
Distributed Sparse Matrices in Graph
Algorithms and Graph Learning

Aydın Buluç
Lawrence Berkeley Na3onal Laboratory & UC Berkeley
Keynote at GTA³ Workshop at IEEE BigData
December 17, 2022

PASSION Lab Research Agenda

Sparse
Matrices

Parallel Compu2ng

Applications

• Parallel data structures
• Parallel programming
• Communication bounds

• New sparse data structures and algorithms
• Iden8fica8on of computa8onal primi8ves

GraphBLAS: graphs in the
language of linear algebra

hBp://graphblas.org

Communica8on-avoiding
algorithms for sparse matrices

A::1$

A::2$

A::3$

n pc

Al
lto

Al
l%

Al
lto

Al
l%

C int
ijk = Ailk

l=1

p/c

∑ Bljk

A$ B$ Cintermediate$ Cfinal%

x$

x$

x$

=$

=$

=$

!$

!$

!$

XAT ATX

à

1

1

1

Layout identified

Consensus sequence

Overlap-Layout-Consensus

Reads
10K bases

Overlaps identified

E U C L I D E A N

D
I
S
T
A
N
C
E

A
N
G
L
E

G R A P H K E R N E L (R K H S)

i nd iv i du a l
g ra p hs

s im u l ta n e o u s
ra n do m w a lk

p ath
s im i la r i t y

P R O B A B I L I S T I C I N T E R P R E T A T I O N L I N E A R A L G E B R A I N T E R P R E T A T I O N

deg ree ve r tex la b e l a d ja c en c y edg e la b e l
S PD sy s tem

to so lve

• Genomics
• Graph analysis
• Proteomics
• Graph learning

http://passion.lbl.gov

http://graphblas.org/
http://passion.lbl.gov/

Sparse Matrices

“I observed that most of the
coefficients in our matrices were
zero; i.e., the nonzeros were ‘sparse’
in the matrix, and that typically the
triangular matrices associated with
the forward and back solution
provided by Gaussian elimination
would remain sparse if pivot
elements were chosen with care”

- Harry Markowitz, describing the 1950s
work on portfolio theory that won
the 1990 Nobel Prize for Economics

Sparse Matrices in Simula;ons

Original: Ax = b (hard to solve directly)
Factored: LUx = b (solvable by direct substitution)

1
2

3

4

5

6

10

7

8

9

Original matrix A Factors L+U

1
2

3

4

5

6

10

7

8

9

High-level outline

• Sparse matrices for graph algorithms
• Sparse matrices for graph learning
• Parallel algorithms for sparse matrix primi4ves
• Available so8ware

The case for sparse matrices

Many irregular applications contain coarse-grained parallelism
that can be exploited by abstractions at the proper level.

Traditional graph
computations

Graphs in the language of
linear algebra

Data driven,
unpredictable communication.

Fixed communication patterns

Irregular and unstructured,
poor locality of reference

Operations on matrix blocks
exploit memory hierarchy

Fine grained data accesses,
dominated by latency

Coarse grained parallelism,
bandwidth limited

Sparse matrix X sparse matrix

x

Sparse matrix X sparse vector

x

.*

Linear-algebraic primi;ves for graphs

Element-wise operations Sparse matrix indexing

Is think-like-a-vertex really more productive?
“Our mission is to build up a linear algebra sense to the extent that
vector-level thinking becomes as natural as scalar-level thinking.”
- Charles Van Loan

Examples of semirings in graph algorithms

Real field: (R, +, x) Classical numerical linear algebra

Boolean algebra: ({0 1}, |, &) Graph connectivity

Tropical semiring: (R U {∞}, min, +) Shortest paths

(S, select, select) Select subgraph, or contract nodes to
form quotient graph

(edge/vertex attributes, vertex data
aggregation, edge data processing)

Schema for user-specified
computation at vertices and edges

(R, max, +) Graph matching &network alignment

(R, min, times) Maximal independent set

• Shortened semiring notation: (Set, Add, Multiply). Both identities omitted.
• Add: Traverses edges, Multiply: Combines edges/paths at a vertex
• Neither add nor multiply needs to have an inverse.
• Both add and multiply are associative, multiply distributes over add

Graph Algorithms on GraphBLAS

Sparse -
Dense Matrix

Product
(SpDM3)

Sparse -
Sparse Matrix

Product
(SpGEMM)

Sparse Matrix
Times Multiple
Dense Vectors

(SpMM)

Sparse Matrix-
Dense Vector

(SpMV)

Sparse Matrix-
Sparse Vector

(SpMSpV)

GraphBLAS primitives in increasing arithmetic intensity

Shortest paths
(all-pairs,

single-source,
temporal)

Graph clustering
(Markov cluster,
peer pressure,
spectral, local)

Miscellaneous:
connec2vity, traversal

(BFS), independent sets
(MIS), graph matching

Centrality
(PageRank,

betweenness,
closeness)

http://graphblas.org

http://graphblas.org/

The GraphBLAS forum

Abstract-- It is our view that the state of the art in constructing a large collection of
graph algorithms in terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive building blocks. This paper is
a position paper defining the problem and announcing our intention to launch an
open effort to define this standard.

“If you want to go fast, go alone. If you want to go far, go together.” -- unknown
https://graphblas.github.io/

https://graphblas.github.io/

• Goal: A crucial piece of the GraphBLAS effort is to translate the mathematical
specification to an actual Application Programming Interface (API) that
i. is faithful to the mathematics as much as possible, and
ii. enables efficient implementations on modern hardware.

• Impact: All graph and machine learning algorithms that can be expressed in the
language of linear algebra

• Innovation: Function signatures (e.g. mxm, vxm, assign, extract), parallelism constructs
(blocking v. non-blocking), fundamental objects (masks, matrices, vectors, descriptors), a
hierarchy of algebras (functions, monoids, and semiring)

B. Brock, A. Buluç, T. Mattson, S. McMillan, J. Moreira, “The GraphBLAS C API Specification”, version 2.0.0

GrB_info GrB_mxm(GrB_Matrix *C, // destination

const GrB_Matrix Mask,

const GrB_BinaryOp accum,

const GrB_Semiring op,

const GrB_Matrix A,

const GrB_Matrix B

[, const Descriptor desc]);

C(¬M) ⊕= AT ⊕.⊗ BT

GraphBLAS C API Specification

1
2

3

4 7

6

5

x

4

2

2

AT

1

7

71 from

to

ATx

à

2

4

4

2

24

1

1parents (p):
4

2

2

0

Single-source traversal:
BFS, connected components, matching, ordering, etc.

GrB_mxv(y, p, <semiring>, A, x, <desc>)
A: sparse adjacency matrix
x: sparse input vector (previous frontier)
p: mask (already discovered vertices)

Pattern 1: Sparse matrix times
sparse vector (SpMSpV)

1
2

3

4 7

6

5

AT

1

7

71
from

to

Breadth-first search in
the language of matrices

1
2

3

4 7

6

5

XAT

1

7

71
from

to

ATX

à

1

1

1

1

1parents:

Particular semiring operations:
Multiply: select2nd
Add: minimum

0

1
2

3

4 7

6

5

X

4

2

2

AT

1

7

71
from

to

ATX

à

2

4

4

2

24

Select vertex with
minimum label as parent

1

1parents:
4

2

2

0

1
2

3

4 7

6

5

X

3

AT

1

7

71
from

to

ATX

à
3

5

7

3

1

1parents:
4

2

2

5

3

0

• Masks avoid formation of
temporaries and can enable
automatic direction optimization

• These footballs are nonzeros that
are masked out by the parents array

XAT

1

7

71
from

to

ATX

à

6

1
2

3

4 7

6

5

Output sparsity via masks

• The actual operation is x = ATx .* p
p is the parents array and .* is elementwise multiplication

• At first, our vision was limited: we only thought about eliminating
temporaries in GrB_mxv

• But it was important enough to motivate the inclusion of masks
into the GraphBLAS spec, though in limited form

Column-based matvec w/ mask

Idea was to run the same
column-based algorithm,
but checking against a mask
before writing to output

Push-pull ≡ column-row matvec

• Carl Yang and I pondered quite a bit on whether it was
possible to implement direction optimization in the
language of matrices *

• Push-pull (also known as direction optimization) was just
about running a row- vs. column-based matvec

• But it wouldn’t be competitive it its pure form because you
were pulling from every vertex, not just unexplored ones.

• A year or so later, GraphBLAS had “masks”
• Now it was totally obvious how to make push-pull

competitive in GraphBLAS

This is a story on how languages (and in this case APIs)
change our thinking and drive our creative process

Enter “masks”

Masks make “pull” implementable
competitively in GraphBLAS

Row-based matvec w/ mask Column-based matvec w/ mask

• Pull is better for sufficiently sparse masks; push otherwise
• Claim: “direction optimization” would have been discovered

automatically by the GraphBLAS runtime if we designed the
interface back half a decade ago.

Yang, C., Buluc, A. and Owens, J.D., Implementing Push-Pull Efficiently in GraphBLAS. ICPP’18

B.2 Example: BFS in GraphBLAS using apply

1 #include <s t d l i b . h>
2 #include <s t d i o . h>
3 #include <s t d i n t . h>
4 #include <s tdboo l . h>
5 #include ”GraphBLAS . h”

6

7 i n t 3 2 t l e v e l = 0 ; // l e v e l = depth in BFS t ra v e r s a l , roo t s=1, unv i s i t e d=0

8 void r e t u r n l e v e l (void ⇤out , const void ⇤ in) {
9 bool element = ⇤(bool ⇤) in ;

10 ⇤(i n t 3 2 t ⇤) out = l e v e l ;

11 }
12

13 /⇤
14 ⇤ Given a boolean n x n adjacency matrix A and a source v e r t e x s , performs a BFS t r a v e r s a l

15 ⇤ o f the graph and s e t s v [i] to the l e v e l in which ve r t e x i i s v i s i t e d (v [s] == 1) .

16 ⇤ I f i i s not reacheab l e from s , then v [i] = 0. (Vector v shou ld be empty on input .)

17 ⇤/
18 GrB Info BFS(GrB Vector ⇤v , const GrB Matrix A, GrB Index s)

19 {
20 GrB Index n ;

21 GrB Matrix nrows(&n ,A) ; // n = # of rows o f A

22

23 GrB Vector new (v , GrB INT32 , n) ; // Vector<i n t 32 t> v (n) = 0

24

25 GrB Vector q ; // v e r t i c e s v i s i t e d in each l e v e l

26 GrB Vector new(&q ,GrB BOOL, n) ; // Vector<bool> q (n) = f a l s e

27 GrB Vector setElement (q , (bool) true , s) ; // q [s] = true , f a l s e everywhere e l s e

28

29 GrB Monoid Lor ; // Logica l�or monoid

30 GrB Monoid new(&Lor ,GrB LOR, f a l s e) ;

31

32 GrB Semiring Boolean ; // Boolean semiring

33 GrB Semiring new(&Boolean , Lor ,GrB LAND) ;

34

35 GrB Descr iptor desc ; // Descr ip tor f o r vxm

36 GrB Descriptor new(&desc) ;

37 GrB Desc r ip tor se t (desc ,GrB MASK,GrB SCMP) ; // i n v e r t the mask

38 GrB Desc r ip tor se t (desc ,GrB OUTP,GrB REPLACE) ; // c l e a r the output b e f o r e assignment

39

40 GrB UnaryOp app l y l e v e l ;

41 GrB UnaryOp new(&app l y l e v e l , r e t u r n l e v e l , GrB INT32 ,GrB BOOL) ;

42

43 /⇤
44 ⇤ BFS t r a v e r s a l and l a b e l the v e r t i c e s .

45 ⇤/
46 l e v e l = 0 ;

47 GrB Index nva l s ;

48 do {
49 ++l e v e l ; // next l e v e l (s t a r t wi th 1)

50 GrB apply (⇤v ,GrB NULL,GrB PLUS INT32 , app l y l e v e l , q ,GrB NULL) ; // v [q] = l e v e l

51 GrB vxm(q ,⇤ v ,GrB NULL, Boolean , q ,A, desc) ; // q [! v] = q | | .&& A ; f i n d s a l l the

52 // unv i s i t e d succe s sor s from current q

53 GrB Vector nvals (&nvals , q) ;

54 } while (nva l s) ; // i f t he re i s no succes sor in q , we are done .

55

56 GrB free(&q) ; // q vec to r no longer needed

57 GrB free(&Lor) ; // Log ica l or monoid no longer needed

58 GrB free(&Boolean) ; // Boolean semiring no longer needed

59 GrB free(&desc) ; // de s c r i p t o r no longer needed

60

61 return GrB SUCCESS ;

62 }

183

Breadth-First Search in GraphBLAS

MulI-source traversal:
Ex: mulN-source BFS, betweenness centrality, triangle counNng*, Markov clustering*

GrB_mxm(Y, P, <semiring>, A, X, <desc>)

A: sparse adjacency matrix
X: sparse input matrix (previous fronNer), n-by-b where b is the #sources
P: mask (already discovered verNces), mulN-vector version of p from previous slide

PaYern 2: Sparse matrix 3mes
sparse matrix (SpGEMM)

XAT

à

AT � X
6

1 2

3

4 7 5

A L U

1
2

1
1
1 2

C

A = L + U (hi->lo + lo->hi)
L × U = B (wedge, low hinge)
A ∧ B = C (closed wedge)
sum(C)/2 = 4 triangles

A

5

6

3

1 2

4 5

6

3

1 2

4

1

1

2

B, C

Triangle coun9ng is also mul9-source(in fact, all sources) traversal:
It just stops aXer one traversal iteraNon only, discovering all wedges

GrB_mxm(C, A, <semiring>, L, U, <desc>)

Pattern 2: Sparse matrix times
sparse matrix (SpGEMM)

Counting triangles

A

5

6

3

1 2

4
Clustering coefficient:

• Pr (wedge i-j-k makes a triangle with edge i-k)

• 3 * # triangles / # wedges

• 3 * 4 / 19 = 0.63 in example

• may want to compute for each vertex j

Cohen’s algorithm to count triangles:
- Count triangles by lowest-degree vertex.

- Enumerate “low-hinged” wedges.

- Keep wedges that close.

hi hi
lo
hi hi

lo
hihi

lo

Triangle Counting in GraphBLAS

http://graphblas.org

B.6 Example: counting triangles in GraphBLAS

1 #include <s t d l i b . h>
2 #include <s t d i o . h>
3 #include <s t d i n t . h>
4 #include <s tdboo l . h>
5 #include ”GraphBLAS . h”

6

7 /⇤
8 ⇤ Given , L, the lower t r i an gu l a r por t ion o f n x n adjacency matrix A (o f and

9 ⇤ und irec ted graph) , computes the number o f t r i a n g l e s in the graph .

10 ⇤/
11 u in t 64 t t r i a n g l e c oun t (GrB Matrix L) // L: NxN, lower�t r i angu l a r , boo l

12 {
13 GrB Index n ;

14 GrB Matrix nrows(&n , L) ; // n = # of v e r t i c e s

15

16 GrB Matrix C;

17 GrB Matrix new(&C, GrB UINT64 , n , n) ;

18

19 GrB Monoid UInt64Plus ; // in t e g e r p lu s monoid

20 GrB Monoid new(&UInt64Plus , GrB PLUS UINT64 , 0 u l) ;

21

22 GrB Semiring UInt64Arithmetic ; // in t e g e r a r i t hme t i c semiring

23 GrB Semiring new(&UInt64Arithmetic , UInt64Plus , GrB TIMES UINT64) ;

24

25 GrB Descr iptor de s c tb ; // Descr ip tor f o r mxm

26 GrB Descriptor new(&desc tb) ;

27 GrB Desc r ip tor se t (desc tb , GrB INP1 ,GrB TRAN) ; // transpose the second matrix

28

29 GrB mxm(C, L , GrB NULL, UInt64Arithmetic , L , L , de s c tb) ; // C<L> = L ⇤.+ L ’

30

31 u in t 64 t count ;

32 GrB reduce(&count , GrB NULL, UInt64Plus , C, GrB NULL) ; // 1�norm of C

33

34 GrB free(&C) ; // C matrix no longer needed

35 GrB free(&UInt64Arithmetic) ; // Semiring no longer needed

36 GrB free(&UInt64Plus) ; // Monoid no longer needed

37 GrB free(&desc tb) ; // de s c r i p t o r no longer needed

38

39 return count ;

40 }

190

http://graphblas.org/

27

Itera&on 1 Iteration 2 Iteration 3Initial network

Markov clustering is also multi-source (in fact, all sources) traversal:
It alternates between SpGEMM and element-wise or column-wise pruning

GrB_mxm(C, GrB_NULL, <semiring>, A, A, <desc>)
A: sparse normalized adjacency matrix
C: denser (but still sparse) pre-pruned matrix for next iteration

At each iteration:
Step 1 (Expansion): Squaring the matrix while pruning (a) small entries, (b) denser columns
Naïve implementation: sparse matrix-matrix product (SpGEMM), followed by column-wise
top-K selection and column-wise pruning
Step 2 (Inflation) : taking powers entry-wise

SpGEMM use case #3: Markov Clustering

High-level outline

• Sparse matrices for graph algorithms
• Sparse matrices for graph learning
• Parallel algorithms for sparse matrix primitives
• Available software

Motivation for Graph Neural Networks

“GNNs are among the most general class of deep learning architectures
currently in existence, […] and most other deep learning architectures can
be understood as a special case of the GNN with additional geometric
structure” Bronstein, Michael M., et al. "Geometric Deep Learning:

Grids, Groups, Graphs, Geodesics, and Gauges." (2021)

This is a graph neural network

… we pose chip floorplanning as a
reinforcement learning problem,
and develop an edge-based graph
convolutional neural network
architecture…

Graph Neural Networks (GNNs)

Electric Grid

Transportation

Proteomics

Power Grid

Materials Discovery

Particle Physics

GNNs are finding
success in many

challenging scientific
problems that involve
interconnected data.

GNNs are computaKonally intensive to train. Distributed training need to
scale to large GPU/node counts despite challenging sparsity.

• Graph classification
• Edge classification
• Node classification

What can I do with a GNN?
" ÅĎ· Ď»±{Ď�55±ï

Figure source: Petar Veličković

Full-graph vs. mini-batch SGD

Full-graph training:
• Train on entire training set
• Slower convergence per epoch
• Faster training per epoch
• Focus of this work

0

1

2
3

Vertices Images

Mini-batch SGD:
• Train on multiple samples from

training set
• Faster convergence per epoch
• Slower training per epoch
• Requires graph sampling, which

effects accuracy and performance

0

1

2
3

Vertices Images

samples

Full-graph vs. mini-batch SGD

• Vertices (unlike images) are dependent on each other
• L-layer GNN uses L-hop neighbors for vertices in batch
• Even for small L, must store ~whole graph for any minibatch for power-law graphs
• How to subsample from aggregated L-hop neighborhood and keep accuracy?
• CAGNET (Communication-Avoiding Graph Neural nETworks) full gradient descent

to avoid such issues: https://github.com/PASSIONLab/CAGNET/

No dependencies Layered dependencies

sample

https://github.com/PASSIONLab/CAGNET/

Graph convolution illustrated

g

d

k

b

2

5

3

4

s

v

m

w

r

q

p

z

u

n
o

y

x

t

f

j

a

i

c e

hl

1

b

j
k

h

c

e
f

i

l

a
m

o

v

r

x

s

n

p
q

t

y
z

u

w

2

3

4
1

d

g

5

Illustration of the information flow in a Graph Neural Network (GNN). On the left is the graph in
its natural form. The features (the shaded boxes) of vertices v and q are aggregated at vertex
1 through intermediate (green) vertices and edges. Features of other nodes are not shown but
are also propagated. During training, the error is backpropagated in the opposite direction in
the neural network, where each layer of the neural network propagates one hop of information.

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

Input Graph GNN of Input Graph

• Recall that a CNN can have different *channel* dimension at each layer.
• GNNs also have different embedding dimension at each layer

Graph convolution illustrated

Memory cost of full-batch GCN training

0

1

2

3

0

1

2

3

0

1

2

3

L layers

Storage= ∑!"#$ 𝑛𝑓!

≈ 𝑂 𝑛𝐿𝑓

Where 𝑓 = ∑!"#
$ &!

$

Say n = 100M, L = 4, f = 256, we are looking at 100B words, or 800GB

GNN Training

• Each node is initialized with a feature vector
– 𝐻! has initial feature vector per node (𝑛 𝑥 𝑓)

• Each node aggregates vectors of its neighbors, applies a weight
• Each layer computes gradients

𝐴 ∈ 𝑛 𝑥 𝑛

𝐻! ∈ 𝑛 𝑥 𝑓!

𝐺! ∈ 𝑛 𝑥 𝑓!

for i = 1 … E
for l = 1 … L

Zl = AT * Hl-1 * Wl
Hl = σ (Zl)

...
for l = L-1 … 1

Gl = A * Gl+1 * (Wl+1)T ⊙ σ’(Zl)
dH/dW = (Hl-1)T * A * Gl

𝑊! ∈ 𝑓! "# 𝑥 𝑓!

• A is sparse and f << n, so the main workhorse is SpMM (sparse
matrix times tall-skinny dense matrix)

CommunicaKon avoidance (CA)
In GNN Training

Alok Tripathy, Katherine Yelick, Aydın Buluç. Reducing CommunicaLon in Graph Neural Network Training. SC’20

§ Scales with both P (GPUs – x axis) and c (replication layers in CA algorithms)
§ This is 1 GPU/node on Summit (all GPUs per node results in paper)
§ Expect to scale with all GPUs / node with future architectures (e.g. Perlmutter)
§ More results (2D and 3D algorithm) and 6 GPUs/node in the paper

Feature aggregation from neighbors:
Used in Graph neural networks, graph embedding, etc.

GrB_mxm(W, GrB_NULL, <semiring>, A, H, <desc>)

A: sparse adjacency matrix, n-by-n
H: input dense matrix, n-by-f where f << n is the feature dimension
W: output dense matrix, new features

Pattern 3: Sparse matrix times tall-skinny
dense matrix (SpMM)

v1

v2

v5
v3

3.2 5.4 … 1.3

O(f) feature vector

v4v6

3.2 5.4 … 1.3
…

2.7 1.6 … 4.1
…

0.9 2.1 … 3.8
…

AT H

0.9 2.1 … 3.8
2.7 1.6 … 4.1

[More] Sparse Kernels in
Graph Learning

• Sampled Dense-Dense Matrix Multiplication (SDDMM) and
Sparse-times-Dense Matrix Multiplication (SpMM) appear in a
variety of applications:
– Graph Neural Networks with Self-Attention
– Collaborative Filtering with Alternating Least Squares
– Document Clustering by Wordmover’s Distance

• Both kernels involve a single sparse matrix and two (typically
tall-skinny) dense matrices. Typically, applications use both
operations in sequence.

• When the sparse matrix is the adjacency matrix of a graph, we
interpret the kernels as follows:
– SDDMM generates a message on each edge
– SpMM aggregates messages from incident edges

Message Generation

Message Aggregation

Graph attention: making edge weights
learnable

SDDMM: Sampled dense-dense
matrix multiplication

GrB_mxm(W, A, H, H, …);

2

3

4

6

1 h1

h4h2

h3 h6

w21

w41

w31 w61

h1
h2

w21= ⨂

⨂

A H

HT

W

=
w21 w31w41 w61

Sparse

same structure
with A

)(∘

SpMM and SDDMM algorithmic duality

SDDMM and SpMM have identical data access patterns.
Consider serial algorithms for both kernels:

for 𝑖, 𝑗 ∈ 𝑆
𝑅$% ≔ 𝑆$%(𝐴$: ⋅ 𝐵%:')

R ≔ SDDMM 𝑆, 𝐴, 𝐵

for 𝑖, 𝑗 ∈ 𝑆
𝐴$: += 𝑆$%𝐵%:

A ≔ SpMMA 𝑆, 𝐵

Every nonzero (i, j) requires an interaction between row i of A and row j of B.

As a result:

Every distributed algorithm for SpMM can be converted to an algorithm for
SDDMM with identical communication characteristics, and vice-versa.

V. Bharadwaj, A. Buluc, J. Demmel, "Distributed Memory Sparse Kernels for Machine Learning," 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2022

CreaKng a parallel SDDMM algorithm
from an SpMM algorithm
Consider any distributed algorithm for SpMMA that performs no
replicaKon. For all indices 𝑘 ∈ [1, 𝑟], the algorithm must (at some point)

• Co-locate 𝑆"#, 𝐴"$, 𝐵#$ on a single processor
• Perform the update 𝐴"$ += 𝑆"#𝐵#$

Transform this algorithm as follows:
1. Change the input sparse matrix 𝑆 to an output that is iniKalized to 0.
2. Change 𝐴 from an output to an input.
3. Have each processor execute the local update: 𝑆!" += 𝐴!#𝐵"#

The resul/ng algorithm performs SDDMM (up to mul/plica/on with
the values ini/ally in 𝑺) with communica/on characteris/cs and data

layout iden/cal to the original.

Communication Eliding Strategies for
FusedMM: SDDMM+SpMM

Mutually
exclusive
optimizations

Distributed FusedMM performance
Ti

m
e

𝜙 =
nnz 𝑆
𝑛𝑟

remains constant

𝜙 =
nnz 𝑆
𝑛𝑟

doubles at each process
count quadrupling

High-level outline

• Sparse matrices for graph algorithms
• Sparse matrices for graph learning
• Parallel algorithms for sparse matrix primi3ves
• Available so8ware

Sparse matrix-matrix multiplication

A

C(¬M) ⊕= AT ⊕.⊗ BT

M B.*()C

M: the output mask (also called a sampling matrix), always sparse if present
A, B: input matrices, at least one is sparse unless the mask is present
C: output matrix

SpGEMM: A, B are sparse, C can be sparse or dense (depending on shape)
Masked-SpGEMM: Same as SpGEMM, with mask (M) present
SpMM: A sparse, B and C dense (tall skinny), often no mask (M)
SDDMM: A, B are dense, M present, C sparse
SpMV: degenerate case of SpMM with B and C having 1 column
SpMSpV: degenerate case of SpGEMM with B, C, (possibly M) having 1 column

Basic serial SpGEMM
(Gustavson, 1978)

B

= x

C A

SPA

gather scatter/
accumulate

• Implemented in Matlab & other popular software
• Not directly applicable to multithreading: SPA falls out of cache and takes

up too much space in aggregate

Optimal as long as
flops > nnz, n

More parallelizable SpGEMM
(Azad et al., 2016)

• Implemented in CombBLAS and SparseSuite:GraphBLAS
• Memory efficient and suitable for mulDthreading
• Not great for high compression raDo cases (more later)

B"

= x"

C" A"
Heap%size%
nnz(B(:,i))%

New shared-memory SpGEMM kernels

■ Optimizing algorithms for Intel architectures
■ Heap [Azad, 2016]

– Priority queue indexed by column indices
– Requires logarithmic time to extract elements
– Space efficient: O(nnz(ai*))
■ Better cache utilization

■ Hash [Nagasaka, 2016]
– Uses hash table for accumulator, based on GPU work
■ Low memory usage and high performance

– Each thread once allocates the hash table and reuses it
– Extended to HashVector to exploit wide vector register

Fast shared-memory SpGEMM kernels

• Compression ratio (CR):
flops/nnz(C)

• Combinatorial BLAS and
HipMCL used to use heap

• Stable performance but
significant gap in high CR

• HipMCL inputs have high CR

Yusuke Nagasaka, Satoshi Matsuoka, Ariful
Azad, and Aydin Buluc. Performance
optimization, modeling and analysis of sparse
matrix-matrix products on multi-core and
many-core processors. Parallel Computing,
90:102545, 2019.

• We integrated hash
algorithms to CombBLAS
and HipMCL

New algorithms for Masked SpGEMM

IRU�L� ���Q�
b�&L
� �0L
��
��$L
�[�%��

P

F

PDVN $ % $FFXPXODWRU

D�

D�

D�

D�

&

$ % $%

PDVN PDVN�ത�$%

SODLQ

PDVNHG

Main Idea: When certain output
entries of SpGEMM are not needed
(masked out), it is wasteful to
materialize/compute the product
first and then to mask out entries

• Row-wise Masked SpGEMM using an accumulator to compute output row C𝑖∗.
• The rows corresponding to the column indices of entries in row A𝑖∗are merged and

filtered through the respecNve mask entries to compute C𝑖∗.
• This merging and filtering process can be performed in a number of ways.

Masked Sparse Accumulator (MSA)

VWDWHV

YDOXHV

VHW$OORZHG��

PDVN %�

VWDWHV

YDOXHV

%�

VWDWHV

YDOXHV

%�
 %�

Y

YDOXHV YDOXHV YDOXHV

VWDWHV VWDWHV VWDWHV

PDVN

LQVHUW�� LQVHUW��

LQVHUW�� LQVHUW�� UHPRYH��

63$ 63$63$

63$ 63$ 63$

Execution of 1 row of SpGEMM with Masked Sparse Accumulator (MSA)
(a) initialize (b) MSA+=u1 B1* (c) MSA+=u3 B3* (d) MSA+=u4 ×B4* (e) MSA+=u7 ×B7* (f) output

Srdjan Milakovic ́, Oguz Selvitopi, Israt Nisa, Zoran Budimlic ́, and Aydın Buluç. Parallel algorithms for masked sparse
matrix-matrix products. arXiv preprint arXiv:2111.09947, 2021 (Poster at PPOPP’22, paper at ICPP’22)

Performance of Masked SpGEMM algorithms

Srdjan Milakovic ́, Oguz Selvitopi, Israt Nisa, Zoran Budimlic ́, and Aydın Buluç. Parallel algorithms for masked sparse
matrix-matrix products. arXiv preprint arXiv:2111.09947, 2021 (Poster at PPOPP’22, paper at ICPP’22)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.2 1.4

Haswell

fr
a
c
ti
o
n
 o

f
te

s
t
c
a
s
e
s

Parallel runtime relative to the best

MSA-1P
Hash-1P
MSA-2P
Hash-2P

SS:SAXPY

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Haswell

fr
a
c
ti
o
n
 o

f
te

s
t
c
a
s
e
s

Parallel runtime relative to the best

MSA-1P
Hash-1P
MCA-1P

SS:SAXPY
SS::DOT

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

fr
a
c
ti
o
n
 o

f
te

s
t
c
a
s
e
s

Parallel runtime relative to the best

MSA-1P
Hash-1P
MCA-1P

Inner-1P
SS:SAXPY

SS:DOT

Top (left): Betweenness Centrality
Top (right): k-truss
Bottom: Triangle counting

SS is the Suitesparse:GraphBLAS
SS:DOT and Inner-1P do sparse dot products

Distributed SpMM algorithms

• 1D algorithm not shown, degeneraKon of sA-1.5D for the c=1 case
• Right before reducKon, sA-1.5D uses c Kmes more dense-matrix memory

• Stationary A, 1.5D algorithm
• A is split on a p/c-by-c grid

• Stationary C, 2D algorithm
• Memory optimal

A is sparse, B and C are dense

Could we do SpMM differently?

Oguz Selvitopi , Benjamin Brock, Israt Nisa, Alok Tripathy, Katherine Yelick, Aydın Buluç. Distributed-Memory
Parallel Algorithms for Sparse Times Tall-Skinny-Dense Matrix MulLplicaLon. ICS’21

8 16 32 64 128 256 512

0.8

1.6

2.4

3.2
4

amazon

8 16 32 64 128 256 512

0.4

0.8

1.2
1.6

com-Orkut

8 16 32 64 128 256 512

2.5

5

7.5
10

isolates

8 16 32 64 128 256 512

0.6

1.2

1.8

2.4
nm7

8 16 32 64 128 256 512

0.5

1

1.5

2

2.5
nm8

8 16 32 64 128 256 512

0.2

0.4
0.6
0.8

1
reddit

8 16 32 64 128 256 512

1.5

3

4.5

6
7.5

8 16 32 64 128 256 512

0.4

0.8

1.2

1.6
2

8 16 32 64 128 256 512

2.5

5

7.5

10
12.5

8 16 32 64 128 256 512

0.6

1.2

1.8

2.4

3

8 16 32 64 128 256 512

0.8

1.6

2.4

3.2

4

8 16 32 64 128 256 512

0.25

0.5
0.75

1

8 16 32 64 128 256 512

3

6

9

12

8 16 32 64 128 256 512

0.8

1.6

2.4

3.2

8 16 32 64 128 256 512

3

6

9

12

15

8 16 32 64 128 256 512

1

2

3

4

5

8 16 32 64 128 256 512

2

4

6

8

8 16 32 64 128 256 512

0.3

0.6

0.9
1.2

ru
nt

im
e

(s
ec

on
ds

)

number of processes

k = 128

k = 256

k = 512

sA-1.5D-BS sA-2D-BS sC-2D-BS sC-2D-AS sA-2D-AS

BS: bulk-synchronous (MPI)
AS: asynchronous (RDMA)

High-level outline

• Sparse matrices for graph algorithms
• Sparse matrices for graph learning
• Parallel algorithms for sparse matrix primi4ves
• Available so7ware

Combinatorial BLAS 2.0 innovations

• communication avoiding algorithms,
• hierarchical parallelism via in-node multithreading,
• accelerator support via GPU kernels,
• generalized semiring support,
• implementations of key data structures and functions,
• scalable distributed I/O operations for human-readable files

Combinatorial BLAS 2.0: Scaling Combinatorial
Algorithms on Distributed-Memory Systems

Ariful Azad , Oguz Selvitopi , Md Taufique Hussain, John R. Gilbert, and Aydın Buluç

Abstract—Combinatorial algorithms such as those that arise in graph analysis, modeling of discrete systems, bioinformatics, and
chemistry, are often hard to parallelize. The Combinatorial BLAS library implements key computational primitives for rapid development
of combinatorial algorithms in distributed-memory systems. During the decade since its first introduction, the Combinatorial BLAS
library has evolved and expanded significantly. This article details many of the key technical features of Combinatorial BLAS version
2.0, such as communication avoidance, hierarchical parallelism via in-node multithreading, accelerator support via GPU kernels,
generalized semiring support, implementations of key data structures and functions, and scalable distributed I/O operations for human-
readable files. Our article also presents several rules of thumb for choosing the right data structures and functions in Combinatorial
BLAS 2.0, under various common application scenarios.

Index Terms—Sparse matrices, parallel computing, combinatorics, graph theory, communication-avoidance algorithms

Ç

1 INTRODUCTION

COMBINATORIAL BLAS, or CombBLAS for short, is a distrib-
uted-memory library that provides a set of matrix and

vector data structures as well as highly-optimized implemen-
tations of fundamental operations on and among those data
structures. The original purpose of CombBLAS was to pro-
vide a proof-of-concept implementation of graph algorithms
in the language of linear algebra, demonstrating the feasibility
of this approach and the scalability of the resulting implemen-
tation. CombBLAS has been used as a benchmark by compet-
ing distributed-memory graph libraries. Since launch of the
GraphBLAS standardization effort [1], the API development
team [2] relied on the design and naming choices made by
CombBLAS.

Since its inception a decade ago [3], CombBLAS has been
used in awide variety of distributed data analytics and scien-
tific computing applications. CombBLAS has also evolved
heavily to take advantage of the developments in distributed
algorithms and architectures. This paper describes the evolu-
tion of CombBLAS over the last decade. The introduction
surveys the main contributions; the later sections go into
their detail.

Avoiding Communication. Communication is the primary
bottleneck in scaling data-intensive applications to exascale.
Communication-avoiding (CA) algorithms reorganize
the computation to reduce communication costs, often
asymptotically, and expose more parallelism. CombBLAS

was the first library to include a 3D (or 2.5D) sparse matrix-
matrix (SpGEMM) multiplication algorithm and since then
the algorithm has been expanded to minimize communica-
tion under a given (often tight) memory budget. We discuss
this integrated CA algorithm in Section 3. Recently, we also
integrated a 1.5D sparse times tall-skinny dense matrix mul-
tiplication (SpMM) algorithm into CombBLAS.

Hierarchical Parallelism. Exascale computers are going to
be based on either accelerators or multi-core CPUs. Original
CombBLAS used to run on a so-called “flat-MPI” model
where each core was tasked with running an MPI process.
With the core counts per compute node increasing from sin-
gle digits to almost triple digits, a flat MPI model is now
known to be unscalable due to increased communication
bottlenecks in Network Interface Card (NIC) [4]. Several
hierarchical programming models have been proposed
where the inter-node communication is handled by either
MPI or a different distributed communication library, and
the intra-node parallelism is handled via a multithreading
platform such as OpenMP. It is also possible to use MPI
hierarchically where a smaller MPI communicator is used
within a node, an approach known as MPI+MPI.

CombBLAS 2.0 follows the most popular paradigm of
using OpenMP parallelism within a node, and MPI for com-
munication across nodes. One reason we avoided a process-
based MPI+MPI approach is load imbalance. While Comb-
BLAS avoids most load balance issues by randomly permut-
ing sparse matrices during their assembly, the load
imbalance can still hurt the performance if the library runs on
100,000 processes. The use of OpenMP within a node allows
CombBLAS to rein in load imbalance since it reduces the
number of partitions of a sparse matrix by a factor propor-
tional to the degree of on-node multithreading. Furthermore,
popular sparse data structures such as Compressed Sparse
Columns (CSC) [5] becomewasteful as local matrices become
hypersparse [6] due to 2D or 3D decomposition on large
numbers of partitions. CombBLAS tames hypersparsity
either by specialized data structures such as Doubly-

! Ariful Azad and Md Taufique Hussain are with the Indiana University,
Bloomington, IN 47405 USA. E-mail: azad@iu.edu, mth@indiana.edu.

! Oguz Selvitopi and Aydın Buluç are with the Lawrence Berkeley National
Laboratory, Berkeley, CA 94720USA. E-mail: {roselvitopi, abuluc}@lbl.gov.

! John R. Gilbert is with the University of California, Santa Barbara, Santa
Barbara, CA 93106 USA. E-mail: gilbert@cs.ucsb.edu.

Manuscript received 25 Feb. 2021; revised 15 June 2021; accepted 16 June 2021.
Date of publication 1 July 2021; date of current version 15 Oct. 2021.
(Corresponding author: Aydın Buluç.)
Recommended for acceptance by S. Alam, L. CurfmanMcInnes, and K.Nakajima.
Digital Object Identifier no. 10.1109/TPDS.2021.3094091

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022 989

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Lawrence Berkeley National Laboratory. Downloaded on March 23,2022 at 21:16:59 UTC from IEEE Xplore. Restrictions apply.

4

(a) A 12⇥12 sparse
matrix distributed
in a 2D 6 ⇥ 6 grid
of 36 processes.

(b) A 3D grid of
36 processes orga-
nized in four 2D
3⇥ 3 grids

(c) Partitioning A
into the 3D grid
by splitting up the
columns

(d) Partitioning B
into the 3D grid
by splitting up the
rows

(e) Converting
a 6⇥6 grid to a
4⇥3⇥3 grid in the
regular way

(f) Conversion
from 2D to 3D
grid using reduced
communicators

Fig. 1: 2D and 3D distribution of a sparse matrix in CombBLAS. Purple, blue, yellow and green colors represent the first,
second, third and fourth layers respectively.

Fig. 2: Execution of the communication avoiding SpGEMM
for multiplying sparse matrix A with B to get C on a c ⇥p
p/c⇥

p
p/c process grid. Shown operations are involved

to generate the local portion of C only for the processes at
the second row and the second column of each layer during
the first stage of the algorithm.

(along the process column). The received submatrices are
locally multiplied by each process using a multithreaded
SpGEMM algorithm (Section ??). After

p
p stages, partial

results from all stages are merged to obtain the final result.
The costs of broadcasting input matrices in 2D SUMMA

quickly become a performance bottleneck at extreme
scale [?], [?]. To alleviate this bottleneck, CombBLAS 2.0
includes CA SpGEMM algorithms, following the success of
CA algorithms in dense linear algebra [?]. Our CA SpGEMM
algorithms distribute matrices on a c⇥

p
p/c⇥

p
p/c process

grid, where c denotes the number of layers in the third di-
mension. Fig. ?? shows an example of a 3D process grid with
four layers, where each layer is equivalent to a

p
p/c⇥

p
p/c

2D process grid. To facilitate 2D SUMMA algorithm in each
layer, we split A along the column and B along the row
into c pieces and then distribute different pieces to different
layers as illustrated in Figs. ?? and ??.

After input matrices are distributed on a 3D process grid,
each layer runs an instance of the 2D SUMMA algorithm
to obtain intermediate per-layer results Cint as shown in
Fig. ??. Here, each layer broadcasts submatrices of A along
the process row and submatrices of B along the process
columns on the 2D grid represented by the layer. Since these

broadcasts materialize on a smaller (by a factor of
p
c) com-

municator, their costs are reduced at extreme scale [?]. After
each layer completes their 2D multiplications, the partial
results are communicated across layers via an Alltoall com-
munication. We form the final result C by merging pieces
received from all layers. Since A and B are distributed
differently on the 3D grid, we distribute C like A (as shown
Fig. ??).

Guideline on selecting the number of layers (c). Unlike
dense CA algorithms [?] that replicate input matrices to
reduce communication, our CA SpGEMM splits input ma-
trices and does not require any extra memory for inputs
with increasing numbers of layers. Generally, the time re-
quired to broadcast A and B decreases as we increase c

(e.g., we could completely eliminate broadcasts by using
an p ⇥ 1 ⇥ 1 grid). However, as c increases, the costs of
inter-layer Alltoall communication and the final merging
also increase. Furthermore, the memory required to store
intermediate results increases with increasing number of
layers. Therefore, it is challenging to find the optimum c

as it depends on the tradeoff between broadcasts and inter-
layer Alltoall costs, as well as the available memory. Our
general guideline is to select c with c  3

p
p so that inter-

layer Alltoall does not dominate intra-layer broadcasts.

Conversion between 2D and 3D distributions. At present,
CombBLAS performs I/O only with 2D matrices (Sec-
tion ??). In order to use CA SpGEMM algorithms, we
convert matrices from a

p
p⇥p

p process grid to a
c⇥

p
p/c⇥

p
p/c grid. Fig. ?? and Fig. ?? show an example

how a 12⇥12 sparse matrix is converted from a 6⇥6 grid
to a 4⇥3⇥3 grid. CombBLAS provides two ways to create
3D matrices from 2D matrices. Fig. ?? shows how the con-
version is done in the regular way where processes on a 2D
grid are numbered in the row-major order. Next, we place
p/c processes numbered {i, i+1, ..., i+p/c�1} into the ith
layer. This conversion redistributes a 2D matrix on a 3D
grid using an Alltoallv operation among all processes. In
the second approach, we reinterpret the whole 2D grid as ap
p/c ⇥

p
p/c supergrid (shown with thick lines in Fig. ??)

where each cell of the supergrid has a
p
c⇥

p
c subgrid of

the 2D grid. Thus, each supergrid cell corresponds to one
cell in each layer of the 3D grid. We then assign each cell of
a subgrid to the corresponding cell in each layer of 3D grid
as shown in Fig. ??. Here, p/c Alltoallv calls run in parallel
with each Alltoallv involving c processes. By operating on
a reduced communicator, the latter approach reduces the

1 4 16 64 256
20

80

320

1280

5120

ru
nt

im
e

(m
se

c.
)

Virus

4 16 64 256
1

5

20

80

320

ru
nt

im
e

(s
ec

.)

number of nodes

Eukarya

CombBLAS 2.0

CombBLAS 1.2

CTF

PETSc

Trilinos

Combinatorial BLAS 2.0 performance

2D
with
seq

heap

2D
with

threaded
heap

2D
with

threaded
hash

3D
with

threaded
hash

0

20

40

T
im

e
(s

ec
)

(a) Friendster
(on 1024 Cori-KNL nodes)

2D
with
seq

heap

2D
with

threaded
heap

2D
with

threaded
hash

3D
with

threaded
hash

0

50

100

T
im

e
(s

ec
)

(b) Isolates2
(on 1024 Cori-KNL nodes)

Communication Computation

Distributed SpGEMM performance evolution

16 32 64 128

50

100

150

200

Archaea

16 32 64 128

100

200

300

400
500

Eukarya

32 64 128 256

300

600

900

1200

1500

ru
nt

im
e

(s
ec

.)

number of processes

Isolates1

CombBLAS CombBLAS-GPU

Impact of GPU-
enabled and disabled
CombBLAS backends
for HipMCL

Parallel SpGEMM runtime of
CombBLAS 1.0, 2.0, and other popular
parallel sparse linear algebra libraries

GraphBLAST

• First “high-performance” GraphBLAS implementation on the GPU
• Optimized to take advantage of both input and output sparsity
• Automatic direction-optimization through the use of masks
• Competitive with fastest GPU (Gunrock) and CPU (Ligra) codes
• Outperforms multithreaded SuiteSparse::GraphBLAS
Design principles:

1. Exploit input sparsity => direction-optimization
2. Exploit output sparsity => masking
3. Proper load-balancing => key for GPU implementations

Extensively evaluated on (more implemented, google for github repo)
• Breadth-first-search (BFS)
• Single-source shortest-path (SSSP)
• PageRank (PR)
• Triangle counting (TC)

Yang, Buluc, Owens, “GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU”,
ACM Transactions on Mathematical Software (TOMS), 2022

https://github.com/gunrock/graphblast

https://github.com/gunrock/graphblast

Conclusions

• Sparse matrix techniques underlie computations from disparate
fields:

a. Scientific computing
b. Graph learning
c. Graph algorithms
d. Bioinformatics

• GraphBLAS already seem to have the right abstraction with its
flexible masks and semirings to be the default backend of many
of these computations

• Extreme parallelism and data, and hence the need for distributed
memory parallelism is here to stay and will get worse

• Communication-avoiding algorithms, and novel data
structures for sparse matrices will be the key to overcome these
adverse technological trends

Acknowledgments

Ariful Azad, Vivek Bharadwaj, Ben Brock, Zoran Budimlić,
Tim Davis, James Demmel, Saliya Ekanayake, Marquita
Ellis, John Gilbert, Giulia Guidi, Md Taufique Hussain,
Jeremy Kepner, Nikos Krypides, Tim Mattson, Scott
McMillan, Srđan Milaković, Jose Moreira, Israt Nisa, John
Owens, Georgios Pavlopoulos, Doru Popovici, Gabriel
Raulet, Dan Rokhsar, Oguz Selvitopi, Yu-Hang Tang, Alok
Tripathy, Carl Yang, Kathy Yelick.

Our Research Team: http://passion.lbl.gov

Our work is funded by

http://passion.lbl.gov/

