o
¥ 1
® 00 o0 o o & o 00
e 0o o 8 ) C AN )
® ® [ I o o ) o o
e 0o 0 o — o o X o o
o0 o AN ) o o
o ® ® o C )
(] (] ® ® @ Heapsize ®|&|® ®

c | K’ A B

* Implemented in CombBLAS and SparseSuite:GraphBLAS
* Memory efficient and suitable for multithreading
* Not great for high compression ratio cases (more later)




New shared-memory SpGEMM kernels

m Optimizing algorithms for Intel architectures

m Heap [Azad, 2016]

— Priority queue indexed by column indices
- Requires logarithmic time to extract elements
- Space efficient: O(nnz(a;.))

m Better cache utilization

m Hash [Nagasaka, 2016]

— Uses hash table for accumulator, based on GPU work
= Low memory usage and high performance

-~ Each thread once allocates the hash table and reuses it
- Extended to HashVector to exploit wide vector register




Fast shared-memory SpGEMM kernels

* Compression ratio (CR): .
flops/nnz(C) "
 Combinatorial BLAS and gzm
HipMCL used to use heap z* ]
e Stable performance but >
significant gap in high CR 2" _ — MKL — Heap —— Hash —— HashVec
* HipMCL inputs have high CR 0 K 2 K 53 5
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algorithms to CombBLAS
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[ | —— Kokkos

matrix-matrix products on multi-core and
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New algorithms for Masked SpGEMM

. : oe °° x PN, el
Main Idea: When certain output T et . .
entries of SoGEMM are not needed * * 5 \ s
(masked out), it is wasteful to S .
materialize/compute the product . .%.° masked . .
first and then to mask out entries e T e )

m.ask ) masl.(OAB
for 1 = 1:n
Ci* = Mj* .* (Aji* X B) _L

a1 %O Ol
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C mask A B Accumulator

* Row-wise Masked SpGEMM using an accumulator to compute output row C..

* The rows corresponding to the column indices of entries in row A..are merged and
filtered through the respective mask entries to compute C..

* This merging and filtering process can be performed in a number of ways.



Masked Sparse Accumulator (MSA)

Execution of 1 row of Sp GEMM with Masked Sparse Accumulator (MSA)
(a) initialize (b) MSA+=u; By« (c) MSA+=u; B3« (d) MSA+=u, xB,+ (e) MSA+=u; xB,« (f) output

mask | e o o | B+ (@ o Bz (@ o |

[ setAllowed() | ( insert() ] | insert() ]

states|[@ ® O ® O ® O ®|| states[[E @0 ® 0 ® 0 &|| states|[[@ @020 ® & |

SPA SPA SPA
values|| || values|| || values|| o |
By| @ o o | Bz« | ° ® | mask | o o o |
: || ! | 1 |
( insert() ] insert() [ remove() |
states|®(§0®.®.®| states|®®0<§>.®.®| states||@ ® ¥ @ ® @ Q@ ®|
SPA SPA SPA
values|| ® O || values|| ® o || values|| |
v | o o

Srdjan Milakovic , Oguz Selvitopi, Israt Nisa, Zoran Budimlic', and Aydin Bulug. Parallel algorithms for masked sparse
matrix-matrix products. arXiv preprint arXiv:2111.09947, 2021 (Poster at PPOPP’22, paper at ICPP’22)




Performance of Masked SpGEMM algorithms
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Srdjan Milakovic , Oguz Selvitopi, Israt Nisa, Zoran Budimlic', and Aydin Bulug. Parallel algorithms for masked sparse
matrix-matrix products. arXiv preprint arXiv:2111.09947, 2021 (Poster at PPOPP’22, paper at ICPP’22)




Distributed SpMM algorithms

A is sparse, B and C are dense

i
B k — k—
J' —k— [ n

k n

| | ! C A ) I
C A B

e Stationary A, 1.5D algorithm e Stationary C, 2D algorithm

e Aissplit on a p/c-by-c grid e Memory optimal

* 1D algorithm not shown, degeneration of sA-1.5D for the c=1 case
* Right before reduction, sA-1.5D uses c times more dense-matrix memory



Could we do SpMM differently?

BS: bulk-synchronous (MPI)
AS: asynchronous (RDMA)

—6— sA-1.5D-BS —H— sA-2D-BS —— sC-2D-BS —A— sC-2D-AS —— sA-2D-AS
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Oguz Selvitopi , Benjamin Brock, Israt Nisa, Alok Tripathy, Katherine Yelick, Aydin Bulug. Distributed-Memory
Parallel Algorithms for Sparse Times Tall-Skinny-Dense Matrix Multiplication. ICS’21




High-level outline

Sparse matrices for graph algorithms

Sparse matrices for graph learning

Parallel algorithms for sparse matrix primitives

Available software



Combinatorial BLAS 2.0 innovations

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022 989

Combinatorial BLAS 2.0: Scaling Combinatorial
Algorithms on Distributed-Memory Systems

Ariful Azad™, Oguz Selvitopi*, Md Taufique Hussain, John R. Gilbert, and Aydin Bulug
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(a) Al12x12sparse (b) A 3D grid of (c) Partitioning A (d) Partitioning B (e) Converting (f) Conversion
matrix distributed 36 processes orga- into the 3D grid into the 3D grid a 6x6 grid to a from 2D to 3D
ina 2D 6 x 6 grid nized in four 2D by splitting up the by splitting up the 4x3x3 grid in the grid using reduced
of 36 processes. 3 x 3 grids columns rows regular way communicators

e communication avoiding algorithms,

* hierarchical parallelism via in-node multithreading,

* accelerator support via GPU kernels,

e generalized semiring support,

* implementations of key data structures and functions,

* scalable distributed I/O operations for human-readable files



Combinatorial BLAS 2.0 performance
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GraphBLAST

* First “high-performance” GraphBLAS implementation on the GPU
«  Optimized to take advantage of both input and output sparsity

« Automatic direction-optimization through the use of masks

« Competitive with fastest GPU (Gunrock) and CPU (Ligra) codes

»  Outperforms multithreaded SuiteSparse::GraphBLAS

Design principles:
1. Exploit input sparsity => direction-optimization
2. Exploit output sparsity => masking
3. Proper load-balancing => key for GPU implementations

Extensively evaluated on (more implemented, google for github repo)
» Breadth-first-search (BFS)
» Single-source shortest-path (SSSP)
« PageRank (PR)
* Triangle counting (TC) https://github.com/gunrock/graphblast

Yang, Buluc, Owens, “GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU”,
ACM Transactions on Mathematical Software (TOMS), 2022



https://github.com/gunrock/graphblast
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Sparse matrix techniques underlie computations from disparate
fields:

a. Scientific computing

b. Graph learning

c. Graph algorithms

d. Bioinformatics

GraphBLAS already seem to have the right abstraction with its
flexible masks and semirings to be the default backend of many

of these computations

Extreme parallelism and data, and hence the need for distributed
memory parallelism is here to stay and will get worse

Communication-avoiding algorithms, and novel data
structures for sparse matrices will be the key to overcome these
adverse technological trends
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