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Abstract

Linear Algebraic Primitives for Parallel Computing on

Large Graphs

Aydın Buluç

This dissertation presents a scalable high-performance software library to be

used for graph analysis and data mining. Large combinatorial graphs appear

in many applications of high-performance computing, including computational

biology, informatics, analytics, web search, dynamical systems, and sparse matrix

methods.

Graph computations are difficult to parallelize using traditional approaches

due to their irregular nature and low operational intensity. Many graph com-

putations, however, contain sufficient coarse grained parallelism for thousands of

processors that can be uncovered by using the right primitives. We will describe

the Parallel Combinatorial BLAS, which consists of a small but powerful set of

linear algebra primitives specifically targeting graph and data mining applications.

Given a set of sparse matrix primitives, our approach to developing a library

consists of three steps. We (1) design scalable parallel algorithms for the key

primitives, analyze their performance, and implement them on distributed mem-

ory machines, (2) develop reusable software and evaluate its performance, and

finally (3) perform pilot studies on emerging architectures.

x



The technical heart of this thesis is the development of a scalable sparse (gen-

eralized) matrix-matrix multiplication algorithm, which we use extensively as a

primitive operation for many graph algorithms such as betweenness centrality,

graph clustering, graph contraction, and subgraph extraction. We show that 2D

algorithms scale better than 1D algorithms for sparse matrix-matrix multiplica-

tion. Our 2D algorithms perform well in theory and in practice.
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Chapter 1

Introduction and Background

Come, Come, Whoever You Are

Wonderer, worshipper, lover of leaving. It doesn’t matter.

Ours is not a caravan of despair.

Come, even if you have broken your vow a thousand times

Come, yet again, come, come.

Mevlana Celaleddin Rumi

This thesis provides a scalable high-performance software library, the Combi-

natorial BLAS, to be used for graph analysis and data mining. It targets parallel

computers and its main toolkit is composed of sparse linear algebraic operations.

In this chapter, I will try to give the motivation behind this work. Most

of these motivations are accompanied by historical background and references

to recent trends. The first section is a personal interpretation of the parallel

computing world as of early 2010. Section 1.2 reviews the state of the art of

parallel graph computations in practice. The following two sections, Sections 1.3

and 1.4, summarize the justifications of the two main ideas behind this thesis:
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Chapter 1. Introduction and Background

the use of primitives and of sparse matrices. The final section summarizes the

contributions and provides an outline of this thesis.

1.1 The Landscape of Parallel Computing

It is no news that the economy is driving the past, present, and future of

computer systems. It was the economy that drove the “killer micro” [45] and

stalled innovative supercomputer design in the early 1990s. It is the economy that

is driving GPUs to get faster and forcing a unification of GPU/CPU architectures

today. It will be the economy that will drive energy efficient computing and

massive parallelism. This is partially due to a number of fundamental physical

limitations on sequential processing, such as the speed of light and the dissipation

of heat [156].

Although the literature contains several taxonomies of parallelism [85, 120,

176], one can talk about two fundamental types of parallelism available for ex-

ploitation in software: data parallelism and task parallelism. The former executes

the same instruction on a relatively large data set. For example, elementwise ad-

dition of two vectors has lots of data parallelism. Task parallelism, on the other

hand, is achieved by decomposing the application into multiple independent tasks

that can be executed as separate procedures. A multi-threaded web server pro-
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vides a good example for task parallelism, where multiple requests of different

kinds are handled in parallel. In reality, most applications use a combination of

data and task parallelism, and therefore, fall somewhere in the middle of the spec-

trum. Although it is possible to rewrite some applications that were previously

written in the data parallel fashion in a task parallel fashion, and vice versa, this

is not always possible.

In general, one can speak about a relationship between the current parallel

architectures and types of available parallelism. For example, massively multi-

threaded architectures [91, 129] are better than others when dealing with large

amounts of task parallelism. On the other side, GPUs [1, 2] excel in data parallel

computations. However, as most computations cannot be hard-classified as hav-

ing solely task parallelism or solely data parallelism, an ultimate direct mapping

of applications to architectures is unlikely to emerge.

From the late 1990s to the late 2000s, the supercomputing market was mostly

dominated by clusters made from commercial off-the-shelf processors. After this

decade of relative stability in parallel computing architectures, we are now expe-

riencing disruptions and divergences. Different application have different resource

requirements, leading to diversity and heterogeneity in parallel computing ar-

chitectures. On the other hand, the economic of scale dictate that a handful

general-purpose architectures that can be manufactured with low cost will domi-
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nate the HPC market. While building custom architectures that perfectly match

the underlying problem might be tempting for the HPC community, commodity

architectures have the advantage of achieving a much lower cost per unit. Special

purpose supercomputers, such as Anton [182], which is used to simulate molecular

dynamics of biological systems, will still find applications where the reward ex-

ceeds the cost. For broader range of applicability, however, supercomputers that

feature a balanced mixture of commodity and custom parts are likely to prevail.

Examples of currently available high-performance computing systems include

the following:

1. Distributed memory multiprocessors (such as the Cray XT4 and XT5) and

beowulf clusters that are primarily programmed using MPI. This class of

machines also include the RISC-based distributed-memory multi-processors

such as the IBM BlueGene [193],

2. ccNUMA and multicore architectures that are programmed either explicitly

through pthreads or through concurrency platforms like Cilk/Cilk++ [138],

OpenMP and Intel Building Blocks [167],

3. Massively multithreaded shared memory machines such as the Cray XMT [91]

and the Sun Niagara [129], and
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4. GPU or IBM Cell accelerated clusters. The largest scale example of the

latter (as of March 2010) is the Roadrunner system deployed at Los Alamos

National Laboratory [22].

Regardless of which architure(s) will prevail in the end, the economic trends

favor more parallelism in computing because building a parallel computer using

large number of simple processors has proved to be more efficient, both financially

and in terms of power, than using a small number of complex processors [181]. The

software world has to deal with this revolutionary change in computing. It is safe

to say that the software industry has been caught off-guard by this challenge. Most

programmers are not fundamentally trained to think “in parallel”. Many tools,

such as debuggers and profilers, that are taken for granted when writing sequential

programs, were (and still are) lacking for parallel software development. In the last

few years, there have been improvements towards making parallel programming

easier, including parallel debuggers [9, 199], concurrency platforms [138, 167], and

various domain specific libraries. Part of this thesis strives to be a significant

addition to the latter group of parallel libraries.

One of the most promising approaches for tackling the software challenge in

parallel computing is the top-down, application-driven, approach where common

algorithmic kernels in various important application domains are identified. In

the inspiring Berkeley Report [13], these kernels are called “dwarfs”(or “motifs”).
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This thesis is mostly concerned about the close interaction between two of those

dwarfs: graph traversal and sparse linear algebra.

1.2 Parallel Graph Computations

This section surveys working implementations of graph computations, rather

than describing research on parallel graph algorithms. We also focus on frame-

works and libraries instead of parallelization of stand-alone applications. The

current landscape of software for graph computations is summarized in Table 1.1.

Table 1.1: High-performance libraries and toolkits for parallel graph analysis

Library/Toolkit Parallelism Abstraction Offering Scalability

PBGL [108] Distributed Visitor Algorithms Limited
GAPDT [105] Distributed Sparse Matrix Both Limited
MTGL [30] Shared Visitor Algorithms Unknown
SNAP [145] Shared Various Both Good

Combinatorial BLAS Distributed Sparse Matrix Kernels Good

The Parallel Boost Graph Library (PBGL) [108] is a parallel library for dis-

tributed memory computing on graphs. It is a significant step towards facilitating

rapid development of high performance applications that use distributed graphs

as their main data structure. Like sequential Boost Graph Library [184], it has

a dual focus on efficiency and flexibility. It heavily relies on generic program-
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ming through C++ templates. To the user, it offers complete algorithms instead

of tools to implement the algorithms. Therefore, its applicability is limited for

users who need to experiment with new algorithms or instrument the existing

ones. Lumsdaine et al.[143] observed poor scaling of PBGL for some large graph

problems.

We believe that the scalability of PBGL is limited due to two main reasons.

The graph is distributed by vertices instead of edges, which corresponds to a

one-dimensional partitioning in the sparse matrix world. In Chapter 3, we show

that this approach is unscalable. We also believe that the visitor concept is too

low-level for providing scalability in distributed memory because it makes the

computation data driven and obstructs opportunies for optimization.

The Graph Algorithms and Pattern Discovery Toolbox (GAPDT) [105] pro-

vides several tools to manipulate large graphs interactively. It is designed to run

sequentially on Matlab [104] or in parallel on Star-P [179], a parallel dialect

of Matlab. Although its focus is on algorithms, the underlying sparse matrix

infrastructures of Matlab and Star-P also exposes necessary kernels (linear

algebraic building blocks, in this case). It targets the same platform as PBGL,

namely distributed-memory machines. Differently from PBGL, it uses operations

on distributed sparse matrices for parallelism. It provides an interactive envi-

ronment instead of compiled code, which makes it unique among all the other
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approaches we survey here. Similar to PBGL, GAPDT’s main weakness is its

limited scalability due to the one-dimensional distribution of its sparse matrices.

A number of approaches have been tried in order to mitigate the poor scala-

bility. One architectural approach is to tolerate latency by using massive multi-

threading. This idea, known as interleaved multithreading [135, 201], relies

on CPUs that can switch thread contexts on every cycle. Currently, a limited

number of architectures are capable of performing true hardware multithread-

ing. Cray XMT(formerly MTA) [91], IBM Cyclops64 [10], and Sun Niagara [129]

based servers are among the important examples. The first two exclusively target

the niche supercomputing market, therefore limiting their large scale deployment

prospects. In contrast, Sun Niagara processors are used in Sun’s business servers

that run commercial multithreaded applications. With its impressive performace

per watt for high throughput applications [134], Niagara may make massive hard-

ware multithreading affordable and widespread as long as it maintains its status

as a competitive server platform for commercial applications.

All three massively multithreaded architectures, namely XMT, Cyclops64, and

Niagara, tolerate the data access latencies by keeping lots of threads on the fly.

Cyclops64 is slightly different than others in the way it manages thread contexts.

In Cyclops64, each thread context has its own execution hardware , whereas in

MTA/XMT the whole execution pipeline is shared among threads. Niagara is

8



Chapter 1. Introduction and Background

somewhere in between in the sense that a group of threads (composed of four

threads) shares a processing pipeline but each group has a different pipeline from

other groups. Niagara differs from the other two also by having large on-die

caches, which are managed by a simple cache coherence protocol. Interleaved

multithreading, although very promising, has at least one more obstacle in addi-

tion to finding a big enough market. The large number of threads that are kept

on the fly puts too much pressure on the bandwidth requirements of the inter-

connect. In the case of MTA-2, this was solved by using a modified Cayley graph

whose bisection bandwidth scales linearly with the number of processors. The

custom interconnect later proved to be too expensive, and for the next generation

XMT, Cray decided to use a 3D torus interconnect instead. This move made the

XMT system more economically accessible, but it also sacrificed scalability for

applications with high bandwidth requirements [144].

The MultiThreaded Graph Library (MTGL) [30] was originally designed to

facilitate the development of graph applications on massively multithreaded ma-

chines of Cray, namely MTA-2 and XMT. Later, it was extended to run on the

mainstream shared-memory and multicore architectures as well [23]. The MTGL

is a significant step towards an extendible and generic parallel graph library. It

will certainly be interesting to quantify the abstraction penalty paid due to its
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generality. As of now, only preliminary performance results are published for

MTGL.

The Small-world Network Analysis and Partitioning (SNAP) [145] framework

contains algorithms and kernels for exploring large-scale graphs. It is a collection

of different algorithms and building blocks that are optimized for small-world net-

works. It combines shared-memory thread level parallelism with state-of-the-art

algorithm engineering for high performance. The graph data can be represented

in a variety of different formats depending on the characteristics of the algorithm

that operates on it. Its performance and scalability is high for the reported algo-

rithms, but a head-to-head performance comparison with PBGL and GAPDT is

not available.

Both MTGL and SNAP are great toolboxes for graph computations on multi-

threaded architectures. For future extensions, MTGL relies on the visitor concept

it inherits from the PBGL, while SNAP relies on its own kernel implementations.

Both software architectures are maintainable as long as the target architectures

remain the same.

Algorithms on massive graphs with billions of vertices and edges require hun-

dreds of gigabytes of memory. For a special purpose supercomputer such as XMT,

memory might not be a problem; but commodity shared-memory architectures

have limited memory. Thus, MTGL or SNAP will likely to find limited use in com-
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modity architectures without either distributed memory or out-of-core support.

Experimental studies show that an out-of-core approach [8] is two orders of mag-

nitude slower than an MTA-2 implementation for parallel breadth-first search [20].

Given that many graph algorithms, such as clustering and betweenness centrality,

are computationally intensive, out-of-core approaches are infeasible. Therefore,

distributed memory support for running graph applications of general purpose

computers is essential. Neither MTGL or SNAP seem easily extendible to dis-

tributed memory.

1.3 The Case for Primitives

Large scale software development is a formidable task that requires an enor-

mous amount of human expertise, especially when it comes to writing software

for parallel computers. Writing every application from scratch is an unscalable

approach given the complexity of the computations and the diversity of the com-

puting environments involved. Raising the level of abstraction of parallel comput-

ing by identifying the algorithmic commonalities across applications is becoming a

widely accepted path to solution for the parallel software challenge [13, 44]. Prim-

itives both allow algorithm designers to think on a higher level of abstraction, and

help to avoid duplication of implementation efforts.
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Achieving good performance on modern architectures requires substantial pro-

grammer effort and expertise. Primitives save programmers from implementing

the common low-level operations. This often leads to better understanding of the

mechanics of the computation in hand because carefully designed primitives can

usually handle seemingly different but algorithmically similar operations. Pro-

ductivity of the application-level programmer is also dramatically increased as he

or she can now concentrate on the higher-level structure of the algorithm without

worrying about the low level details. Finally, well-implemented primitives often

outperform hand-coded versions. In fact, after a package of primitives proves to

have widespread use, it is usually developed and tuned by the manifacturers for

their own architectures.

1.3.1 A Short Survey of Primitives

Primitives have been successfully used in the past to enable many computing

applications. The Basic Linear Algebra Subroutines (BLAS) for numerical linear

algebra are probably the canonical example [136] of a successful primitives pack-

age. The BLAS became widely popular following the success of LAPACK [12].

The BLAS was originally designed for increasing modularity of scientific software,

and LINPACK used it to increase the code sharing among projects [78]. LIN-

PACK’s use of the BLAS encouraged experts (preferably the vendors themselves)
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implement its vector operations for optimal performance. Other than the effi-

ciency benefits, it offered portability by providing a common interface for these

subroutines. It also indirectly encouraged structured programming.

Later, as computers started to have deeper memory hierarchies and advances in

microprocessors made memory access more costly than performing floating-point

operations, BLAS Level 2 [81] and Level 3 [80] specifications were developed,

in late 1980s. They emphasize blocked linear algebra to increase the ratio of

floating-point operations to slow memory accesses. Although BLAS 2 and 3 had

different tactics for achieving high performance, both followed the same strategy

of packaging the commonly used operations and having experts provide the best

implementations through performing algorithmic transformations and machine-

specific optimizations. Most of the reasons for developing the BLAS package

about four decades ago are valid for the general case for primitives today.

Google’s MapReduce programming model [75], which is used to process mas-

sive data on clusters, is also of similar spirit. The programming model allows the

user to customize two primitives: map and reduce. Although two different cus-

tomized map operations are likely to perform different computations semantically,

they perform similar tasks algorithmically as they both apply a (user-defined)

function to every element of the input set. A similar reasoning applies for the

reduce operation.
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Guy Blelloch advocates the use of prefix sums (scan primitives) for implement-

ing a wide range of classical algorithms in parallel [32]. The data-parallel language

NESL is primarily based on these scan primitives [33]. Scan primitives have also

been ported to manycore processors [117] and found widespread use.

1.3.2 Graph Primitives

In contrast to numerical computing, a scalable software stack that eases the ap-

plication programmer’s job does not exist for computations on graphs. Some of the

primitives we surveyed can be used to implement a number of graph algorithms.

Scan primitives are used for solving the maximum flow, minimum spanning tree,

maximal independent set, and (bi)connected components problems efficiently. On

the other hand, it is possible to implement some clustering and connected com-

ponents algorithms using the MapReduce model, but the approaches are quite

unintuitive and the performance is unknown [64]. Our thesis fills a crucial gap

by providing primitives that can be used for traversing graphs. By doing so, the

Combinatorial BLAS can be used to perform tightly-coupled, such as shortest

paths based and diffusion based, computations on graphs.

We consider the shortest paths problem on dense graphs in Chapter 7. By

using an unorthodox blocked recursive elimination strategy together with a highly

optimized matrix-matrix multiplication, we achieve up to 480 times speedup over
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a standard code running on a single CPU. The conclusion of that pilot study

is that carefully chosen and optimized primitives, such as the ones found in the

combinatorial BLAS, are the key to achieve high performance.

1.4 The Case for Sparse Matrices

The connection between graphs and sparse matrices was first exploited for com-

putation five decades ago in the context of Gaussian elimination [160]. Graph algo-

rithms have always been a key component in sparse matrix computations [65, 101].

In this thesis, we turn this relationship around and use sparse matrix methods

to efficiently implement graph algorithms [103, 105]. Sparse matrices seemlessly

raise the level of abstraction in graph computations by replacing the irregular data

access patterns with more structured matrix operations.

The sparse matrix infrastructures of the Matlab, Star-P, Octave and R

programming languages [94] allow for work-efficient implementations of graph al-

gorithms. Star-P is a parallel dialect of Matlab that includes distributed sparse

matrices, which are distributed across processors by blocks of rows. The efficiency

of graph operations results from the efficiency of sparse matrix operations. For

example, both Matlab and Star-P follow the design principle that the stor-

age of a sparse matrix should be proportional to the number of nonzero elements
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and the running time for a sparse matrix algorithm should be proportional to

the number of floating point operations required to obtain the result. The first

principle ensures storage efficiency for graphs while the second principle ensures

work efficiency.

Graph traversals, such as breadth-first search and depth-first search, are the

natural tools for designing graph algorithms. Traversal-based algorithms visit

vertices following the connections (edges) between them. When translated into

actual implementation, this traditional way of expressing graph algorithms poses

performance problems in practice. Here, we summarize these challenges, which

are examined in detail by Lumsdaine et al. [143], and provide a sparse matrix

perspective for tackling these challenges.

Traditional graph computations suffer from poor locality of reference due to

their irregular access patterns. Graphs computations in the language of linear

algebra, on the other hand, involve operations on matrix blocks. Matrix operations

give opportunities for the implementer to restructure the computation in a way

that would exploit the deep memory hierarchies of modern processors.

Implementations for parallel computers also suffer from unpredictable com-

munication patterns because they are mostly data driven. Consider an imple-

mentation of parallel breadth-first search in which the vertices are assigned to

processors. The owner processor finds the adjacency of each vertex in the current
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frontier, in order to form the next frontier. The adjacent vertices are likely to be

owned by different processors, resulting in communication. Since the next fron-

tier is not known in advance, the schedule and timing of this communication is

also not known in advance. On the other hand, sparse linear algebra operations

have fixed communication schedules that are built into the algorithm. Although

sparse matrices are no panacea for irregular data dependencies, the operations on

them can be restructured to provide more opportunities for optimizing the com-

munication schedule such as overlapping communication with computation and

pipelining.

Both in serial and parallel settings, the computation time is dominated by the

latency of fetching the data (from slow memory in serial case and from remote

processor’s memory in parallel case) to local registers, due to fine grained data

accesses of graph computations. Massively multithreaded architectures tolerate

this latency by keeping lots of outstanding memory requests on the fly. Sparse

matrix operations have coarse-grained parallelism, which is much less affected by

latency costs.
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1.5 Definitions and Conventions

Let A ∈ S
m×n be a sparse rectangular matrix of elements from an arbitrary

semiring S. We use nnz (A) to denote the number of nonzero elements in A. When

the matrix is clear from context, we drop the parenthesis and simply use nnz . For

sparse matrix indexing, we use the convenient Matlabr colon notation, where

A(:, i) denotes the ith column, A(i, :) denotes the ith row, and A(i, j) denotes

the element at the (i, j)th position of matrix A. For one-dimensional arrays, a(i)

denotes the ith component of the array. Sometimes, we abbreviate and use nnz (j)

to denote the number of nonzeros elements in the jth column of the matrix in

context. Array indices are 1-based throughout this thesis, except where stated

otherwise. We use flops(A opB), pronounced “flops”, to denote the number of

nonzero arithmetic operations required by the operation A opB. Again, when the

operation and the operands are clear from context, we simply use flops. To reduce

notational overhead, we take each operation’s complexity to be at least one, i.e.

we say O(·) instead of O(max(·, 1)).

For testing and analysis, we have extensively used three main models: the

R-MAT model, the Erdős-Rényi random graph model, and the regular 3D grid

model. We have frequently used other matrices for testing, which we will explain

in detail in their corresponding chapters.
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1.5.1 Synthetic R-MAT Graphs

The R-MAT matrices represent the adjacency structure of scale-free graphs,

generated using repeated Knonecker products [56, 140]. R-MAT models the be-

havior of several real-world graphs such as the WWW graph, small world graphs,

and citation graphs. We have used an implementation based on Kepner’s vector-

ized code [16], which generates directed graphs. Unless otherwise stated, R-MAT

matrices used in our experiments have an average of degree of 8, meaning that

there will be approximately 8n nonzeros in the adjacency matrix. The parameters

for the generator matrix are a = 0.6, and b = c = d = 0.13. As the generator

matrix is 2-by-2, R-MAT matrices have dimensions that are powers of two. An

R-MAT graph with scale l has n = 2l vertices.

1.5.2 Erdős-Rényi Random Graphs

An Erdős-Rényi random graph G(n, p) has n vertices, each of the possible

n2 edges in the graph exists with fixed probability p, independent of the other

edges [88]. In other words, each edge has an equally likely chance to exist. A

matrix modeling the Erdős-Rényi graph G(n, p) is expected to have with n2/p

nonzeros, independently and identically distributed (i.i.d.) across the matrix.

Erdős-Rényi random graphs can be generated using the sprand function of Mat-

lab.
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1.5.3 Regular 3D Grids

As the representative of regular grid graphs, we have used matrices arising

from graphs representing the 3D 7-point finite difference mesh (grid3d). These

input matrices, which are generated using the Matlab Mesh Partitioning and

Graph Separator Toolbox [103], are highly structured block diagonal matrices.

1.6 Contributions

This thesis presents the combinatorial BLAS, a parallel software library that

consists of a set of sparse matrix primitives. The combinatorial BLAS enables

rapid parallel implementation of graph algorithms through composition of primi-

tives. The development of this work has four main contributions.

The first contribution is the analysis of important combinatorial algorithms

to identify the linear-algebraic primitives that serve as the workhorses of these

algorithms. Early work on identifying primitives was explored in the relevant

chapters [92, 168] of an upcoming book on Graph Algorithms in the Language

of Linear Algebra [127]. In short, the majority of traditional and modern graph

algorithms can be efficiently written in the language of linear algebra, except for al-

gorithms whose complexity depends on a priority queue data structure. Although

we will not be duplicating those efforts, non-exclusive list of graph algorithms that
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are represented in the language of matrices, along with detailed pseudocodes, can

be found in various chapters of this thesis.

The second contribution is the design, analysis, and implementation of key

sparse matrix primitives. Here we take both theory and practice into account by

providing practically useful algorithms with rigorous theoretical analysis. Chap-

ter 2 provides details on implementing key primitives using sparse matrices. It

surveys a variety of sequential sparse matrix storage formats, pinpointing their

advantages and disadvantages for the primitives at hand. Chapter 3 presents novel

algorithms for the least studied and the most important primitive in the combina-

torial BLAS: Generalized sparse matrix-matrix multiplication (SpGEMM). The

work in this chapter mainly targets scalability on distributed memory architec-

tures.

The third contribution is software development and performance evaluation.

The implementation details and performance enhancing optimizations for the

SpGEMM primitive is separately analyzed in the last two sections of Chapter 3.

These sections also report on the performance of the SpGEMM primitive on var-

ious test matrices. Chapter 4 explains the interface design for the combinatorial

BLAS in detail. The whole combinatorial BLAS library is evaluated using two

important graph algorithms, in terms of both performance and ease-of-use, in

Chapter 5. Chapter 6 (like Chapter 3) provide another detailed example of op-
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timizing primitives, this time sparse matrix-vector and sparse matrix-transpose-

vector operations on multicore architectures.

The first three contributions are incidentally typical components of a research

project in combinatorial scientific computing [119], except that the roles of prob-

lems and solutions are swapped. In other words, we are solving a combinatorial

problem using matrix methods instead of solving a matrix problem using combi-

natorial methods.

The last contribution is our pilot studies on emerging architectures. In the

context of this thesis, the contributions in Chapters 6 and 7, apart from being

important in themselves, should also be seen as seed projects evaluating the fea-

sibility of extending our work to a complete combinatorial BLAS implementation

on GPU’s and shared-memory systems.
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Chapter 2

Implementing Sparse Matrices
for Graph Algorithms

Abstract

We review and evaluate storage formats for sparse matrices in the light
of the key primitives that are useful for implementing graph algorithms
on them. We present complexity results of these primitives on different
sparse storage formats both in the RAM model and in the I/O model.
RAM complexity results were known except for the analysis of sparse
matrix indexing. On the other hand, most of the I/O complexity
results presented are new. The paper focuses on different variations
of the triples (coordinates) format and the widely used compressed
sparse formats (CSR/CSC). For most primitives, we provide detailed
pseudocodes for implementing them on triples and CSR/CSC.

2.1 Introduction

The choice of data structure is one of the most important steps in algorithm

design and implementation. Sparse matrix algorithms are no exception. The

representation of a sparse matrix not only determines the efficiency of the al-

gorithm that operates on it, but also influences the algorithm design process.
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Given this bidirectional relationship, this chapter reviews and evaluates exist-

ing sparse matrix data structures with key primitives in mind. In the case of

array-based graph algorithms, these primitives are sparse matrix-vector multipli-

cation (SpMV), sparse matrix-matrix multiplication (SpGEMM), sparse matrix

indexing/assignment (SpRef/SpAsgn), and sparse matrix addition (SpAdd). The

administrative overheads of different sparse matrix data structures, both in terms

of storage and processing, are also important and are exposed throughout the

chapter.

One of the traditional ways to analyze the computational complexity of a

sparse matrix operation is by counting the number of floating point operations

performed. This is similar to analyzing algorithms according to their RAM com-

plexities [7]. As memory hierarchies became dominant in computer architectures,

the I/O complexity (also called the cache complexity) of a given algorithm became

as important as its RAM complexity. Aggarwal and Vitter [6] roughly defines the

I/O complexity of an algorithm as the number of block memory transfers it makes

between the fast and slow memories. Cache performance is especially important

for sparse matrix computations due to their irregular nature and low ratio of flops

to memory access. Another approach to hiding the memory-processor speed gap is

to use massively multithreaded architectures such as Cray’s XMT [91]. However,

these architectures have limited availability and high costs at present.
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In many popular I/O models, only two levels of memory are considered for

simplicity: a fast memory, and a slow memory. The fast memory is called cache

and the slow memory is called disk, but the analysis is valid at different levels of

memory hierarchy with appropriate parameter values. Both levels of memories are

partitioned into blocks of size L, usually called the cache line size. The size of the

fast memory is denoted by Z. If data needed by the CPU is not found in the fast

memory, a cache miss occurs, and the memory block containing the needed data

is fetched from the slow memory. One exception to these two-level I/O models is

the uniform memory hierarchy of Alpern et al. [11], which views the computer’s

memory as a hiearchy of increasingly large memory modules. Figure 2.1 shows

a simple memory hierarchy with some typical latency values as of 2006. Meyer

et al. provide a contemporary treatment of algorithmic implications of memory

hiearchies [150].

We present the computational complexity of algorithms in the RAM model

as well as the I/O model. However, instead of trying to come up with the most

I/O efficient implementations, we analyze the I/O complexities of the most widely

used implementations, which are usually motivated by the RAM model. There

are two reasons for this approach. First, I/O optimality is still an open problem

for some of the key primitives presented in this chapter. Second, I/O efficient
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implementations of some key primitives turn out to be suboptimal in the RAM

model with respect to the amount of work they do.

We use scan(A) = ⌈nnz (A)/L⌉ as an abbreviation for the I/O complexity of

examining all the nonzeros of matrix A in the order that they are stored.

Now, we state two crucial assumptions that are used throughout this chapter.

Assumption 1. A sparse matrix with dimensions m× n has nnz ≥ m,n. More

formally, nnz = Ω(n,m)

Assumption 1 simplifies the asymptotic analysis of the algorithms presented

in this chapter. It implies that when both the order of the matrix and its num-

ber of nonzeros are included as terms in the asymptotic complexity, only nnz is

pronounced. While this assumption is common in numerical linear algebra (it

is required for full rank), in some parallel graph computation it may not hold.

In this chapter, however, we use this assumption in our analysis. In Chapter 3

(Section 3.2.1), we present an SpGEMM algorithm specifically designed for hy-

persparse matrices, with nnz < n,m.

Assumption 2. The fast memory is not big enough to hold data structures of

O(n) size, where n is the matrix dimension.

In most settings, especially for sparse matrices representing graphs, nnz =

Θ(n), which means that O(n) data structures are asymptotically in the same order
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CPU


CHIP


Registers


L1

Cache


~ 64 KB


L2

Cache


~ 1 MB


On/off chip

Shared/Private


Main Memory

(RAM)


~ 2 GB


L1 cache hit:

1-3 cycles


L2 cache hit:

10-15 cycles


RAM cache hit:

100-250 cycles


Figure 2.1: A typical memory hierarchy (approximate values as of 2006, partially

adapted from Hennessy and Patterson [120], assuming a 2 Ghz processor)

as the whole problem. Assumption 2 is also justified when the fast memory under

consideration is either the L1 or L2 cache. Out-of-order CPUs can generally hide

memory latencies from L1 cache misses, but not L2 cache misses [120]. Therefore,

it is more reasonable to treat the L2 cache as the fast memory and RAM (main

memory) as the slow memory. The largest sparse matrix that fills the whole

machine RAM (assuming the triples representation that occupies 16 bytes per

nonzero, and a modern system with 1 MB L2 cache and 2 GB of RAM) has

231/16 = 227 nonzeros. Such a square sparse matrix, with an average of 8 nonzeros

per column, has dimensions 224 × 224. A single dense vector of double-precision

floating point numbers with 224 elements require 128 MB of memory, which is

clearly much larger than the size of the L2 cache.
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The rest of this chapter is organized as follows. Section 2.2 describes the

key sparse matrix primitives. Section 2.3 reviews the triples/ coordinates repre-

sentation, which is natural and easy to understand. The triples representation

generalizes to higher dimensions [15]. Its resemblence to database tables will help

us expose some interesting connections between databases and sparse matrices.

Section 2.4 reviews the most commonly used compressed storage formats for gen-

eral sparse matrices, namely compressed sparse row (CSR) and compressed sparse

column (CSC). Section 2.5 discusses some other sparse matrix representations pro-

posed in the literature, followed by a conclusion. We introduce new sparse matrix

data structures in Chapters 3 and 6. These data structures, DCSC and CSB, are

both motivated by parallelism.

We explain sparse matrix data structures progressively, starting from the least

structured and most simple format (unordered triples) and ending with the most

structured formats (CSR and CSC). This way, we provide motivation on why ex-

perts prefer to use CSR/CSC formats by comparing and contrasting them with

simpler formats. For example, CSR, a dense collection of sparse row arrays, can

also be viewed as an extension of the triples format enhanced with row indexing

capabilities. Furthermore, many ideas and intermediate data structures that are

used to implement key primitives on triples are also widely used with implemen-

tations on CSR/CSC formats.
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2.2 Key Primitives

Most of the sparse matrix operations have been motivated by numerical linear

algebra. Some of them are also useful for graph algorithms:

1. Sparse matrix indexing and assignment (SpRef/SpAsgn)

2. Sparse matrix-dense vector multiplication (SpMV)

3. Sparse matrix addition and other pointwise operations (SpAdd)

4. Sparse matrix-sparse matrix multiplication (SpGEMM)

SpRef is the operation of storing a submatrix of a sparse matrix in another

sparse matrix (B ← A(p,q)), and SpAsgn is the operation of assigning a sparse

matrix to a submatrix of another sparse matrix (B(p,q)← A). It is worth noting

that SpAsgn is the only key primitive that mutates its sparse matrix operand in

the general case1. Sparse matrix indexing can be quite powerful and complex if we

allow p and q to be arbitrary vectors of indices. Therefore, this chapter limits itself

to row-wise (A(i, :)), column-wise (A(:, j)), and element-wise (A(i, j)) indexing,

as they find more widespread use in graph algorithms. SpAsgn also requires the

matrix dimensions to match. For example, if B(:, i) = A where B ∈ S
m×n, then

A ∈ S
1×n.

1While A = A⊕B or A = AB may also be considered as mutator operations, these are just
special cases when the output is the same as one of the inputs
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C : R
S(m×n) = InnerProduct-SpGEMM(A : R

S(m×k),B : R
S(k×n))

1 for i← 1 to m
2 do for j ← 1 to n
3 do C(i, j)← A(i, :) ·B(:, j)

Figure 2.2: Inner product formulation of matrix multiplication

C : R
S(m×n) = OuterProduct-SpGEMM(A : R

S(m×k),B : R
S(k×n))

1 C← 0
2 for l← 1 to k
3 do C← C + A(:, l) ·B(l, :)

Figure 2.3: Outer-product formulation of matrix multiplication

SpMV is the most widely used sparse matrix kernel since it is the workhorse

of iterative linear equation solvers and eigenvalue computations. A sparse matrix

can be multiplied by a dense vector either on the right (y ← Ax) or on the left

(yT ← xTA). This chapter concentrates on the multiplication on the right. It is

generally straightforward to reformulate algorithms that use multiplication on the

left so that they use multiplication on the right. Some representative graph com-

putations that use SpMV are page ranking (an eigenvalue computation), breadth-

first search, the Bellman-Ford shortest paths algorithm, and Prim’s minimum

spanning tree algorithm.

SpAdd, C← A⊕B, computes the sum of two sparse matrices of dimensions

m × n. SpAdd is an abstraction that is not limited to a particular summation
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operator. In general, any pointwise binary scalar operation between two sparse

matrices falls into this primitive. Examples include the MIN operator that returns

the minimum of its operands, logical AND, logical OR, ordinary addition, and

subtraction.

SpGEMM computes the sparse product C ← AB, where the input matrices

A ∈ S
m×k and B ∈ S

k×n are both sparse. It is a common operation for operating

on large graphs, used in graph contraction, peer pressure clustering, recursive

formulations of all-pairs-shortest-path algorithms, and breadth-first search from

multiple source vertices. Chapter 3 presents novel ideas for computing SpGEMM.

The computation for matrix multiplication can be organized in several ways.

One common formulation uses inner products, shown in Figure 2.2. Every element

of the product C(i, j) is computed as the dot product of a row i of A and a

column j of B. Another formulation of matrix multiplication uses outer products

(Figure 2.3). The product is computed as a sum of k rank-one matrices. Each

rank-one matrix is the outer product of a column of A with the corresponding

row of B.

SpGEMM can also be organized so that A and B are accessed by row or

columns, computing one row/column of the product C at a time. Figure 2.5

shows the column-wise formulation where column j of C is computed as a linear

combination of the columns of A as specified by the nonzeros in column j of B.
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C : R
S(m×n) = RowWise-SpGEMM(A : R

S(m×k),B : R
S(k×n))

1 for i← 1 to m
2 do for l where A(i, l) 6= 0
3 do C(i, :)← C(i, :) + A(i, l) ·B(l, :)

Figure 2.4: Row-wise formulation of matrix multiplication

C : R
S(m×n) = ColumnWise-SpGEMM(A : R

S(m×k),B : R
S(k×n))

1 for j ← 1 to n
2 do for l where B(l, j) 6= 0
3 do C(:, j)← C(:, j) + A(:, l) ·B(l, j)

Figure 2.5: Column-wise formulation of matrix multiplication

Figure 2.6 gives a diagram. Similarly, for the row-wise formulation, each row i of

C is computed as a linear combination of the rows of B specified by nonzeros in

row i of A as shown in Figure 2.4.

2.3 Triples

The simplest way to represent a sparse matrix is the triples (or coordinates)

format. For each A(i, j) 6= 0, the triple (i, j,A(i, j)) is stored in memory. Each

entry in the triple is usually stored in a different array and the whole matrix

A is represented as three arrays A.I (row indices), A.J (column indices) and

A.V (numerical values), as illustrated in Figure 2.7. These separate arrays are
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B

= x

C A

SPA

gather scatter/ 
accumulate

Figure 2.6: Multiplication of sparse matrices stored by columns. Columns of A

are accumulated as specified by the non-zero entries in a column of B using a

sparse accumulator or SPA. The contents of the SPA are stored in a column of C

once all required columns are accumulated.
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A =




19 0 11 0
0 43 0 0
0 0 0 0
0 27 0 35




1 1 19
4 2 27
2 2 43
4 4 35
1 3 11

A.I A.J A.V

Figure 2.7: Matrix A (left) and an unordered triples representation (right)

called “parallel arrays” by Duff and Reid [84] but we reserve “parallel” for parallel

algorithms. Using 8-byte integers for row and column indices, storage cost is

8 + 8 + 8 = 24 bytes per nonzero.

Modern programming languages offer easier ways of representing an array of

tuples than using three separate arrays. An alternative implementation might

choose to represent the set of triples as an array of records (or structs). Such

an implementation might improve cache performance, especially if the algorithm

accesses elements of same index from different arrays. This cache optimization is

known as array merging [132]. Some programming languages, such as Python and

Haskell, even support tuples as built-in types, and C++ is about to add tuples

support to its standard library [27]. In this section, we use the established notation

of three separate arrays (A.I, A.J, A.V) for simplicity, but an implementer should

keep in mind the other options.

This section evaluates triples format under different levels of ordering. The

unordered triples representation imposes no ordering constraints on the triples.
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Table 2.1: RAM Complexities of Key Primitives on Unordered and Row-Ordered

Triples

Unordered Row Ordered

SpRef O(nnz (A))
O(lg nnz (A)+nnz(A(i, :)))

{
A(i, j)

A(i, :)

O(nnz (A))
{

A(:, j)

SpAsgn O(nnz (A)) + O(nnz (B)) O(nnz (A)) + O(nnz (B))

SpMV O(nnz (A)) O(nnz (A))

SpAdd O(nnz (A) + nnz (B)) O(nnz (A) + nnz (B))

SpGEMM O(nnz (A)+nnz (B)+flops) O(nnz (A)+flops)

Row-ordered triples keep nonzeros ordered with respect to their row indices only.

Nonzeros within the same row are stored arbitrarily, irrespective of their column

indices. Finally, row-major order keeps nonzeros ordered lexicographically first

according to their row indices and then according to their column indices to break

ties. Column-ordered and column-major ordered triples are similar; we analyze

the row based versions. RAM and I/O complexities of key primitives for unordered

and row-ordered triples are listed in Tables 2.1 and 2.2.

A theoretically attractive fourth option is to use hashing and store triples

in a hash table. In the case of SpGEMM and SpAdd, dynamically managing

the output matrix is computationally expensive since dynamic perfect hashing

does not yield high performance in practice [149], and requires 35n space [76]. A
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Table 2.2: I/O Complexities of Key Primitives on Unordered and Row-Ordered

Triples

Unordered Row Ordered

SpRef O(scan(A))
O(lg nnz (A) + scan(A(i, :))

{
A(i, j)

A(i, :)

O(scan(A))
{
A(:, j)

SpAsgn O(scan(A) + scan(B)) O(scan(A) + scan(B))

SpMV O(nnz (A)) O(nnz (A))

SpAdd O(nnz (A) + nnz (B)) O(nnz (A) + nnz (B))

SpGEMM
O(nnz (A)+nnz (B)+flops)

O(min{nnz (A) + flops,

scan(A) lg(nnz (B))+flops})

recently proposed dynamic hashing method called Cuckoo hashing is promising. It

supports queries in worst-case constant time, and updates in amortized expected

constant time, while using only 2n space [157]. Experiments show that it is

substantially faster than existing hashing schemes on modern architectures like

Pentium 4 and IBM Cell [169]. Although hash based schemes seem attractive,

especially for SpAsgn and SpRef primitives [14], further research is required to

test their efficiency for sparse matrix storage.

2.3.1 Unordered Triples

The administrative overhead of the triples representation is low, especially if

the triples are not sorted in any order. With unsorted triples, however, there is
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no spatial locality2 when accessing nonzeros of a given row or column. In the

worst case, all indexing operations might require a complete scan of the data

structure. Therefore, SpRef has O(nnz (A)) RAM complexity and O(scan(A))

I/O complexity.

SpAsgn is no faster either, even though insertions take only constant time per

element. In addition to accessing all the elements of the right hand side matrix

A, SpAsgn also invalidates the existing nonzeros that need to be changed in the

left hand side matrix B. Just finding those triples takes time proportional to the

number of nonzeros in B with unordered triples. Thus, the RAM complexity of

SpAsgn is O(nnz (A)+nnz (B)) and its I/O complexity is O(scan(A)+ scan(B)).

A simple implementation achieving these bounds performs a single scan of B,

outputs only the non-assigned triples (e.g. for B(:, l) = A, those are the triples

(i, j,B(i, j)) where j 6= l), and finally concatenates the nonzeros in A to the

output.

SpMV has full spatial locality when accessing the elements of A, because the

algorithm scans all the nonzeros of A in the exact order that they are stored.

Therefore, O(scan(A)) cache misses are taken for granted as compulsory misses3.

Although SpMV is optimal in the RAM model without any ordering constraints,

2A procedure exploits spatial locality if data that are stored in nearby memory locations are
likely to be referenced close in time

3Assuming that no explicit data prefetching mechanism is used

37



Chapter 2. Implementing Sparse Matrices for Graph Algorithms

y : R
m = Triples-SpMV(A : R

S(m×n),x : R
n)

1 y← 0
2 for k ← 1 to nnz (A)
3 do y(A.I(k))← y(A.I(k)) + A.V(k) · x(A.J(k))

Figure 2.8: Operation y← Ax using triples

its cache performance suffers, as the algorithm cannot exploit any spatial locality

when accessing vectors x and y.

Considering the cache misses involved, for each triple (i, j,A(i, j)), a random

access to the jth component of x is required and the result of the elementwise

multiplication A(i, j) · x(j) must be written to the random location y(i). As-

sumption 2 implies that the fast memory is not big enough to hold the dense

arrays x and y. Thus, we make up to two extra cache misses per flop. These

indirect memory accesses can be clearly seen in the Triples-SpMV code shown in

Figure 2.8, where the values of A.I(k) and A.J(k) may change in every iteration.

Consequently, I/O complexity of SpMV on unordered triples is:

nnz (A)/L + 2 · nnz (A) = O(nnz (A)) (2.1)

The SpAdd algorithm needs to identify all (i, j) pairs such that A(i, j) 6= 0 and

B(i, j) 6= 0, and add their values to create a single entry in the resulting matrix.

This can be accomplished by first sorting the nonzeros of the input matrices
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and then performing a simultaneous scan of sorted nonzeros to sum matching

triples. Using a linear time counting sort, SpAdd is fast in the RAM model with

O(nnz (A) + nnz (B)) complexity.

Counting sort, in its näıve form, has poor cache utilization because the total

size of the counting array is likely to be bigger than the size of the fast memory.

While sorting the nonzeros of a sparse matrix, this translates into one cache

miss per nonzero in the worst case. Therefore, the complexity of SpAdd in the

I/O model becomes O(nnz (A) + nnz (B)). The number of cache misses can be

decreased by using cache optimal sorting algorithms [6] but such algorithms are

comparison based. They do O(n lg n) work as opposed to linear work. Rahman

and Raman [165] give a counting sort algorithm that has better cache utilization

in practice than the näıve algorithm, and still does linear work.

SpGEMM needs fast access to columns, rows, or a given particular element,

depending on the algorithm. One can also think A as a table of i’s and l’s and B

as a table of l’s and j’s; then C is their join [130] on l. This database analogy may

lead to alternative SpGEMM implementations based on ideas from databases. An

outer-product formulation of SpGEMM on unordered triples has three basic steps

(a similar algorithm for general sparse tensor multiplication is given by Bader and

Kolda [15]):
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1. For each l ∈ {1, .., k}, identify the set of triples that belong to the lth column

of A, and the lth row of B. Formally, find A(:, l) and B(l, :).

2. For each l ∈ {1, .., k}, compute the cartesian product of the row indices of

A(:, l) and the column indices of B(l, :).

Formally, compute the sets Cl = {A(:, l).I} × {B(l, :).J}

3. Find the union of all cartesian products, summing up duplicates during set

union: C =
⋃

l∈{1,..,k} Cl

Step 1 of the algorithm can be efficiently implemented by sorting the triples

of A according to their column indices and the triples of B according to their row

indices. Computing the cartesian products in Step 2 takes time

k∑

l=1

nnz (A(:, l)) · nnz (B(l, :)) = flops. (2.2)

Finally, summing up duplicates can be done by lexicographically sorting the ele-

ments from sets Cl. Since there are a total of flops such intermediate triples in

sets Cl for all l, it makes up a total running time of

O(sort(nnz (A)) + sort(nnz (B)) + flops + sort(flops)). (2.3)

As long as the number of nonzeros is more than the dimensions of the matrices

(Assumption 1), it is advantageous to use a linear time sorting algorithm instead
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of a comparison based sort. Since a lexicographic sort is not required for finding

A(:, l) or B(l, :) in Step 1, a single pass of linear time counting sort [68] suffices for

each input matrix. However, two passes of linear time counting sort are required

in Step 3 to produce a lexicographically sorted output. The RAM complexity of

this implementation turns out to be

nnz (A) + nnz (B) + 3 · flops = O(nnz (A) + nnz (B) + flops). (2.4)

However, due to the cache inefficient nature of counting sort, this algorithm

makes O(nnz (A) + nnz (B) + flops) cache misses in the worst case.

Another way to implement SpGEMM on unordered triples is to iterate through

the triples of A. For each (i, j,A(i, j)), we find B(:, j) and multiply A(i, j) by

each nonzero in B(:, j). The duplicate summation step is left intact. The time

this implementation takes is

nnz (A) · nnz (B) + 3 · flops = O(nnz (A) · nnz (B)). (2.5)

The term flops is dominated by the term nnz (A)·nnz (B) according to Theorem 1.

Therefore, the performance is worse than the previous implementation that sorts

the input matrices first.

Theorem 1. For all matrices A and B, flops(AB) ≤ nnz (A) · nnz (B)

Proof. Let the vector of column counts of A be

a = (a1, a2, ..., ak) = (nnz (A(:, 1), nnz (A(:, 2)), ..., nnz (A(:, k))
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and the vector of row counts of B

b = (b1, b2, ..., bk) = (nnz (B(1, :), nnz (B(2, :)), ..., nnz (B(k, :)).

Note that flops = aTb =
∑

i=j aibj, and
∑

i6=j aibj ≥ 0 as a and b are nonneg-

ative. Consequently,

nnz (A) · nnz (B) = (
k∑

l=1

al) · (
k∑

l=1

bl) = (
∑

i=j

aibj) + (
∑

i6=j

aibj)

≥
∑

i=j

aibj = aTb = flops

It is worth noting that both implementions of SpGEMM using unordered

triples have O(nnz (A)+nnz (B)+flops) space complexity, due to the intermediate

triples that are all present in the memory after Step 2. Ideally, the space complex-

ity of SpGEMM should be O(nnz (A) + nnz (B) + nnz (C)), which is independent

of flops.

2.3.2 Row-Ordered Triples

The second option is to keep the triplets sorted according to their rows or

columns only. We analyze the row-ordered version; column order is symmet-

ric. This section is divided into three subsections. The first one is on indexing

and SpMV. The second one is on a fundamental abstract data type that is used

42



Chapter 2. Implementing Sparse Matrices for Graph Algorithms

frequently in sparse matrix algorithms, namely the sparse accumulator (SPA).

The SPA is used for implementing some of the SpAdd and SpGEMM algorithms

throughout the rest of this chapter. Finally, the last subsection is on SpAdd and

SpGEMM algorithms.

Indexing and SpMV with Row-Ordered Triples

Using row-ordered triples, indexing still turns out to be inefficient. In practice,

even a fast row access cannot be accomplished, since there is no efficient way

of spotting the beginning of the ith row without using a pointer4. Row-wise

referencing can be done by performing binary search on the whole matrix to

identify a nonzero belonging to the referenced row, and then by scanning in both

directions to find the rest of the nonzeros belonging to that row. Therefore, SpRef

for A(i, :) has O(lg nnz (A) + nnz (A(i, :)) RAM complexity and O(lg nnz (A) +

scan(A(i, :))) I/O complexity. Element-wise referencing also has the same cost,

in both models. Column-wise referencing, on the other hand, is as slow as it was

with unordered triples, requiring a complete scan of the triples.

SpAsgn might incur excessive data movement, as the number of nonzeros in

the left hand side matrix B might change during the operation. For a concrete

example, consider the operation B(i, :) = A where nnz(B(i, :)) 6= nnz (A) before

4That is a drawback of the triples representation in general. The compressed sparse storage
formats described in the Section 2.4 provide efficient indexing mechanisms for either rows or
columns.
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the operation. Since the data structure needs to keep nonzeros with increasing

row indices, all triples with row indices bigger than i need to be shifted by distance

| nnz (A)− nnz (B(i, :))|.

SpAsgn has RAM complexity O(nnz (A))+nnz (B)) and I/O complexity O(1+

scan(A) + scan(B)), where B is the left hand side matrix before the operation.

While implementations of row-wise and element-wise referencing are straightfor-

ward, column-wise referencing (B(:, i) ← A) seems harder as it reduces to a

restricted case of SpAdd, the restriction being that B ∈ S
1×n has at most one

nonzero in a given row. Therefore, a similar scanning implementation suffices.

Row-ordered triples format allows an SpMV implementation that makes at

most one extra cache miss per flop. The reason is that references to vector

y show good spatial locality: they are ordered with monotonically increasing

values of A.I(k), avoiding scattered memory referencing on vector y. However,

accesses to vector x are still irregular as the memory stride when accessing x

(|A.J(k + 1) - A.J(k)|) might be as big as the matrix dimension n. Memory

strides can be reduced by clustering the nonzeros in every row. More formally,

this corresponds to reducing the bandwidth of the matrix, which it is defined as:

β(A) = max{|i − j| : A(i, j) 6= 0}. Toledo [197] experimentally studied differ-

ent methods of reordering the matrix to reduce its bandwidth, along with other

optimizations like blocking and prefetching, to improve the memory performance
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of SpMV. Overall, row ordering does not improve the asymptotic I/O complexity

of SpMV over unordered triples, although it cuts the cache misses by nearly half.

Its I/O complexity becomes

nnz (A)/L + n/L + nnz (A) = O(nnz (A)). (2.6)

The Sparse Accumulator

Most operations that output a sparse matrix generate it one row (or column)

at a time. The current active row is stored temporarily in a special structure

called the sparse accumulator (SPA) [104] (or expanded real accumulator [163]).

The SPA helps merging unordered lists in linear time.

There are different ways of implementing the SPA as it is an abstract data type,

not a concrete data structure. In our SPA implementation, w is the dense vector

of values, b is the boolean dense vector that contains “occupied” flags, and LS is

the list that keeps an unordered list of indices, as Gilbert et al. described [104].

Scatter-SPA function, given in Figure 2.9, adds a scalar (value) to a specific

position (pos) of the SPA. Scattering is a constant time operation. Gathering the

SPA’s nonzeros to the output matrix C takes O(nnz (SPA)) time. The pseudocode

for the Gather-SPA is given in Figure 2.10. It is crucial to initialize the SPA only

once at the beginning, as this takes O(n) time. Resetting it later for the next
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Scatter-SPA(SPA, value, pos)

1 if (SPA.b(pos) = 0)
2 then SPA.w(pos)← value
3 SPA.b(pos)← 1
4 Insert(SPA.LS, pos)
5 else SPA.w(pos)← SPA.w(pos) + value

Figure 2.9: Scatters/Accumulates the nonzeros in the SPA

nzi = Gather-SPA(SPA,val, col, nzcur)

1 cptr ← head(SPA.LS)
2 nzi ← 0 � number of nonzeros in the ith row of C
3 while cptr 6= nil

4 do
5 col(nzcur + nzi)← element(cptr) � Set column index
6 val(nzcur + nzi)← SPA.w(element(cptr)) � Set value
7 nzi ← nzi +1
8 advance(cptr)

Figure 2.10: Gathers/Outputs the nonzeros in the SPA

active row takes only O(nnz (SPA)) time by using LS to reach all the nonzero

elements and resetting only those indices of w and b.

The cost of resetting the SPA can be completely avoided by using the multi-

ple switch technique (also called the phase counter technique) described by Gus-

tavson [111, 112]. Here, b becomes a dense switch vector of integers instead of a

dense boolean vector. For computing each row, we use a different switch value.

Everytime a nonzero is introduced to position pos of the SPA, we set the switch
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C : R
S(m×n) = RowTriples-SpAdd(A : R

S(m×n),B : R
S(m×n))

1 Set-SPA(SPA) � Set w = 0, b = 0 and create empty list LS

2 ka← kb← kc← 1 � Initialize current indices to one
3 for i← 1 to m
4 do while (ka ≤ nnz (A) and A.I(ka) = i)
5 do Scatter-SPA(SPA,A.V(ka),A.J(ka))
6 ka← ka + 1
7 while (kb ≤ nnz (B) and B.I(kb) = i)
8 do Scatter-SPA(SPA,B.V(kb),B.J(kb))
9 kb← kb + 1

10 nznew ← Gather-SPA(SPA,C.V,C.J, kc)
11 for j ← 0 to nznew −1
12 do C.I(kc + j)← i � Set row index
13 kc← kc + nznew
14 Reset-SPA(SPA) � Reset w = 0, b = 0 and empty LS

Figure 2.11: Operation C← A⊕B using row-ordered triples

to the current active row index (SPA.b(pos) ← i). During the computation of

subsequent rows j = {i + 1, ...,m}, the switch value being less than the current

active row index (SPA.b(pos) ≤ j) means that the position pos of the SPA is

“free”. Therefore, the need to reset b for each row is avoided.

SpAdd and SpGEMM with Row-Ordered Triples

Using the SPA, we can implement SpAdd with O(nnz (A) + nnz (B)) RAM

complexity. The full procedure is given in Figure 2.11. The I/O complexity of

this SpAdd implementation is also O(nnz (A) + nnz (B)). This is because for

each nonzero scanned from inputs, the algorithm checks and updates an arbitrary
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position of the SPA. From Assumption 2, these arbitrary accesses are likely to

incur cache misses every time.

It is possible to implement SpGEMM using the same outer-product formula-

tion described in Section 2.3.1, with a slightly better asymptotic RAM complexity

of O(nnz(A)+flops), as the triples of B are already sorted according to their row

indices. Instead, we describe a row-wise implementation, similar to the CSR based

algorithm described in Section 2.4. Due to inefficient row-wise indexing support of

row-ordered triples, however, the operation count is higher than the CSR version.

A SPA of size n is used to accumulate the nonzero structure of the current active

row of C. A direct scan of the nonzeros of A allows enumeration of nonzeros in

A(i, :) for increasing values of i ∈ {1, ..,m}. Then, for each triple (i, l,A(i, l))

in the ith row of A, the matching triples (l, j,B(l, j)) of the lth row of B need

to be found using the SpRef primitive. This way, the nonzeros in C(i, :) are ac-

cumulated. The whole procedure is given in Figure 2.12. Its RAM complexity

is

∑

A(i,l) 6=0

(
nnz (B(i, :)) lg(nnz (B))

)
+ flops = O(nnz (A) lg(nnz (B)) + flops) (2.7)

where the lg nnz (B) factor per each nonzero in A comes from the row-wise SpRef

operation in line 5. Its I/O complexity is

O(scan(A) lg(nnz (B)) + flops). (2.8)
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C : R
S(m×n) = RowTriples-SpGEMM(A : R

S(m×k),B : R
S(k×n))

1 Set-SPA(SPA) � Set w = 0, b = 0 and create empty list LS

2 ka← kc← 1 � Initialize current indices to one
3 for i← 1 to m
4 do while (ka ≤ nnz (A) and A.I(ka) = i)
5 do BR← B(A.J(ka), :) � Using SpRef
6 for kb← 1 to nnz (BR)
7 do value ← A.NUM(ka) ·BR.NUM(kb)
8 Scatter-SPA(SPA, value,BR.J(kb))
9 ka← ka + 1

10 nznew ← Gather-SPA(SPA,C.V,C.J, kc)
11 for j ← 0 to nznew −1
12 do C.I(kc + j)← i � Set row index
13 kc← kc + nznew
14 Reset-SPA(SPA) � Reset w = 0, b = 0 and empty LS

Figure 2.12: Operation C← AB using row-ordered triples

While the complexity of row-wise implementation is asymptotically worse than

the outer-product implementation in the RAM model, it has the advantage of

using only O(nnz (C)) space as opposed to the O(flops) space used by the outer-

product implementation. On the other hand, the I/O complexities of the outer-

product version and the row-wise version are not directly comparable. Which one

is faster depends on the cache line size and the number of nonzeros in B.
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2.3.3 Row-Major Ordered Triples

We now consider the third option of storing triples in lexicographic order,

either in column-major or row-major order. Once again, we focus on the row

oriented scheme.

In order to reference a whole row, binary search on the whole matrix, followed

by a scan on both directions is used, as with row-ordered triples. As the nonzeros

in a row are ordered by column indices, it seems there should be a faster way to

access a single element than the method used on row-ordered triples. A faster way

indeed exists but ordinary binary search would not do it, because the beginning

and the end of the ith row is not known in advance. The algorithm has three

steps:

1. Spot a triple (i, j,A(i, j)) that belongs to the ith row by doing binary search

on the whole matrix

2. From that triple, perform an unbounded binary search [147] in both direc-

tions. In an unbounded search, the step length is doubled at each iteration.

The search terminates at a given direction when it hits a triple that does not

belong to the ith row. Those two triples (one from each direction) becomes

the boundary triples.
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Figure 2.13: Element-wise indexing of A(12, 16) on row-major ordered triples

3. Perform ordinary binary search within the exclusive range defined by the

boundary vertices.

The number of total operations is O(lg nnz (A) + lg nnz (A(i, :)) = O(lg nnz (A)).

An example is given in Figure 2.13.

While unbounded binary search is the preferred method in the RAM model,

simple scanning might be faster in the I/O model. Searching an element in an

ordered set of n elements can be achieved with Θ(logL n) cost in the I/O model,

using B-trees [26]. However, using an ordinary array, search incurs lg n cache

misses. This may or may not be less than scan(n). Therefore, we define the cost

of searching within an ordered row as follows:

search(A(i, :)) = min{lg nnz (A(i, :)), scan(A(i, :))} (2.9)
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For column-wise referencing as well as for SpAsgn operations, row-major or-

dered triples format does not provide any improvement over row-ordered triples.

In SpMV, the only array that does not show excellent spatial locality is x,

since A.I,A.J,A.V, and y are accessed with mostly consecutive, increasing index

values. Accesses to x are also with increasing indices, which is an improvement

over row-ordered triples. However, memory strides when accessing x can still be

high, depending on the number of nonzeros in each row and the bandwidth of the

matrix. In the worst case, each access to x might incur a cache miss.

Bender et al. [28] came up with cache-optimal algorithms for SpMV using

the column-major layout. From a high-level view, their method first generates all

the intermediate triples of y, possibly with repeating indices. Then, the algorithm

sorts those intermediate triples with respect to their row indices, performing addi-

tions on the triples with same row index on the fly. I/O optimality of their SpMV

algorithm relies on the existence of an I/O optimal sorting algorithm. Their com-

plexity measure assumes a fixed k number of nonzeros per column, leading to I/O

complexity of

O

(
scan(A) logZ/L

n

max{Z, k}

)
. (2.10)

SpAdd is now more efficient even without using any auxiliary data structure. A

scan-based array merging algorithm is sufficient as long as we sum duplicates while
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Table 2.3: RAM Complexities of Key Primitives on Row-Major Ordered Triples

and CSR

Row-Major Ordered Triples CSR

SpRef

O(lg nnz (A))
{
A(i, j) O(lg nnz (A(i, :))

{
A(i, j)

O(lg nnz (A) + nnz (A(i, :))
{

A(i, :) O(nnz (A(i, :))
{

A(i, :)

O(nnz (A))
{
A(:, j) O(nnz (A))

{
A(:, j)

SpAsgn O(nnz (A) + nnz (B)) O(nnz (A) + nnz (B))

SpMV O(nnz (A)) O(nnz (A))

SpAdd O(nnz (A) + nnz (B)) O(nnz (A) + nnz (B))

SpGEMM O(nnz (A)+flops) O(nnz (A)+flops)

merging. Such an implementation has O(nnz (A)+nnz (B)) RAM complexity and

O(scan(A) + scan(B)) I/O complexity5.

Row-major ordered triples allow outer-product and row-wise SpGEMM im-

plementations at least as efficiently as row-ordered triples. Indeed, some finer

improvements are possible by exploiting the more specialized structure. In the

case of row-wise SpGEMM, a technique called finger search [43] can be used to

improve the RAM complexity. While enumerating all triples (i, l,A) ∈ A(i, :),

they are naturally sorted with increasing l values. Therefore, accesses to B(l, :)

are also with increasing l values. Instead of restarting the binary search from the

beginning of B, one can use fingers and only search the yet unexplored subse-

5These bounds are optimal only if nnz (A) = Θ(nnz (B)) [46]
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Table 2.4: I/O Complexities of Key Primitives on Row-Major Ordered Triples

and CSR

Row-Major Ordered Triples CSR

SpRef

O(lg nnz (A) + search(A(i, :))
{

A(i, j) O(search(A(i, :)))
{
A(i, j)

O(lg nnz (A) + scan(A(i, :))
{

A(i, :) O(scan(A(i, :)))
{
A(i, :)

O(scan(A))
{
A(:, j) O(1+scan(A))

{
A(:, j)

SpAsgn O(scan(A) + scan(B)) O(scan(A) + scan(B))

SpMV O(nnz (A)) O(nnz (A))

SpAdd O(scan(A) + scan(B)) O(scan(A) + scan(B))

SpGEMM O(min{nnz (A) + flops,
O(scan(A) + flops)

scan(A) lg(nnz (B))+flops})

quence. Finger search uses the unbounded binary search as a subroutine when

searching the unexplored subsequence. Row-wise SpGEMM using finger search

has a RAM complexity of

O(flops) +
n∑

i=1

O
(
nnz (A(i, :)) lg

nnz (B)

nnz (A(i, :))

)
, (2.11)

which is asymptotically faster than the O(nnz (A) lg(nnz (B)) + flops) cost of the

same algorithm on row-ordered triples.

Outer-product SpGEMM can be modified to use only O(nnz (C)) space during

execution by using multiway merging [49]. However, this comes at the price of an

extra lg ni factor in the asymptotic RAM complexity, where ni is the number of

indices i for which A(:, i) 6= ∅ and B(i, :) 6= ∅.
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Although both of these refined algorithms are asymptotically slower than the

naive outer-product method, they might be faster in practice because of the cache

effects and difference in constants in the asymptotic complexities. Further research

is required in algorithm engineering of SpGEMM to find the best performing

algorithm in real life. Chapter 3 includes extensive experiments, for two new

SpGEMM algorithms, under various settings.

2.4 Compressed Sparse Row/Column

The most widely used storage schemes for sparse matrices are compressed

sparse column (CSC) and compressed sparse row (CSR). For example, Matlab

uses CSC format to store its sparse matrices [104]. Both are dense collections

of sparse arrays. We examine CSR, which is introduced by Gustavson under the

name of sparse row-wise representation [110]; CSC is symmetric.

CSR can be seen as a concatenation of sparse row arrays. On the other hand,

it is also very close to row-ordered triples, with an auxiliary index of size Θ(n).

In this section, we assume that nonzeros within each sparse row array are ordered

with increasing row indices. This is not a general requirement though. Davis’s

CSparse package [74], for example, does not impose any ordering within the sparse

arrays.
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Figure 2.14: Adjacency list (left) and CSR (right) representations of matrix A

from Figure 2.7

2.4.1 CSR and Adjacency Lists

In principle, CSR is almost identical to the adjacency list representation of a

directed graph [191]. In practice, however, it has much less overhead and much

better cache efficiency. Instead of storing an array of linked lists as in the adja-

cency list representation, CSR is composed of three arrays that store whole rows

contiguously. The first array (IR) of size m + 1 stores the row pointers as explicit

integer values, the second array (JC) of size nnz stores the column indices, and

the last array (NUM) of size nnz stores the actual numerical values. Observe that

column indices stored in the JC array indeed come from concatenating the edge

indices of the adjacency lists. Following the sparse matrix / graph duality, it is

also meaningful to call the first array the vertex array and the second array the

edge array. The vertex array holds the offsets to the edge array, meaning that the

nonzeros in the ith row are stored from NUM(IR(i)) to NUM(IR(i+1)−1) and their
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respective positions within that row are stored from JC(IR(i)) to JC(IR(i+1)−1).

Also note that JC(i) = JC(i + 1) means there are no nonzeros in the ith row.

Figure 2.4.1 shows the adjacency list and CSR representations of matrix A

from Figure 2.7 . While the arrows in the adjacency based representation are

actual pointers to memory locations, the arrows in CSR are not. The edge array

offsets are actually (unsigned) integers.

The efficiency advantage of the CSR data structure as compared with the

adjacency list can be explained by the memory architecture of modern comput-

ers. In order to access all the nonzeros in a given row i, which is equivalent

to traversing all the outgoing edges of a given vertex vi, CSR makes at most

⌈nnz (A(i, :))/L⌉ cache misses. A similar access to the adjacency list representa-

tion incurs nnz (A(i, :)) cache misses in the worst case, worsening as the memory

becomes more and more fragmented. In an experiment published in 1998, Black

et al. [31] found out that an array based representation was 10 times faster to

traverse than a linked-list based representation. This performance gap is due to

the high cost of pointer chasing that happens frequently in linked data structures.

The efficiency of CSR comes at a price though: introducing new nonzero elements

or deleting a nonzero element is computationally inefficient [104]. Therefore, CSR

is best suited for representing static graphs. The only one of our key primitives

that changes the graph is SpAsgn.
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y : R
m = CSR-SpMV(A : R

S(m)×n,x : R
n)

1 y← 0
2 for i← 1 to m
3 do for k ← A.IR(i) to A.IR(i + 1)− 1
4 do y(i)← y(i) + A.NUM(k) · x(A.JC(k))

Figure 2.15: Operation y← Ax using CSR

2.4.2 CSR on Key Primitives

Unlike triples storage formats, CSR allows constant time random access to

any row of the matrix. Its ability to enumerate all the elements in the ith row

with O(nnz (A(i, :)) RAM complexity and O(scan(A(i, :)) I/O complexity makes

it an excellent data structure for row-wise SpRef. Element-wise referencing takes

at most O(lg nnz (A(i, :)) time in the RAM model as well as the I/O model, using

a binary search. Considering column-wise referencing, however, CSR does not

provide any improvement over the triples format.

On the other hand, even row-wise SpAsgn operations are inefficient if the

number of elements in the assigned row changes. In that general case, O(nnz (B))

elements might need to be moved. This is also true for column-wise and element-

wise SpAsgn as long as not just existing nonzeros are reassigned to new values.

The code in Figure 2.15 shows how to perform SpMV when matrix A is repre-

sented in CSR format. This code and SpMV with row-major ordered triples has
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similar performance characteristics except for a few subtleties. When some rows

of A are all zeros, those rows are effectively skipped in row-major ordered triples,

but still need to be examined in CSR. On the other hand, when m << nnz , CSR

has a clear advantage since it needs to examine only one index (A.JC(k)) per

inner loop iteration while row-major ordered triples needs to examine two (A.I(k)

and A.J(k)). This may make up to a factor of two difference in the number of

cache misses. CSR also has some advantages over CSC when the SpMV primitive

is considered (expecially in the case of y← y + Ax), as experimentally shown by

Vuduc [206].

Blocked versions of CSR and CSC try to take advantage of clustered nonzeros

in the sparse matrix. While blocked CSR (BCSR) achieves superior performance

for SpMV on matrices resulting from finite element meshes [206] mostly by using

loop unrolling and register blocking, it is of little use when the matrix itself does

not have its nonzeros clustered. Pinar and Heath proposed a reordering mecha-

nism to cluster those nonzeros to get dense subblocks [162]. However, it is not

clear whether such mechanisms are successful for highly irregular matrices from

sparse real world graphs.

Except for the additional bookkeeping required for getting the row pointers

right, SpAdd can be implemented in the same way as with row-major ordered
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triples. The extra bookkeeping of row pointers does not affect the asymptotic

complexity.

One subtlety overlooked in the SpAdd implementations throughout this chap-

ter is management of the memory required by the resulting matrix C. We implic-

itly assumed that the data structure holding C has enough space to accommodate

all of its elements. Repeated doubling of memory whenever necessary is one way

of addressing this issue. Another conservative way is to reserve nnz (A) + nnz (B)

space for C at the beginning of the procedure and shrink any unused portion after

the computation, right before the procedure returns.

The efficiency of accessing and enumerating rows in CSR makes the row-wise

SpGEMM formulation, described in Figure 2.4, the preferred matrix multiplica-

tion formulation. An efficient implementation of the row-wise SPGEMM using

CSR was first given by Gustavson [113]. It had a RAM complexity of

O(m + n + nnz (A) + flops) = O(nnz (A) + flops), (2.12)

where the equality follows from Assumption 1. Recent column-wise implemen-

tations with similar RAM complexities are provided by Davis in his CSparse

software [74] and by Matlab [104]. The algorithm, presented in Figure 2.16 uses

the sparse accumulator (SPA) described in Section 2.3.2. Once again, the multi-

ple switch technique can be used to avoid the cost of resetting the SPA for every
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C : R
S(m)×n = CSR-SpGEMM(A : R

S(m)×k,B : R
S(k)×n)

1 Set-SPA(SPA) � Set w = 0, b = 0 and create empty list LS

2 C.IR(1)← 0
3 for i← 1 to m
4 do for k ← A.IR(i) to A.IR(i + 1)
5 do for j ← B.IR(A.JC(k)) to B.IR(A.JC(k) + 1)
6 do
7 value ← A.NUM(k) ·B.NUM(j)
8 Scatter-SPA(SPA, value,B.JC(j))
9 nznew ← Gather-SPA(SPA,C.NUM,C.JC,C.IR(i))

10 C.IR(i + 1)← C.IR(i) + nznew
11 Reset-SPA(SPA) � Reset w = 0, b = 0 and empty LS

Figure 2.16: Operation C← AB using CSR

iteration of the outermost loop. As in the case of SpAdd, generally the space

required to store C cannot be determined quickly. Repeated doubling or more

sophisticated methods such as Cohen’s algorithm [63] may be used. Cohen’s algo-

rithm is a randomized iterative algorithm that does Θ(1) SpMV operations over a

semiring to estimate the row and column counts. It can be efficiently implemented

even on unordered triples.

The row-wise SpGEMM implementation does O(scan(A)+flops) cache misses

in the worst case. Due to the size of the SPA and Assumption 2, the algorithm

makes a cache miss for every flop. As long as no cache interference occurs between

the nonzeros of A and the nonzeros of C(i, :), only scan(A) additional cache misses

are made instead of nnz (A).
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2.5 Other Related Work and Conclusion

In this chapter, we gave a brief survey of sparse matrix infrastructure for doing

graph algorithms. We focused on implementation and analysis of key primitives

using various standard sparse matrix data structures. We tried to complement

the existing literature in two directions. First, we analyzed sparse matrix indexing

and assignment operations. Second, we gave I/O complexity bounds for all oper-

ations. Taking I/O complexies into account is key to achieving high performance

on modern architectures with multiple levels of cache.

A vast literature exists on sparse matrix storage schemes. We tried to cover

the most general ones in this chapter. There are specialized data structures that

perform certain computations more efficiently. For example:

• Blocked compressed stripe formats (BCSR and BCSC) [122] uses less band-

width to accelerate bandwidth limited computations such as SpMV.

• Knuth storage [128] allows fast access to both rows and columns at the same

time, and it makes dynamic changes to the matrix possible. Therefore, it is

very suitable for all kinds of SpRef and SpAsgn operations. Its drawback is

its excessive memory usage (5 nnz +2n) and high cache miss ratio.

• Hierarchical storage schemes such as quadtrees [173, 209] are theoretically

attractive, but achieving good performance in practice requires careful al-
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gorithm engineering to avoid high cache miss ratios that would result from

straightforward pointer based implementations.

• Parallel data structures that are designed for multithreaded executions are

becoming attractive with the multicore revolution. Our Compressed Sparse

Blocks (CSB) format, introduced in Section 6 guarantees plenty of paral-

lelism for multithreaded SpMV and SpMV T (sparse matrix-transpose-dense

vector multiplication) computations.
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Chapter 3

New Ideas in Sparse
Matrix-Matrix Multiplication

Part of the material in this chapter previously appeared in preliminary form in

papers by Buluç and Gilbert that appeared in the proceedings of IPDPS’08 [49]

and ICPP’08 [48].

3.1 Introduction

Development and implementation of large-scale parallel graph algorithms poses

numerous challenges in terms of scalability and productivity [143, 210]. Lin-

ear algebra formulations of many graph algorithms already exist in the litera-

ture [7, 146, 192]. By exploiting the duality between matrices and graphs, linear

algebraic formululations aim to apply the existing knowledge on parallel matrix

algorithms to parallel graph algorithms. One of the key primitives in array-based
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graph algorithms is computing the product of two sparse matrices (SpGEMM) over

a semiring. Sparse matrix-matrix multiplication is a building block for many algo-

rithms including graph contraction [105], breadth-first search from multiple source

vertices, peer pressure clustering [180], recursive formulations of all-pairs shortest-

paths algorithms [71], matching algorithms [164], and cycle detection [211], as well

as for some other applications such as multigrid interpolation/restriction [42], and

parsing context-free languages [161].

Most large graphs in applications, such as the WWW graph, finite element

meshes, planar graphs, and trees, are sparse. In this work, we consider a graph

to be sparse if nnz = O(n), where nnz is the number of edges and n is the

number of vertices. Dense matrix multiplication algorithms are inefficient for

SpGEMM since they require O(n3) space and the current fastest dense matrix

multiplication algorithm runs in O(n2.38) [67, 177] time. Furthermore, fast dense

matrix multiplication algorithms operate on a ring instead of a semiring, which

makes them unsuitable for many algorithms on general graphs. For example,

it is possible to embed the semiring into the ring of integers for the all-pairs

shortest-paths problem on unweighted and undirected graphs [177], but the same

embedding does not work for weighted or directed graphs [213].

The previous chapter explains CSC/CSR, the most widely used data struc-

tures for sparse matrices, in detail. It also gives concise descriptions of common
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SpGEMM algorithms operating both on CSC/CSR and triples. The SpGEMM

problem was recently reconsidered by Yuster and Zwick [212] over a ring, where

the authors use a fast dense matrix multiplication such as arithmetic progres-

sion [67] as a subroutine. Their algorithm uses O(nnz 0.7 n1.2 + n2+o(1)) arithmetic

operations, which is theoretically close to optimal only if we assume that the

number of nonzeros in the resulting matrix C is Θ(n2). This assumption rarely

holds in reality. Instead, we provide a work sensitive analysis by expressing the

computation complexity of our SpGEMM algorithms in terms of flops.

Practical sparse algorithms have been proposed by different researchers over

the years [159, 189] using various data structures. Although they achieve reason-

able performance on some classes of matrices, none of these algorithms outper-

forms the classical sparse matrix-matrix multiplication algorithm, which was first

described by Gustavson [113] and was used in Matlab [104] and CSparse [74]. The

classical algorithm runs in O(flops + nnz +n) time.

In Section 3.2, we present two novel algorithms for sequential SpGEMM. The

first one is geared towards computing the product of two hypersparse matrices.

A matrix is hypersparse if the ratio of nonzeros to its dimension is asymptoti-

cally 0. It is used as the sequential building block of our parallel 2D algorithms de-

scribed in Section 3.3. Our Hypersparse GEMM algorithm uses a new O(nnz )

data structure, called DCSC for doubly compressed sparse columns , which
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is explained in Section 3.2.1. The Hypersparse GEMM is based on the outer-

product formulation and has time complexity O(nzc(A) + nzr(B) + flops · lg ni),

where nzc(A) is the number of columns of A that contain at least one nonzero,

nzr(B) is the number of rows of B that contain at least one nonzero, and ni is the

number of indices i for which A(:, i) 6= ∅ and B(i, :) 6= ∅. The overall space com-

plexity of our algorithm is only O(nnz (A) + nnz (B) + nnz (C)). Notice that the

time complexity of our algorithm does not depend on n, and the space complexity

does not depend on flops.

The second sequential algorithm is an ordered variant of the column-by-column

formulation, and has better expected time complexity for random matrices, but

worse worst-case time complexity in general. It is specifically geared towards

matrices with dimensions large enough to force a single dense column not to fit in

cache. It works on any sparse matrix data structure that can enumerate nonzeros

in the jth column in O(nnz (j)) time. We include a preliminary experimental

evaluation of the column-by-column algorithm in this section, comparing it with

the classical algorithm.

Section 3.3 presents parallel algorithms for SpGEMM. We propose novel algo-

rithms based on 2D block decomposition of data in addition to giving the complete

description of an existing 1D algorithm. To the best of our knowledge, parallel
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algorithms using a 2D block decomposition have not earlier been developed for

sparse matrix-matrix multiplication.

Toledo et al. [123] proved that 2D dense matrix multiplication algorithms are

optimal with respect to the communication volume, making 2D sparse algorithms

likely to be more scalable than their 1D counterparts. In Section 3.4, we show that

this intuition is indeed correct by providing a theoretical analysis of the parallel

performance of 1D and 2D algorithms.

In Section 3.5, we model the speedup of parallel SpGEMM algorithms using

realistic simulations and projections. Our results show that existing 1D algorithms

are not scalable to thousands of processors. By contrast, 2D algorithms have the

potential for scaling up indefinitely, albeit with decreasing parallel efficiency, which

is defined as the ratio of speedup to the number of processors.

Section 3.6 describes the experimental setup we used for evaluating our Sparse

SUMMA implementation, and presents the final results. We describe other tech-

niques we have used for implementating our parallel algorithms, and their effects

on performance in Section 3.7. Section 3.8 offers some future directions.
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3.2 Sequential Sparse Matrix Multiply

In this section, we first analyze different formulations of sparse matrix-matrix

multiplication using the layered graph model. We present our Hypersparse GEMM

algorithm in Section 3.2.1. Finally, we present our cache-efficient column-by-

column algorithm in Section 3.2.2 together with its experimental evaluation.

Matrix multiplication can be organized in many different ways. The inner-

product formulation that usually serves as the definition of matrix multiplication

is well-known. Given two matrices A ∈ R
m×k and B ∈ R

k×n, each element in the

product C ∈ R
m×n is computed by the following formula:

C(i, j) =
k∑

l=1

A(i, l)B(l, j). (3.1)

This formulation is rarely useful for multiplying sparse matrices since it re-

quires Ω(mn) operations regardless of the sparsity of the operands.

We represent the multiplication of two matrices A and B as a three layered

graph, following Cohen [63]. The layers have m, k and n vertices, in that order.

The first layer of vertices (U) represent the rows of A and the third layer of vertices

(V ) represent the columns of B. The second layer of vertices (W ) represent the

dimension shared between matrices. Every nonzero A(i, l) 6= 0 in the ith row of

A forms an edge (ui, wl) between the first and second layers and every nonzero in
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B(l, j) 6= 0 in the jth column of B forms an edge (wl, vj) between the second and

third layers.

We perform different operations on the layered graph depending on the way

we formulate the multiplication. In all cases though, the goal is to find pairs of

vertices (ui, vj) sharing an adjacent vertex wk ∈ W , and if any pair shares multiple

adjacent vertices, to merge their contributions.

Using inner products, we analyze each pair (ui, vj) to find the set of vertices

in W̃ij ⊆ W = {w1, w2, ..., wk} that are connected to both ui amd vj in the graph

shown in Figure 3.1. The algorithm then accumulates contributions ail · blj for all

wl ∈ W̃ij. The result becomes the value of C(i, j) in the output. In general this

inner-product subgraph is sparse, and a contribution from wl happens only when

both edges ail and blj exist. However, this sparsity is not exploited using inner

products as it needs to examine each (ui, vj) pair, even when the set W̃ij is empty.

In the outer-product formulation, the product is written as the summation of

k rank one matrices:

C =
k∑

l=1

A(:, l)B(l, :). (3.2)

A different subgraph results from this formulation as it is the set of vertices

W that represent the shared dimension that play the central role. Note that

the edges are traversed in the outward direction from a node wi ∈ W , as shown

in Figure 3.2. For sufficiently sparse matrices, this formulation may run faster
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Figure 3.1: Graph representation of the inner product A(i, :) ·B(:, j)

because this traversal is performed only for the vertices in W (size k) instead of

the inner product traversal that had to be performed for every pair (size mn).

The problem with outer-product traversal is that it is hard to accumulate the

intermediate results into the final matrix.

A row-by-row formulation of matrix multiplication performs a traversal start-

ing from each of the vertices in U towards V , as shown in Figure 3.3 for ui. Each

traversal is independent from each other because they generate different rows of

C. Finally, a column-by-column formulation creates an isomorphic traversal, in

the reverse direction (from V to U).
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3.2.1 Hypersparse Matrices

Recall that a matrix is hypersparse if nnz < n. Although CSR/CSC is a

fairly efficient storage scheme for general sparse matrices having nnz = Ω(n), it

is asymptotically suboptimal for hypersparse matrices. Hypersparse matrices are

fairly rare in numerical linear algebra (indeed, a nonsingular square matrix must

have nnz ≥ n), but they occur frequently in computations on graphs, particularly

in parallel.

Our main motivation for hypersparse matrices comes from parallel processing.

Hypersparse matrices arise after the 2-dimensional block data decomposition of

ordinary sparse matrices for parallel processing. Consider a sparse matrix with c

nonzero elements in each column. After the 2D decomposition of the matrix, each

processor locally owns a submatrix with dimensions (n/
√

p)× (n/
√

p). Storing

each of those submatrices in CSC format takes O(n
√

p + nnz ) space, whereas

the amount of space needed to store the whole matrix in CSC format on a single

processor is only O(n + nnz ). As the number of processors increases, the n
√

p

term dominates the nnz term.

Figure 3.4 shows that the average number of nonzeros in a single column of

a submatrix, nnz (j), goes to zero as p increases. Storing a graph using CSC is

similar to using adjacency lists. The column-pointers array represents the vertices,

and the row-indices array represents their adjacencies. In that sense, CSC is a
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Figure 3.4: 2D Sparse Matrix Decomposition

vertex based data structure, making it suitable for 1D (vertex) partitioning of

the graph. 2D partitioning, on the other hand, is based on edges. Therefore,

using CSC with 2D distributed data is forcing a vertex based representation on

edge distributed data. The result is unnecessary replication of column pointers

(vertices) on each processor along the processor column.

The inefficiency of CSC leads to a more fundamental problem: any algorithm

that uses CSC and scans all the columns is not scalable for hypersparse matrices.

Even without any communication at all, such an algorithm cannot scale for n
√

p ≥

max{flops, nnz}. SpMV and SpGEMM are algorithms that scan column indices.

For these operations, any data structure that depends on the matrix dimension

(such as CSR or CSC) is asymptotically too wasteful for submatrices.
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Figure 3.5: Matrix A in CSC format

DCSC Data Structure

We use a new data structure for our sequential hypersparse matrix-matrix mul-

tiplication. This structure, called DCSC for doubly compressed sparse columns,

has the following properties:

1. It uses O(nnz ) storage.

2. It lets the hypersparse algorithm scale with increasing sparsity.

3. It supports fast access to columns of the matrix.

For an example, consider the 9-by-9 matrix with 4 non-zeros whose triples

representation is given in Figure 3.6. Figure 3.5 showns its CSC storage, which

includes repetitions and redundancies in the column pointers array (JC). Our new

data structure compresses the JC array to avoid repetitions, giving the CP(column

pointers) array of DCSC as shown in Figure 3.7. DCSC is essentially a sparse array

of sparse columns, whereas CSC is a dense array of sparse columns.
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Figure 3.6: Matrix A in Triples format

NUM = 0.1 0.2 0.3 0.4

IR = 6 8 4 2

CP = 1 3 4 5

JC = 1 7 8

AUX = 1 2 4 4

Figure 3.7: Matrix A in DCSC format

After removing repetitions, CP[i] does no longer refer to the ith column. A

new JC array, which is parallel to CP, gives us the column numbers. Although

our Hypersparse GEMM algorithm does not need column indexing, DCSC

supports fast column indexing for completeness. Whenever column indexing is

needed, we construct an AUX array that contains pointers to nonzero columns

(columns that have at least one nonzero element). Each entry in AUX refers to

a ⌈n/ nzc⌉-sized chunk of columns, pointing to the first nonzero column in that

chunk (there might be none). The storage requirement of DCSC is O(nnz ) since

|NUM| = |IR| = nnz , |JC| = nzc, |CP| = nzc +1, and |AUX| ≈ nzc.

In our implementation, the AUX array is a temporary work array that is con-

tructed on demand, only when an operation requires repetitive use of it. This
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keeps the storage and copying costs low. The time to construct AUX is only

O(nzc), which is subsumed by the cost of multiplication.

The careful reader will see that DCSC (without the AUX array) resembles two

other data structures. One is the column-major ordered triples representation

from Chapter 2, except we pack all the indices with the same column index into

a single value JC[i], at the cost of introducing a integer pointer CP[i]. DCSC

is also similar in spirit to 2D search trees [99], because we can perform column

indexing using retrieval by primary key, and nonzero indexing within a column

using retrieval by secondary key. This similarity suggests different implementa-

tions of DCSC, including lexicographical splay trees [185] and k-d trees [29]. Our

particular representation is more cache-friendly than conventional 2D search trees

because it uses arrays instead of pointers.

A Sequential Algorithm to Multiply Hypersparse Matrices

The sequential hypersparse algorithm (Hypersparse GEMM) is based on

outer product multiplication. Therefore, it requires fast access to rows of matrix

B. This could be accomplished by having each input matrix represented in DCSC

and also in DCSR (doubly compressed sparse rows), which is the same as the

transpose in DCSC. This method, which we described in an early version of this

work [49], doubles the storage but does not change the asymptotic space and time
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A =




1 2 3 4 5 6

1 × ×
2 × ×
3 × × ×
4 × ×
5 ×
6 ×




, B =




1 2 3 4 5 6

1 × ×
2
3 × ×
4 × ×
5 × × ×
6 × × ×




Figure 3.8: Nonzero structures of operands A and B

complexities. Here, we describe a more practical version where B is transposed

as a preprocessing step, at a cost of trans(B). The actual cost of transposition is

either O(n+nnz (B)) or O(nnz (B) lg nnz (B)), depending on the implementation.

The idea behind the Hypersparse GEMM algorithm is to use the outer

product formulation of matrix multiplication efficiently. The first observation

about DCSC is that the JC array is already sorted. Therefore, A.JC is the sorted

indices of the columns that contain at least one nonzero and similarly BT.JC is the

sorted indices of the rows that contain at least one nonzero. In this formulation,

the ith column of A and the ith row of B are multiplied to form a rank-1 matrix.

The naive algorithm does the same procedure for all values of i and gets n different

rank-1 matrices, adding them to the resulting matrix C as they become available.

Our algorithm has a preprocessing step that finds intersection Isect = A.JC ∩

BT.JC, which is the set of indices that participate nontrivially in the outer product.
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Figure 3.9: Cartesian product and the multiway merging analogy

The preprocessing takes O(nzc(A) + nzr(B)) time as |A.JC| = nzc(A) and

|BT.JC| = nzr(B). The next phase of our algorithm performs |Isect| cartesian

products, each of which generates a fictitious list of size nnz (A(:, i)) ·nnz (B(i, :)).

The lists can be generated sorted, because all the elements within a given column

are sorted according to their row indices (i.e. IR(JC(i))...IR(JC(i) + 1) is a sorted

range). The algorithm merges those sorted lists, summing up the intermediate

entries having the same (row id, col id) index pair, to form the resulting matrix

C. Therefore, the second phase of Hypersparse GEMM is similar to multiway

merging [128]. The only difference is that we never explicitly construct the lists;

we compute their elements one-by-one on demand.

Figure 3.9 shows the setup for the matrices from Figure 3.8. As A.JC =

{1, 2, 3, 4, 6} and BT.JC = {1, 3, 4, 5, 6}, Isect = {1, 3, 4, 6} for this product. The

algorithm does not touch the shaded elements, since they do not contribute to the

output.

79



Chapter 3. New Ideas in Sparse Matrix-Matrix Multiplication

The merge uses a priority queue (represented as a heap) of size ni , which is

the size of Isect, the number of indices i for which A(:, i) 6= ∅ and B(i, :) 6= ∅. The

value in a heap entry is its NUM value and the key is a pair of indices (i, j) in

column-major order. The idea is to repeatedly extract the entry with minimum

key from the heap and insert another element from the list that the extracted

element originally came from. If there are multiple elements in the lists with the

same key, then their values are added on the fly. If we were to explicitly create

ni lists instead of doing the computation on the fly, we would get the lists shown

in the right side of Figure 3.9, which are sorted from bottom to top. For further

details of multiway merging, consult Knuth [128].

The time complexity of this phase is O(flops · lg ni), and the space complexity

is O(nnz (C) + ni). The output is a stack of NUM values in column-major order.

The nnz (C) term in the space complexity comes from the output, and the flops

term in the time complexity comes from the observation that

∑

i∈Isect

nnz (A(:, i)) · nnz (B(i, :)) = flops.

The final phase of the algorithm constructs the DCSC structure from this

column-major-ordered stack. This requires O(nnz (C)) time and space.

The overall time complexity of our algorithm is O(nzc(A) + nzr(B) + flops ·

lg ni), plus the preprocessing time to transpose matrix B. Note that nnz (C)

does not appear in this bound, since nnz (C) ≤ flops. We opt to keep the cost

80



Chapter 3. New Ideas in Sparse Matrix-Matrix Multiplication

C : R
S(m×n) = Hypersparse GEMM(A : R

S(n×k),BT : R
S(n×k))

1 Isect← Intersection(A.JC,BT.JC)
2 for j ← 1 to |Isect|
3 do CartMult-Insert(A,BT, PQ, Isect, j)
4 Increment-List(Isect, j)
5 while IsNotFinished(Isect)
6 do (key , value)← Extract-Min(PQ)
7 (product , i)← UnPair(value)
8 if key 6= Top(Q)
9 then Enqueue(Q, key , product)

10 else UpdateTop(Q, product)
11 if IsNotEmpty(Isect(i))
12 then CartMult-Insert(A,BT, PQ, lists, Isect, i)
13 Increment-List(Isect, i)
14 Construct-Dcsc(Q)

Figure 3.10: Pseudocode for hypersparse matrix-matrix multiplication algorithm

of transposition separate, because our parallel 2D block SpGEMM will amortize

this transposition of each block over
√

p uses of that block. Therefore, the cost of

transposition will be negligible in practice. The space complexity is O(nnz (A) +

nnz (B) + nnz (C)). The time complexity does not depend on n, and the space

complexity does not depend on flops.

Figure 3.10 gives the pseudocode for the whole algorithm. It uses two subpro-

cedures: CartMult-Insert generates the next element from the ith fictitious

list and inserts it to the heap PQ, and Increment-List increments the pointers

of the ith fictitious list or deletes the list from the intersection set if it is empty.
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To justify the extra logarithmic factor in the flops term, we briefly analyze the

complexity of each submatrix multiplication in the parallel 2D block SpGEMM.

Our parallel 2D block SpGEMM performs p
√

p submatrix multiplications, since

each submatrix of the output is computed using Cij =
∑√

p

k=1 Aik Bkj. Therefore,

with increasing number of processors and under perfect load balance, flops scale

with 1/p
√

p, nnz scale with 1/p, and n scales with 1/
√

p. Figure 3.11 shows

the trends of these three complexity measures as p increases. The graph shows

that the n term becomes the bottleneck after around 50 processors and flops

becomes the lower-order term. In contrast to the classical algorithm, our Hyper-

sparse GEMM algorithm becomes independent of n, by putting the burden on

the flops instead.

3.2.2 Sparse Matrices with Large Dimension

Even for ordinary large sparse matrices (nnz = O(n)), the use of SPA in the

classical algorithm can hurt the performance. As shown in the previous chapter,

the classical algorithm has an I/O complexity of O(scan(A) + flops), because the

fast memory (cache) is often not big enough to hold a O(n) data structure like

SPA. In this section, we give a cache-friendly formulation of the column-by-column

algorithm that uses a heap instead of a SPA.
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Figure 3.11: Trends of different complexity measures for submatrix multiplications

as p increases. The inputs are randomly permuted RMAT matrices (scale 15

with an average of 8 nonzeros per column) that are successively divided into

(n/
√

p)× (n/
√

p). The counts are averaged over all submatrix multiplications.
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A Cache Efficient Sequential Algorithm

Our second algorithm is based on the column-by-column formulation the classi-

cal algorithm. Any data structure that can enumerate nonzeros in the jth column

in O(nnz (j)) time is suitable for this algorithm, so we assume that the matrices

are in CSC format for simplicity. Equivalently, we could have used DCSC to avoid

any format conversion in case this subroutine is used as part of a polyalgorithm.

Similar to the classical algorithm, we will be computing a whole column of C in

one step by examining the same column of B. In other words, C(:, j) is a lin-

ear combination of the columns A(:, i) for which B(i, j) 6= 0. Time complexity,

however, is independent of m since we do not use a SPA.

For the construction of C(:, j), we use a heap of size nnz (B(:, j)). As in the

case of the hypersparse algorithm, we require the row indices within each column

to be sorted. The idea of merging columns using a heap has been employed

before, within the Ordered-SPA data structure [124]. However, the Ordered-SPA

was never used to suppress the m factor in the algorithm because it is an Θ(m)

data structure. Furthermore, the Ordered-SPA uses a heap of size nnz (C(:, j)),

which can be much bigger than nnz (B(:, j)).

Figure 3.12 illustrates the algorithm where column j of C is computed as a

linear combination of the columns of A as specified by the nonzeros in column j
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Figure 3.12: Cache efficient multiplication of sparse matrices stored by columns.

Columns of A are merged as specified by the non-zero entries in a column of B

using a heap that is ordered by row indices of nonzero elements. The contents of

the heap are stored in a column of C once all required columns are merged.

of B. Let us illustrate the execution of the algorithm through the example inputs

A and B shown in 3.3.

A =




0 0 1 0

0 3 0 4

6 0 0 0

0 5 5 5




,B =




7 0 2 0

3 3 0 0

0 0 4 0

0 2 0 1




(3.3)

The first column of B gives the set of column indices of A that is required

during the construction of the first column of C (in this case they are the 1st

and 2nd columns of A). We can now do a multiway merge, with a heap of size

nnz (B(:, 1)) = 2 as follows: Initially, the heap contains (key , value) = (2, 7 · 6)
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and (key , value) = (1, 3 · 3). We repeatedly extract the entry with minimum key

and insert the next element from the column that the extracted element originally

came from. The row index alone is sufficient as the key because we construct one

column at a time and all the elements in that column has the same column index.

The high level pseudocode for the algorithm is given in Figure 3.14, which utilizes

a subroutine given in Figure 3.13.

Mult-Insert(PQ, lists, i, bval)

1 product = lists(i). value · bval
2 value ← Pair(product , i)
3 key ← lists(i). index
4 Insert(PQ, key , value)
5 Advance(lists(i))

Figure 3.13: Subroutine to multiply bval with the next element from the ith list
and insert it to the priority queue

The time complexity of the algorithm is

n∑

j=1

flops(C(:, j)) lg nnz (B(:, j)),

where flops(C(:, j)) is the number of nonzero multiplications required to generate

the jth column of C.

When the inputs are matrices from Erdős-Rényi graphs, the average number of

nonzeros in any column is constant. Furthermore, permutation matrices and ma-

trices representing regular grids, have a fixed number of nonzeros in each column.
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C : R
S(m×n) = CscHeap SpGEMM(A : R

S(m×k),B : R
S(k×n))

1 for j ← 1 to n
2 do for k where B(k, j) 6= 0
3 do lists(k)← SparseList(A(:, k))
4 Mult-Insert(PQ, lists, k,B(k, j))
5 while IsNotFinished(lists)
6 do (key , value)← Extract-Min(PQ)
7 (product , i)← UnPair(value)
8 if key 6= Top(Q)
9 then Enqueue(Q, key , product)

10 else UpdateTop(Q, product)
11 if IsNotEmpty(lists(k))
12 then Mult-Insert(PQ, lists, k,B(k, j))
13 else Delete(lists, k)
14 C(:, k)← Output(Q)
15 Reset(Q)

Figure 3.14: Pseudocode for heap assisted column-by-column algorithm

Let the average number of nonzeros in any column of B be c. Then, for those

families of matrices, the expected cost of the CscHeap SpGEMM algorithm is

n∑

j=1

flops(C(:, j)) · lg c = O(n + flops · lg c) = O(n + flops).

The CscHeap SpGEMM algorithm differs from the classical algorithm only

in its choice of the data structure that is used to construct columns of C. The right

choice depends on the inputs and is often an algorithm engineering decision. The

classical algorithm is more suitable for fairly dense matrices, or matrices having

dimensions that are small enough so that SPA fits into the cache. When the matrix

dimensions are bigger than the cache size and the matrices are sufficiently sparse
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so that the added lg c factor is negligible, we expect CscHeap SpGEMM to

outperform the classical algorithm. We verify our intuition through experiments

in Section 3.2.3.

3.2.3 Performance of the Cache Efficient Algorithm

In order to unveil the effects of cache misses on the column-by-column SpGEMM

algorithms, we ran experiments with matrix dimensions varying from 103 to 106.

For matrix dimension, we timed the multiplication of two sparse matrices from

Erdős-Rényi graphs with average nonzeros per column varying from 2 to 32.

Our test platform is a 2.2 Ghz Opteron that has 512 KB L2 cache per core.

Therefore, SPA starts to fall out of L2 cache around n = 105. We compared two

column-wise algorithms: the classical algorithm that uses a SPA and the cache-

friendly algorithm explained in Section 3.2.2 that uses a heap. We implemented

both algorithms using C++ and compiled them with the Intel C++ compiler ver-

sion 9.1, as it is the best performing compiler on our system, with the optimization

flag -fast .

The results for n = 104 show the case where SPA completely fits into the

cache. In this case, as shown in Figure 3.15(a), both algorithms are comparable

in terms of performance, with only a marginal difference of at most ±5%. On the

other hand, Figure 3.15(a) shows the results for 106 where SPA falls out of cache.
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The advantage of using a heap is more pronounced in this case, with relative

performance increases varying from 24% to 55% over the SPA based version.
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Figure 3.15: Performance of two column-wise algorithms for multiplying two n×n

sparse matrices from Erdős-Rényi random graphs
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3.3 Parallel Algorithms for Sparse GEMM

This section describes parallel algorithms for multiplying two sparse matrices

in parallel on p processors, which we call PSpGEMM. The design of our algo-

rithms is motivated by distributed memory systems, but expect them to perform

well in shared memory too, as they avoid hot spots and load imbalances by ensur-

ing proper work distribution among processors. Like most message passing algo-

rithms, they can be implemented in the partitioned global address space (PGAS)

model as well.

3.3.1 1D Decomposition

We assume the data is distributed to processors in block rows, where each

processor receives m/p consecutive rows. We write Ai = A(ip : (i + 1)p − 1, :)

to denote the block row owned by the ith processor. To simplify the algorithm

description, we use Aij to denote Ai(:, jp : (j + 1)p− 1), the jth block column of

Ai, although block rows are not physically partitioned.

A =




A1

...
Ap


 =




A11 . . . A1p

...
. . .

...
Ap1 . . . App


 ,B =




B1

...
Bp


 (3.4)

For each processor P (i), the computation is:

Ci = Ci + Ai B = Ci = Ci +

p∑

j=1

Aij Bj
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3.3.2 2D Decomposition

Our 2D parallel algorithms, Sparse Cannon and Sparse SUMMA, use the hy-

persparse algorithm, which has complexity O(nzc(A) + nzr(B) + flops · lg ni), as

shown in Section 3.2.1, for multiplying submatrices. Processors are logically orga-

nized on a square
√

p×√p mesh, indexed by their row and column indices so that

the (i, j)th processor is denoted by P (i, j). Matrices are assigned to processors

according to a 2D block decomposition. Each node gets a submatrix of dimensions

(n/
√

p) × (n/
√

p) in its local memory. For example, A is partitioned as shown

below and Aij is assigned to processor P (i, j).

A =




A11 . . . A1
√

p

...
. . .

...
A√

p1 . . . A√
p
√

p


 (3.5)

For each processor P (i), the computation is:

Cij =

√
p∑

k=1

Aik Bkj

3.3.3 Sparse 1D Algorithm

The row-wise SpGEMM forms one row of C at a time, and each processor

may potentially need to access all of B to form a single row of C. However,

only a portion of B is locally available at any time in parallel algorithms. The

algorithm, thus, performs multiple iterations to fully form one row of C. We use
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C : R
P (S(n)×n) = Block1D PSpGEMM(A : R

P (S(n)×n),B : R
P (S(n)×n))

1 for all processors P (i) in parallel
2 do Initialize(SPA)
3 for j ← 1 to p
4 do Broadcast(Bj)
5 for k ← 1 to n/p
6 do Load(SPA,Ci(k, :))
7 SPA← SPA + Aij(k, :)Bj

8 Unload(SPA,Ci(k, :))

Figure 3.16: Operation C← AB using block row Sparse 1D algorithm

a SPA to accumulate the nonzeros of the current active row of C. Figure 3.16

shows the pseudocode of the algorithm. Loads and unloads of SPA, which is not

amortized by the number of nonzero arithmetic operations in general, dominate

the computational time.

3.3.4 Sparse Cannon

Our first 2D algorithm is based on Cannon’s algorithm for dense matrices [52].

The pseudocode of the algorithm is given in Figure 3.19. Sparse Cannon, al-

though elegant, is not our choice of algorithm for the final implementation, as it is

hard to generalize to non-square grids, non-square matrices, and matrices whose

dimensions are not perfectly divisible by grid dimensions.
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Left-Circular-Shift(Local : R
S(n×n), s)

1 Send(Local, P (i, (j − s) mod
√

p)) � This is processor P (i, j)
2 Receive(Temp, P (i, (j + s) mod

√
p))

3 Local← Temp

Figure 3.17: Circularly shift left by s along the processor row

Up-Circular-Shift(Local : R
S(n×n), s)

1 Send(Local, P ((i− s) mod
√

p, j)) � This is processor P (i, j)
2 Receive(Temp, P ((i + s) mod

√
p, j))

3 Local← Temp

Figure 3.18: Circularly shift up by s along the processor column

C : R
P (S(n×n)) = Cannon PSpGEMM(A : R

P (S(n×n)),B : R
P (S(n×n)))

1 for all processors P (i, j) in parallel
2 do Left-Circular-Shift(Aij, i− 1)
3 Up-Circular-Shift(Bij, j − 1)
4 for all processors P (i, j) in parallel
5 do for k ← 1 to

√
p

6 do Cij ← Cij + Aij Bij

7 Left-Circular-Shift(Aij, 1)
8 Up-Circular-Shift(Bij, 1)

Figure 3.19: Operation C← AB using Sparse Cannon
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Cij

x =Aik

Bkjk

k

j

i

Figure 3.20: Sparse SUMMA Execution (b = n/
√

p)

3.3.5 Sparse SUMMA

SUMMA [100] is a memory efficient, easy to generalize algorithm for parallel

dense matrix multiplication. It is the algorithm used in parallel BLAS [61]. As

opposed to Cannon’s algorithm, it allows a tradeoff to be made between latency

cost and memory by varying the degree of blocking. The algorithm, illustrated

in Figure 3.20, proceeds in k/b stages. At each stage,
√

p active row processors

broadcast b columns of A simultaneously along their rows and
√

p active column

processors broadcast b rows of B simultaneously along their columns.

Sparse SUMMA is our algorithm of choice for our final implementation, be-

cause it is easy to generalize to non-square matrices, matrices whose dimensions

are not perfectly divisible by grid dimensions.
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3.4 Analysis of Parallel Algorithms

In this section, we analyze the parallel performance of our algorithms, and

show that they scale better than existing 1D algorithms in theory. We begin

by introducing our parameters and model of computation. Then, we present a

theoretical analysis showing that 1D decomposition, at least with the current

algorithm, is not sufficient for PSpGEMM to scale. Finally, we analyze our 2D

algorithms in depth.

In our analysis, the cost of one floating-point operation, along with the cost

of cache misses and memory indirections associated with the operation, is de-

noted by γ, measured in nanoseconds. The latency of sending a message over

the communication interconnect is α, and the inverse bandwidth is β, measured

in nanoseconds and nanoseconds per word transfered, respectively. The running

time of a parallel algorithm on p processors is given by

Tp = Tcomm + Tcomp,

where Tcomm denotes the time spent in communication and Tcomp is the time spent

during local computation phases. Tcomm includes both the latency (delay) costs

and the actual time it takes to transfer the data words over the network. Hence,

the cost of transmitting h data words in a communication phase is

Tcomm = α + hβ.
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The sequential work of SpGEMM, unlike dense GEMM, depends on many

parameters. This makes parallel scalability analysis a tough process. Therefore,

we restrict our analysis to sparse matrices following the Erdős-Rényi graph model

explained in Section 1.5.2. Consequently, the analysis is probabilistic, exploiting

the independent and identical distribution of nonzeros. When we talk about

quantities such as nonzeros per subcolumn, we mean the expected number of

nonzeros. Our analysis assumes that there are c > 0 nonzeros per row/column.

The sparsity parameter c, albeit oversimplifying, is useful for analysis purposes,

since it makes different parameters comparable to each other. For example, if A

and B both have sparsity c, then nnz (A) = cn and flops(AB) = c2n. It also

allows us to decouple the effects of load imbalances from the algorithm analysis

because the nonzeros are assumed to be evenly distributed across processors.

The lower bound on sequential SpGEMM is Ω(flops) = Ω(c2n). This bound is

achieved by some row-wise and column-wise implementations [104, 113], provided

that c ≥ 1. The row-wise implementation of Gustavson that uses CSR is the

natural kernel to be used in the 1D algorithm where data is distributed by rows.

As shown in the previous chapter, it has an asymptotic complexity of

O(n + nnz (A) + flops) = O(n + cn + c2n) = Θ(c2n).

Therefore, we take the sequential work (W ) to be γc2n in our analysis.
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3.4.1 Scalability of the 1D Algorithm

We begin with a theoretical analysis whose conclusion is that 1D decomposition

is not sufficient for PSpGEMM to scale. In Block1D PSpGEMM, each proces-

sor sends and receives p− 1 point-to-point messages of size nnz (B)/p. Therefore,

Tcomm = (p− 1)
(
α + β

nnz (B)

p

)
= Θ(p α + β c n). (3.6)

We previously showed that the Block1D PSpGEMM algorithm is unscal-

able with respect to both communication and computation costs [48]. In fact, it

gets slower as the number of processors grow. The current Star-P implemen-

tation [180] by-passes this problem by all-to-all broadcasting nonzeros of the B

matrix, so that the whole B matrix is essentially assembled at each processor.

This avoids the cost of loading and unloading SPA at every stage, but it uses

nnz (B) memory at each processor.

3.4.2 Scalability of the 2D Algorithms

In this section, we provide an in-depth theoretical analysis of our parallel 2D

SpGEMM algorithms, and conclude that they scale significantly better than their

1D counterparts. Although our analysis is limited to the Erdős-Rényi model, its

conclusions are strong enough to be convincing.
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In Cannon PSpGEMM, each processor sends and receives
√

p− 1 point-to-

point messages of size nnz (A)/p, and
√

p−1 messages of size nnz (B)/p. Therefore,

the communication cost per processor is

Tcomm =
√

p
(
2 α + β

(nnz (A) + nnz (B)

p

))
= Θ(α

√
p +

β c n√
p

). (3.7)

The average number of nonzeros in a column of a local submatrix Aij is c/
√

p.

Therefore, for a submatrix multiplication AikBkj,

ni(Aik,Bkj) = min
{
1,

c2

p

} n√
p

= min{ n√
p
,
c2 n

p
√

p
},

flops(AikBkj) =
flops(AB)

p
√

p
=

c2 n

p
√

p
,

Tmult =
√

p

(
2 min

{
1,

c√
p

} n√
p

+
c2n

p
√

p
lg

(
min

{ n√
p
,

c2n

p
√

p

}))
.

The probability of a single column of Aik (or a single row of Bkj) having at

least one nonzero is min{1, c/√p} where 1 covers the case p ≤ c2 and c/
√

p covers

the case p > c2.

The overall cost of additions, using p processors, and Brown and Tarjan’s

O(m lg n/m) algorithm [46] for merging two sorted lists of size m and n (for

m < n), is
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Tadd =

√
p∑

i=1

(flops

p
√

p
lg i

)
=

flops

p
√

p
lg

√
p∏

i=1

i =
flops

p
√

p
lg (
√

p !).

Note that we might be slightly overestimating, since we assume flops/ nnz (C) ≈

1 for simplicity. From Stirling’s approximation and asymptotic analysis, we know

that lg (n !) = Θ(n lg n) [68]. Thus, we get:

Tadd = Θ
(flops

p
√

p

√
p lg
√

p

)
= Θ

(
c2n lg

√
p

p

)
.

There are two cases to analyze: p > c2 and p ≤ c2. Since scalability analysis

is concerned with the asymptotic behavior as p increases, we just provide results

for the p > c2 case. The total computation cost Tcomp = Tmult + Tadd is

Tcomp = γ
( c n√

p
+

c2n

p
lg

( c2n

p
√

p

)
+

c2n lg
√

p

p

)
= γ

( c n√
p

+
c2n

p
lg

(c2n

p

))
. (3.8)

In this case, parallel efficiency is

E =
W

p
(
Tcomp + Tcomm

) =
γc2n

(γ + β) c n
√

p + γc2n lg
(

c2n
p

)
+ α p

√
p
. (3.9)

Scalability is not perfect and efficiency deteriorates as p increases due to the

first term. Speedup is, however, not bounded, as opposed to the 1D case. In par-

ticular, lg (c2n/p) becomes negligible as p increases and scalability due to latency

is achieved when γc2n ∝ α p
√

p, where it is sufficient for n to grow on the order

of p1.5. The biggest bottleneck for scalability is the first term in the denominator,
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which scales with
√

p. Consequently, two different scaling regimes are likely to be

present: A close to linear scaling regime until the first term starts to dominate

the denominator and a
√

p-scaling regime afterwards.

Compared to the 1D algorithms, Sparse Cannon both lower the degree of

unscalability due to bandwidth costs and mitigate the bottleneck of computation.

This makes overlapping communication with computation more promising.

Sparse SUMMA, like dense SUMMA, incurs an extra cost over Cannon for us-

ing row-wise and col-wise broadcasts instead of nearest-neighbor communication,

which might be modeled as an additional O(lg p) factor in communication cost.

Other than that, the analysis is similar to sparse Cannon and we omit the de-

tails. Using the DCSC data structure, the expected cost of fetching b consecutive

columns of a matrix A is b plus the size (number of nonzeros) of the output [49].

Therefore, the algorithm asymptotically has the same computation cost for all

values of b.

3.5 Performance Modeling of Parallel Algorithms

In this section, we first project the estimated speedup of 1D and 2D algo-

rithms in order to evaluate their prospects in practice. We use a quasi-analytical

performance model where we first obtain realistic values for the parameters (γ,
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β, α) of the algorithm performance, then use them in our projections. In the sec-

ond part, we perform another modeling study where we simulate the execution of

Sparse SUMMA using an actual implementation of the Hypersparse GEMM

algorithm. This modeling study concludes that Hypersparse GEMM is scal-

able with increasing hypersparsity, suggesting that it is a suitable algorithm to be

the sequential kernel of a 2D parallel SpGEMM.

3.5.1 Estimated Speedup of Parallel Algorithms

This study estimates the speedup of 1D and 2D algorithms by using a quasi-

analytic model that projects the performance on large systems using realistic

values for the performance parameters.

In order to obtain a realistic value for γ, we performed multiple runs on an

AMD Opteron 8214 (Santa Rosa) processor using matrices of various dimensions

and sparsity; estimating the constants using non-linear regression. One surprising

result is the order of magnitude difference in the constants between sequential

kernels. The classical algorithm, which is used as the 1D SpGEMM kernel, has

γ = 293.6 nsec, whereas Hypersparse GEMM, which is used as the 2D ker-

nel, has γ = 19.2 nsec. We attribute the difference to cache friendliness of the

hypersparse algorithm. The interconnect supports β = 1 GB/sec point-to-point

bandwidth, and a maximum of α = 2.3 microseconds latency, both of which are
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achievable on TACC’s Ranger Cluster. The communication parameters ignore

network contention.
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Figure 3.21: Modeled speedup of Synchronous Sparse 1D algorithm

Figures 3.21 and 3.22 show the modeled speedup of Block1D PSpGEMM

and Cannon PSpGEMM for matrix dimensions from n = 217 to 224 and number

of processors from p = 1 to 4096. The inputs are Erdős-Rényi graphs.

We see that Block1D PSpGEMM’s speedup does not go beyond 50x, even

on larger matrices. For relatively small matrices, having dimensions n = 217−220,

it starts slowing down after a thousand processors, where it achieves less than 40x

speedup. On the other hand, Cannon PSpGEMM shows increasing and almost

linear speedup for up to 4096 processors, even though the slope of the curve is less
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Figure 3.22: Modeled speedup of synchronous Sparse Cannon

than one. It is crucial to note that the projections for the 1D algorithm are based

on the memory inefficient implementation that performs an all-to-all broadcast of

B. This is because the original memory efficient algorithm given in Section 3.3.1

actually slows down as p increases.

It is worth explaining one peculiarity. The modeled speedup turns out to be

higher for smaller matrices than for bigger matrices. Remember that commu-

nication requirements are on the same order as computational requirements for

parallel SpGEMM. Intuitively, the speedup should be independent of the matrix

dimension in the absence of load imbalance and network contention, but since we

are estimating the speedup with respect to the optimal sequential algorithm, the
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overheads associated with the hypersparse algorithm are bigger for larger matrices.

The bigger the matrix dimension, the slower the hypersparse algorithm is with

respect to the optimal algorithm, due to the extra logarithmic factor. Therefore,

speedup is better for smaller matrices in theory. This is not the case in practice,

because the peak bandwidth is usually not achieved for small sized data transfers

and load imbalances are severer for smaller matrices. Section 3.7.1 addresses the

load imbalance.

We also evaluate the effects of overlapping communication with computation.

Following Krishnan and Nieplocha [133], we define the non-overlapped percentage

of communication as:

w = 1− Tcomp

Tcomm

=
Tcomm − Tcomp

Tcomm

The speedup of the asynchronous implementation is:

S =
W

Tcomp + w(Tcomm)

Figure 3.23 shows the modeled speedup of asynchronous SpCannon assum-

ing truly one-sided communication. For smaller matrices with dimensions n =

217 − 220, speedup is about 25% more than the speedup of the synchronous im-

plementation.

The modeled speedup plots should be interpreted as upper bounds on the

speedup that can be achieved on a real system using these algorithms. Achieving
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Figure 3.23: Modeled speedup of asynchronous Sparse Cannon

these speedups on real systems requires all components to be implemented and

working optimally. The conclusion we derive from those plots is that no mat-

ter how hard we try, it is impossible to get good speedup with the current 1D

algorithms.

3.5.2 Scalability with Hypersparsity

This modeling study reveals the scalability of our hypersparse algorithm with

increasing sparsity. We have implemented our data structures and multiplica-

tion algorithms in C++. Our code is compiled using the GNU Compiler Col-

lection (GCC) Version 4.1, with the flags -03, because these are the settings
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that our comparison platform, Matlab, is compiled with. We have incorporated

Peter Sander’s Sequence Heaps [174] for all the priority queues used by our al-

gorithms. Througout the experiments, the numerical values are represented as

double-precision floating points.

We compare the performance of our implementation with Matlab R2007A’s

(64-bit version) implementation of the classical algorithm. Sparse matrix multipli-

cation is a built-in function in Matlab, so there are no interpretation overheads

associated with it. We are simply comparing our C++ code with the underlying

precompiled C code used in Matlab.

All of our experiments are performed on a single core of Opteron 2.2 Ghz with

64 GB main memory, where we simulate the execution of a parallel SpGEMM.

The simulation is done by dividing the input matrices of size n×n into p subma-

trices of size (n/
√

p)× (n/
√

p) using the 2D block decomposition, as explained in

Section 3.3.2 and shown in Figure 3.5.

Expressing the matrix multiplication as algebraic operations on submatrices

instead of individual elements, we see that each submatrix of the product is com-

puted using Cij =
∑√

p

k=1 Aik Bkj. Since we are primarily concerned with the

sequential sparse matrix multiplication kernel, we will exclude the cost of subma-

trix additions and other parallel overheads. That is to say, we will only time the
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submatrix multiplications, exactly plotting

time(p,A,B) =

√
p∑

i=1

√
p∑

j=1

√
p∑

k=1

time(Aik Bkj),

which is equal to the amount of work done by a parallel matrix multiplication

algorithm such as SUMMA [100].

Increasing p in this case does not mean we use more processors to compute the

product. Instead, it means we use smaller and smaller blocks while computing

the product on a single processor. Therefore, a perfectly scalable algorithm would

yield flat timing curves as p increases. We expect our hypersparse algorithm

to outperform the classical algorithm as p increases due to reasons explained

in Section 3.2.1. We label the classical algorithm Matlab, and our algorithm

Hypersparse GEMM in the plots. The second input is only transposed once

because this is what would happen in a parallel implementation.

In all experiments in this section, the input matrices have dimensions 223×223,

i.e. the input graphs have around 8 million vertices.

Synthetic R-MAT Graphs

We ran two main sets of multiplication experiments with R-MAT matrices,

one where both input matrices are R-MAT, and one where A is a R-MAT matrix

and B is a permutation matrix. The results are shown in Figures 3.24(a) and

3.24(b).
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(a) Multiplying R-MAT matrices (R-MAT ×
R-MAT)
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(b) Permuting an R-MAT matrix (R-MAT ×
Perm)
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(c) Multiplying matrices from Erdős-Rényi
graphs (Rand × Rand)
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Figure 3.24: Model of scalability of SpGEMM kernels
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In the case of R-MAT × R-MAT, the classical sequential algorithm is initially

faster than Hypersparse GEMM. For p > 64, however, the classical algorithm

starts performing poorly because submatrices start getting hypersparse. To see

why, consider the ratio of nnz to n for each submatrix:

nnz (Aij)

n/
√

p
=

8 n/p

n/
√

p
=

8√
p

This ratio is smaller than 1 for p > 64, making submatrices hypersparse. For

p = 1024, our algorithm performs more than 5 times faster than the classical

algorithm. Its scaling is also very good, showing almost flat curves.

In the case of multiplying an R-MAT matrix with a permutation matrix (R-

MAT × Perm), poor scalability of the classical algorithm is more apparent. Our

algorithm starts to outperform for as low as p > 4. The break-even point after

which our algorithm dominates is lower in this case because permutation matrices

are more sparse with only 1 nonzero per column/row.

Erdős-Rényi Random Graphs

We have conducted a single set of experiments where we multiply two matri-

ces representing Erdős-Rényi random graphs. Looking at the timings shown in

Figure 3.24(c), we see that the Hypersparse GEMM dominates the classical

algorithm (as implemented in Matlab) for most values for p > 64, when used as

the sequential kernel of a 2D parallel SpGEMM. More importantly, when we reach
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thousands of processors, our algorithms show their scalability for these input types

as well. In particular, Hypersparse GEMM is more than 4 times faster than

the classical algorithm for 1024 processors when multiplying Erdős-Rényi random

matrices.

Regular 3D Grids

For our last set of experiments, we have used grid3d matrices. These matrices

have a banded structure, which makes them unsuitable for 2D block decomposi-

tion since the off-diagonal processors sit idle without storing any nonzeros and

performing any computation. Even though we are just timing the computational

costs, ignoring parallelization overheads in this modeling study, the imbalance

has an effect on the timing of submatrix multiplications. In particular, the heavy

diagonals avoid hypersparsity to emerge, thus favoring the classical algorithm in

this unrealistic setting.

To remedy this problem, we perform random permutations of vertices on both

inputs before performing the multiplication. In other words, instead of computing

C = AB, we compute C′ = A′B′ = (PAPT)(PBPT) = PCPT. Even after ap-

plying random symmetric permutations, submatrices in the diagonal are expected

to have more nonzeros than others. This is because symmetric permutations es-
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sentially relabel the vertices of the underlying graph, so they are unable to scatter

the nonzeros in the diagonal.

Multiplications among diagonal blocks favor the classical sequential kernel

because diagonal blocks can never become hypersparse no matter how much p

increases. Multiplication among off-diagonal blocks are more suitable for our hy-

persparse kernel. More technically, our observation means

flops(Aii Bii) > flops(Aii Bij) > flops(Aik Bkj).

Therefore, the variances in timings of submatrix multiplications are large com-

pared with other sets of test matrices.

Asymptotic behavior of the algorithms is also slightly different in this case as

it can be seen in Figure 3.24(d). Yet, our algorithm is around 4 times faster than

the classical algorithm for p = 1024.

3.6 Parallel Scaling of Sparse SUMMA

3.6.1 Experimental Design

We have implemented two versions of the 2D parallel SpGEMM algorithms

in C++. The first one is directly based on Sparse SUMMA and synchronous in

nature. It does not use any MPI-2 features. The second implementation is asyn-

chronous and uses one-sided communication features of MPI-2. In this section,
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we report on the performance of the synchronous implementation only and leave

the results of the asynchronous implementation to Section 3.7.3. We ran our code

on the TACC’s Ranger Cluster, which has four 2.3GHz quad-core processors in

each node (16 cores/node). It has an Infiniband interconnect with 1GB/sec uni-

directional point-to-point bandwidth and 2.3 microseconds max latency. We have

experimented with multiple compilers and MPI implementations. We report our

best results, which we achieved using OpenMPI v1.3b and GNU Compiler (g++

v4.4) with flag -O3.

For both implementations, our sequential Hypersparse GEMM routines re-

turn a set of intermediate triples that are kept in memory up to a certain threshold

without being merged immediately. This allows for a more balanced merging, thus

eliminating some unnecessary scans that degraded performance in a preliminary

implementation [48].

In our experiments, instead of using random matrices (matrices from Erdős-

Rényi random graphs), we used synthetically generated RMAT matrices, in order

to achieve results closer to reality. The average number of nonzeros per column is

8 for those synthetically generated graphs.
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Figure 3.25: Observed speedup of of synchronous Sparse SUMMA for the R-MAT

× R-MAT product on matrices having dimensions 221−223. Both axes are normal

scale.

3.6.2 Experimental Results

Square Sparse Matrix Multiplication

In the first set of experiments, we multiply two R-MAT matrices that are

structurally similar. This square multiplication is representative of the expansion

operation used in the Markov clustering algorithm [82]. It is also a challenging case

for our implementation due to high skew in nonzero distribution. We performed

strong scaling experiments for different matrix dimensions ranging from 221 to

223. Figure 3.25 shows the speedup we achieved. The graph shows linear speedup

113



Chapter 3. New Ideas in Sparse Matrix-Matrix Multiplication

 0

 50000

 100000

 150000

 200000

 250000

 300000

 1  2  3  4  5  6  7  8  9  10

N
um

be
r 

of
 v

er
tic

es
 in

 fr
in

ge

BFS tree level

Figure 3.26: Fringe size per level during breadth-first search. Each one of ten

plots is an average of 256 independent BFS operations on a graph of 1 million

vertices and 8 million edges

(with slope 0.5) until around 50 processors; afterwards the speedup is proportional

to the square root of the number of processors. Both results are in line with our

analysis in Section 3.4.2.

Tall Skinny Right Hand Side Matrix

The second set of experiments involves multiplication of R-MAT matrices by

tall skinny matrices of varying sparsity. This set of experiments serves multiple

purposes. Together with the next set of experiments, they reveal the sensitivity of

our algorithm to matrix orientations. It also examines the sensitivity to sparsity,
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because we vary the sparsity of the right hand side matrix. Lastly, it is represen-

tative of the parallel breadth-first search that lies in the heart of our betweenness

centrality implementation in Section 5.1. We varied the sparsity of the right hand

side matrix from approximately 1 nonzero per column to 105 nonzeros per column,

with multiplicative increments of 10. Our reasoning is application driven: at each

level of breadth-first search, the current frontier (fringe) has as low as a few ver-

tices but it can have as high as 300000 vertices. Figure 3.26 plots the number of

vertices in the fringe at each level of the breadth-first search for 10 different runs

(with different starting vertices) on a network of 1 million vertices and 8 million

edges.

For our experiments, the R-MAT matrices on the left hand side have c1 = 8

nonzeros per column and their dimensions vary from n = 220 to n = 226. The

right hand side matrix is of size n-by-k, and its number of nonzeros per column, c2

is varied from 1 to 105, with multiplicative increments of 10. Its width, k, varies

from 128 to 8192 that grows proportionally to its length n. Hence, the total work

is W = O(c1c2k), the total memory consumption is M = O(c1n + c2k), and total

bandwidth requirement is is O(M
√

p).

We performed scaled speedup experiments where keep both n/p = 214 and

k/p = 2 constant. This way, we were able to keep both memory consumption per
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processor and work per processor constant at the same time. However, bandwidth

requirements per processor increases by a factor of
√

p.

Figure 3.27 shows the three-dimensional performance graph. The timings for

each slice along the XZ-plane (i.e. for every c2 = {1, 10, ..., 105} contour), is nor-

malized to its running time on p = 64 processors. We do not cross-compare the

absolute performances using different c2 values, as our focus in this section is par-

allel scaling. The graph demonstrates that, except for the outlier case c2 = 1000,

we achieve the expected
√

p slowdown due to communication costs. The perfor-

mance we achieved for these large scale experiments, where we ran our code on

up to 4096 processors, is remarkable.

Multiplication with the Restriction Operator

The multilevel method is widely used in the solution of numerical and com-

binatorial problems [194]. The method constructs smaller problems by successive

coarsening of the problem domain. The simplest coarsening is perhaps graph con-

traction. One contraction step chooses two or more vertices in the original graph

G to become a single aggregate vertex in the contracted graph G′. The edges of G

that used to be incident to any of the vertices forming the aggregate now become

incident to the new aggregate vertex in G′.
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Figure 3.27: Weak scaling of R-MAT times a tall skinny Erdős-Rényi matrix. x
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Constructing a coarser grid during the V-cycle of the Algebraic Multigrid

(AMG) method [42] or graph partitioning [118] is a generalized graph contraction

operation. Different algorithms need different coarsening operators. For example,

a weighted (as opposed to strict) aggregation [58] might be preferred for parti-

tioning problems. In general, coarsening can be represented as multiplication of

the matrix representing the original fine domain (grid, graph, or hypergraph) by

the restriction operator.

In this experiments, we use a simple restriction operation to perform graph con-

traction. Gilbert et al. [105] describe how to perform contraction using SpGEMM.

Their elegant algorithm creates a special sparse matrix S with n nonzeros. The

triple product SAST contracts the whole graph at once. Making S smaller in the

first dimension while keeping the number of nonzeros same changes the restriction

order. For example, we contract the graph into half by using S having dimensions

n/2× n, which is said to be of order 2.

Figure 3.28 shows the strong scaling of the operation AST for R-MAT graphs

of scale 23. We used restrictions of order 2, 4, and 8. Changing the interpolation

order results in minor changes in performance. The experiment shows good scaling

for up to 1024 processors.
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Figure 3.28: Strong scaling of multiplication with the restriction operator on the

right, A′ ← AST. The graph is logarithmic on the x-axis.

3.7 Alternative Parallel Approaches

3.7.1 Load Balancing and Asynchronous Algorithms

In distributed memory dense matrix-matrix multiplication algorithms, each

processor performs a total of W/p work where W = N3. The sparse inputs are

not so naturally balanced. Our experiments with randomly relabeling vertices (in

matrix terms, applying a symmetric permutation) showed good premise where the

maximum overall work for a single processor was only 9% more than the average

work per processor, even when the initial matrix has significantly skewed degree
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distribution1. Aiming for perfect load balance via graph or hypergraph partition-

ing [54, 55, 203] seems impractical whenever the matrices are not reused. Even

when one of the matrices are fixed throughout the computation, load balance for

SpGEMM can not be determined solely based on one operand, unlike SpMV. We

do not know of any applications where both matrix operands have fixed struc-

ture for several subsequent multiplication operations, which might have justified

complex load balancing.

The sparse 2D algorithms presented in previous sections execute in a syn-

chronous manner in s stages in their naive form. For sparse matrices, achiev-

ing good load balance per stage is harder than achieving load balance for the

whole computation. This is because a local submatrix update such as Ci,j ←

Ci,j + Ai,kBk,j might have significantly more work to do than another update at

the same stage, say Ci+1,j ← Ci+1,j + Ai+1,kBk,j. However, in a subsequent stage

the roles of the (i, j)th and the (i+1, j)th processor might swap; hence balancing

the load across stages. On the other hand, a barrier synchronization at each stage

forces everyone to wait for the slowest update until they can proceed to the next

stage. Hence, we expect an asynchronous algorithm to perform better than a

synchronous one for matrices with highly skewed nonzero distribution.

1For sufficiently large matrices on 256 processors, as shown in Figure 3.30
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In order to quantify the severity of load imbalance, we performed a simulation

of the Sparse Cannon algorithm that accounts for the computation (in terms of

the number of actual flops only) and communication (nnz only) done by each

processor. We varied the matrix dimension and the number of processors while

the number of nonzeros per row/column were kept constant. For RMAT matrices

with 8 nonzeros per column, the per-stage load imbalance with 256 processors

is shown in Figure 3.29. Load imbalance is defined as the ratio of the maximum

number of flops performed by any processor to the average number of flops. These

plots are typical in the sense that we permuted the input matrices multiple times

with different random permutations and plotted the results of the permutation

that resulted in the median load imbalance.

Figure 3.30(a) shows the overall load imbalance for increasing matrix sizes on

256 processors. The problem becomes well balanced (i.e. it has less 10% load

imbalance) for R-MAT inputs of scale 20 and larger. On the other hand, Fig-

ure 3.30(b) shows a comparison of the trends of overall and per-stage imbalances

(average over all stages) with increasing number of processors and a fixed problem

size.

These results on Figures 3.29 and 3.30 suggest that per-stage load balance

is significantly harder to achieve than load balance for the overall computation.

Both tend to decrease as the problem size gets bigger, although per-stage load
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Figure 3.29: Load imbalance per stage for multiplying two RMAT matrices on
256 processors using Sparse Cannon

122



Chapter 3. New Ideas in Sparse Matrix-Matrix Multiplication

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 15  16  17  18  19  20

Lo
ad

 im
ba

la
nc

e

RMAT Scale

256 Processors

(a) Overall imbalance on a fixed number of
(p = 256) processors

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 16  64  256  1024  4096

Lo
ad

 im
ba

la
nc

e

Processors

Overall
Per-stage (average)

(b) Overall vs. per-stage imbalance for a fixed
problem size (R-MAT scale 20)

Figure 3.30: Load imbalance during parallel multiplication of two RMAT matrices

imbalance has much wider variance and tends to decrease less smoothly than the

overall load imbalance. The average per-stage load imbalance across all stages is

1.46 for inputs of scale 20. This means that a synchronous Sparse Cannon is likely

to achieve 46% less speedup than we estimated in Section 3.5.1. By contrast, a

perfectly asynchronous implementation would only pay 9% performance penalty

due to load imbalance.

One-sided communication is the most suitable paradigm for implementing

asynchronous SpGEMM. We used one-sided MPI-2 routines for portability, as

GASNet [39] and ARMCI [153] are not as widely supported on supercomputers.

It is still worth mentioning that even MPI poses some complications due to imma-

turity of implementations and vagueness in parts of the standard. We report our

performance results using the passive target synchronization [152]. Explorations
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on different one-sided approaches and issues associated with them can be found

in Appendix A.

MPI-1 standard is inadequate to address the asynchronous implementation

challenge. The blocking operations do trivially synchronize, and the non-blocking

operations buffer the message and revert to a synchronous mode whenever the data

is too large to fit in the buffers [172]. The basic requirement of an asynchronous

SpGEMM is that the (i, j)th processor should be able to fetch its required subma-

trix from its original owner regardless of its computation stage at that moment.

Although this can be achieved by the use of a helper thread that waits on the

Send() operation, ready to serve any incoming Recv() requests, this approach has

two drawbacks. Firstly, there is a substantial performance loss due to oversub-

scribing the processor. Secondly, general multithreaded MPI support is still in its

infancy2.

3.7.2 Overlapping Communication with Computation

In order to hide communication costs as much as possible, each processor starts

prefetching one submatrix ahead while computing its current submatrix product.

More concretely, processor P (i, j) starts prefetching Ai,k+1 and Bk+1,j while com-

puting Ai,kBk,j. To keep the memory footprint the same as the synchronous

2OpenMPI’s MPI THREAD MULTIPLE support, which failed in our tests, is known to be
untested
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Figure 3.31: The split distribution of matrix A on a single processor row

Sparse SUMMA, we split the submatrices in half, so that each processor performs

2
√

p submatrix multiply-adds instead of
√

p. The distribution of matrix A on a

single processor row is shown in Figure 3.31.

3.7.3 Performance of the Asynchronous Implementation

The pseudocode for our asynchronous implementation (in MPI/C++ notation)

is shown in Figure 3.32. This implementation achieves two goals at once. It

overlaps communication with computation as much as possible by prefetching

next submatrices. It also achieves better load balance because it allows each

processor to proceed independently without any global synchronizations.

Figure 3.33 compares the performance of the asynchronous implementation

with the synchronous Sparse SUMMA implementation for the scale 22 R-MAT ×
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// M1 i s the f i r s t h a l f o f the l o c a l matrix M, M2 i s the second
vector<Win> rwf = CreateWindows (RowWorld , A1 ) ;
vector<Win> rws = CreateWindows (RowWorld , A2 ) ;
vector<Win> cwf = CreateWindows (ColWorld , A1 ) ;
vector<Win> cws = CreateWindows (ColWorld , A2 ) ;

// Each window i s made a c c e s s i b l e to i t s ne i ghbors in t h e i r
// r e s p e c t i v e proces sor row ( in the case o f A) and
// proces sor column ( in the case o f B)
ExposeWindows ( ) ;

/* Perform i n i t i a l two f e t c h e s and mu l t i p l y f i r s t h a l f s */
for ( int i = 1 ; i < s t ag e s ; ++i ) // main loop
{

CResult += SpGEMM(*ARecv1 , *BRecv1 , false , true ) ;

// wai t f o r the prev ious second h a l f s to complete
CompleteFetch ( rws ) ;
CompleteFetch ( cws ) ;

Aowner = ( i+Ao f f s e t ) % s tage s ;
Bowner = ( i+Bo f f s e t ) % s tage s ;

// s t a r t f e t c h i n g the current f i r s t h a l f
StartFetch (ARecv1 , Aowner , rwf ) ;
StartFetch (BRecv1 , Bowner , cwf ) ;

// wh i l e mu l t i p l y i n g ( completed ) prev ious second h a l f s
CResult = SpGEMM(*ARecv2 , *BRecv2 , false , true ) ;

/* now wai t f o r the current f i r s t h a l f to complete */
/* s t a r t p r e f e t c h i n g the current second h a l f */

}
/* perform the l a s t p i e c e s o f computation */
Figure 3.32: Partial C++ code partial for asynchronous SpGEMM using one-
sided communication and split prefetching for overlapping communication with
computation
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Figure 3.33: Performances of the asynchronous and synchronous implementations

of the Sparse SUMMA. In this experiment, we multiply two R-MAT matrices of

scale 22. Both axes are on log-scale

R-MAT product. Although they scale similarly well, the synchronous implemen-

tation is 6− 47% faster.

Overall poor performance of the asynchronous implementation is partly due

to the extra operations such splitting and joining matrices. However, their share

in the computation time goes down as we increase the number of processors, so

this does not explain the performance difference on large number of processors.

We first thought the performance hit was due to the progress threads that

are used by MPI implementations on Infiniband [183] to ensure asynchronous

progress. On the other hand, we ran the same code using 4 threads per node so

that the progress threads will not oversubscribe the individual cores. Figure 3.34

127



Chapter 3. New Ideas in Sparse Matrix-Matrix Multiplication

 0

 0.5

 1

 1.5

 2

16 64 256

A
sy

nc
h 

/ S
yn

ch
 (

T
im

e 
ra

tio
)

Number of cores

16way
8way
4way
2way

Figure 3.34: Performance comparison of the asynchronous and synchronous im-

plementations using different number of cores per node. The vertical axis shows

the ratio of time it takes to execute SpGEMM with the asynchronous implemen-

tation to the time it takes with the synchronous implementation. A t-way run on

p cores is performed using p/t nodes.

shows that the performance difference between the synchronous and asynchronous

implementations grows as we use less cores per node. Either our asynchronous

implementation, which uses one-sided point-to-point communication instead of

blocking collective communication, or the underlying MPI implementation does

not take full advantage of the extra bandwidth available per core.

We are not able to explain the load imbalance that happens in practice. Let Tp

be the time to complete the SpGEMM procedure on p processors. If Ti is the time

for the ith processor to complete its local procedure, then Tp = max(Ti) over all i
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due to wait times. For the asychronous implementation, our preliminary profiling

(on 256 cores) revealed that the fastest processor spends more time waiting for the

other processors than doing useful computation. On average, a processor spent

about 1/3rd of its time waiting.

The slowdown due to the asynchronous execution was previously experienced

on the Connection Machine CM5 [139] on programs with regular communication

patterns. Brewer and Kuszmaul [41] found out that an initial skew of processors

slowed down the overall computation on the CM5, as receiver queues started to

back off. The CM-5 data network is similar to Ranger’s, in the sense that they

both use a fat-tree [137] interconnect. However, the problem with the CM-5 was

the contention on the receivers due to the computational cost of receiving packets.

Ranger’s Infiniband interconnect, on the other hand, has RDMA support for this

task. However, we do not know whether MPI-2 functions have been implemented

to fully take advantage of the network’s capabilities. In conclusion, revealing the

exact cause of the poorer performance of the asynchronous implementation needs

further research and more performance profiling.
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3.8 Future Work

Our mathematical modeling of the parallel algorithms in Section 3.3 is an

average-case analysis assuming independent uniform random distribution of nonze-

ros, which translates into the Erdős-Rényi random graph model. More realistic

models should assume skewed nonzero distributions, such as power-law distribu-

tions. Ultimately, average case analysis has its limitations because it needs to

assume an underlying distribution. On the other hand, worst case analysis does

not make a lot of sense for our problem, because there are certain sparse matrix

pairs that will create a dense output when multiplied. Therefore, a smoothed

analysis [186] of the sparse matrix multiplication algorithms, both sequentially

and in parallel, would be a significant advancement.

Load imbalance is not severe for sufficiently large matrices, even in the absence

of asynchronous progress. Our one-sided communication approach was based on

remote get operations in order to avoid fence synchronization. Given the accept-

able load balance for large matrices, it is worth exploring an option with fence

synchronization and remote put operations. This proposed implementation will

still use one-sided communication but all processors in the processor row/column

will need to synchronize after the put operation. We expect better performance
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because it only takes one trip to complete a remote put operation whereas remote

get requires a roundtrip.

Our SpGEMM routine might be extended to handle matrix chain products.

In particular, the sparse matrix triple product (RAP) is heavily used in the coars-

ening phase of the algebraic multigrid method [4]. Sparse matrix indexing and

parallel graph contraction also require sparse matrix triple product [105]. The sup-

port for sparse matrix chain products eliminates temporary intermediate products

and allows more optimizations, such as performing structure prediction [63] and

finding the optimal parenthesization based on the sparsity of the inputs.

Finally, there is a need for hierarchical parallelism due to vast differences in

the costs of inter-node and intra-node communication. The flat parallelism model

does not only lose the opportunity to exploit the faster on-chip network, but it also

increases the contention on the off-chip links. We observed that the inter-node

communication becomes slower as the number of cores per node increases because

more processes are competing for the same network link. Therefore, designing a

hierarchically parallel Sparse GEMM algorithm is an important future direction.
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Chapter 4

The Combinatorial BLAS: Design
and Implementation

My impression was and is that many programming languages and tools
represent solutions looking for problems, and I was determined that my
work should not fall into that category

Bjarne Stroustrup

The Combinatorial BLAS library is a parallel library for graph computations.

It is intented to provide a common interface for high-performance graph kernels.

It is unique among other graph libraries for combining scalability with distributed

memory parallelism. We borrowed ideas from the domain of parallel numerical

analysis and applied them to parallel graph computations.

4.1 Motivation

The Matlab reference implementation of the HPCS Scalable Synthetic Com-

pact Applications graph analysis (SSCA#2) benchmark was an important step
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towards using linear algebra operations for implementing graph algorithms. Al-

though it was a success in terms of expressibility and ease of implementation, its

performance was about 50% worse than the best serial implementation. Mostly,

the slowdown was due to limitations of Matlab for performing integer operations

1. The parallel scaling was also limited on most parallel Matlab implementations.

The idea of having a BLAS-like library for doing graph computation is driven

by the desire to create a general purpose library that supports rapid implemen-

tation of graph algorithms using a small yet important subset of linear algebra

operations. The library should also be in parallel and scale well due to the massive

size of graphs in many modern applications.

4.2 Design Philosophy

4.2.1 The Overall Design

The first class citizens of the Combinatorial BLAS are distributed sparse ma-

trices. Application domain interactions that are abstracted into a graph are con-

cretely represented as a sparse matrix. Therefore, all non-auxiliary functions are

designed to operate on sparse matrix objects. There are three other types of

objects that are used by some of the functions: dense matrices, dense vectors,

1Matlab does not support integer data elements for its sparse matrices
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sparse vectors. Concrete data structures for these objects are explained in detail

in Section 4.3.

We follow some of the guiding design principles of the popular and successful

PETSc package [21]. We achieve extensibility by defining a common abstraction

for all sparse matrix storage formats, making it possible to implement a new

format and plug it in without changing rest of the library. For scalability, it is

possible (and encouraged) to create objects by passing special MPI communicator

objects instead of using the default COMM::WORLD object that includes all the

processes in the system. This use of communicators also helps to avoid inter-

library and intra-library collisions. We do not attempt to create the illusion of

a flat address space; communication is internally handled by parallel classes of

the library. Likewise, we do not always provide storage independence due to

our emphasis on high performance. Some operations have different semantics

depending on whether the underlying object is sparse or dense.

The Combinatorial BLAS routines (API functions) are supported both sequen-

tially and in parallel. The communication is managed within the parallel versions

(i.e. , versions operating on parallel objects) of these high-level operations, which

call the sequential versions for computation on local data. This symmetry of func-

tion prototypes has a nice effect on interoperability. The parallel objects can just

treat their internally stored sequential objects as black boxes supporting the API
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functions. Conversely, any sequential class becomes fully compatible with the rest

of the library as long as it supports the API functions and allows access to its

internal arrays through an adapter object. This decoupling of parallel logic from

sequential parts of the computation is one of the distinguishing features of the

Combinatorial BLAS.

4.2.2 The Combinatorial BLAS Routines

We selected the operations to be supported by the API by a top-down, ap-

plication driven process. Commonly occurring computational patterns in many

graph algorithms are abstracted into a few linear algebraic kernels that can be

efficiently mapped into the architecture of distributed memory computers. The

API is not intended to be final and will be extended as more applications are

analyzed and new algorithms are invented.

We address the tension between generality and performance by the zero over-

head principle: Our primary goal is to provide work-efficiency for the targeted

graph algorithms. The interface is kept general, simple, and clean so long as doing

so does not add significant overhead to the computation. The guiding principles

in the design of the API are listed below, each one illustrated with an example.

(1) If multiple operations can be handled by a single function prototype without

degrading the asymptotic performance of the algorithm they are to be part
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of, then we provide a generalized single prototype. Otherwise, we provide

multiple prototypes.

For example, it is tempting to define a single function prototype for elemen-

twise operations on sparse matrices. Although it seems achievable by passing

a binop parameter, semantics of sparse matrices differ depending on the binary

operation. For instance, ignoring numerical cancellation, elementwise addition is

most efficiently implemented as a union of two sets while multiplication is the in-

tersection. Other elementwise operations between two sparse matrices are handled

similarly, but using different functions. If it proves to be efficiently implementable

(using either function object traits or run-time type information), all elementwise

operations between two sparse matrices may have a single function prototype in

the future.

On the other hand, the data access patterns of matrix-matrix and matrix-

vector multiplications are independent of the underlying semiring. In fact, many

connectivity problems use the Boolean semiring ({0, 1},∨,∧, 0, 1) and many short-

est path algorithms use the tropical semiring (R+, min, +,∞, 0). As a result, the

sparse matrix-matrix multiplication routine SpGEMM and the sparse matrix-

vector multiplication routine SpMV accept a parameter representing the semir-

ing. The SpGEMM function also expects two additional parameters, trA and trB,
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and depending on those, computes one of the following operations: C ← A · B,

C← AT ·B, C← A ·BT, C← AT ·BT.

(2) If an operation can be efficiently implemented by composing a few simpler

operations, then we do not provide a special function for that operator.

For example, making a nonzero matrix A column stochastic can be efficiently

implemented by first calling Reduce on A to get a dense row vector v that

contains the sums of columns, then obtaining the multiplicative inverse of each

entry in v by calling the Apply function with the unary function object that

performs f(vi) = 1/vi for every vi it is applied to, and finally calling Scale(v) on

A to effectively divide each nonzero entry in a column by its sum. Consequently,

we do not provide a special function to make a matrix column stochastic.

On the other hand, a commonly occurring operation is to zero out some of

the nonzeros of a sparse matrix. This often comes up in graph traversals, where

Xk represents the set of vertices that are discovered during the kth iteration (i.e.

the kth frontier). Multiplying Xk by the adjacency matrix of the graph yields

another matrix that might include some of the previously discovered vertices in

addition to the set of vertices that are discovered during the (k + 1)st iteration.

Those old vertices need to be pruned from the frontier before starting the next

iteration. One way to implement this pruning operation is to keep a matrix Y

that includes a zero for every vertex that has been discovered before, and nonzeros
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elsewhere. Performing an elementwise multiplication with Y yields the desired

frontiers matrix Xk+1. However, this approach might not be work-efficient since

Y will often be dense, especially in the early stages of the graph traversal.

Consequently, we provide a generalized function SpEWiseX that performs the

elementwise multiplication of sparse matrices op(A) and op(B). It also accepts

two auxiliary parameters, notA and notB, that are used to negate the sparsity

structure of A and B. If notA is true, then op(A)(i, j) = 0 for every nonzero

A(i, j) 6= 0 and op(A)(i, j) = 1 for every zero A(i, j) = 0. The role of notB is

identical. Direct support for the logical NOT operations is crucial to avoid the

explicit construction of the dense not(B) object.

(3) To avoid expensive object creation and copying, many functions also have

in-place versions. For operations that can be implemented in place, we deny

access to any other variants only if those increase the running time.

For example, Scale(B) is a member function of the sparse matrix class that

takes a dense matrix as a parameter. When called on the sparse matrix A, it

replaces each A(i, j) 6= 0 with A(i, j) · B(i, j). This operation is implemented

only in-place because B(i, j) is guaranteed to exist for a dense matrix, allowing

us to perform a single scan of the nonzeros of A and update them by doing fast

lookups on B. Not all elementwise operations can be efficiently implemented in-

place (for example elementwise addition of a sparse matrix and a dense matrix will

138



Chapter 4. The Combinatorial BLAS: Design and Implementation

Table 4.1: Summary of the current API for the Combinatorial BLAS

Function Applies to Parameters Returns

SpGEMM

Sparse Matrix A,B: sparse matrices
Sparse Matrix(as friend) trA: transpose A if true

trB: transpose B if true

SpMV

Sparse Matrix A: sparse matrices
Sparse Matrix(as friend) x: dense vector(s)

trA: transpose A if true

SpEWiseX

Sparse Matrices A,B: sparse matrices
Sparse Matrix(as friend) notA: negate A if true

notB: negate B if true

Reduce
Any Matrix dim: dimension to reduce

Dense Vector
(as method) binop: reduction operator

SpRef
Sparse Matrix p: row indices vector

Sparse Matrix
(as method) q: column indices vector

SpAsgn

Sparse Matrix p: row indices vector
none(as method) q: column indices vector

B: matrix to assign

Scale
Any Matrix rhs: any object

none
(as method) (except a sparse matrix)

Scale
Any Vector rhs: any vector

none
(as method)

Apply
Any Object unop: unary operator

none
(as method) (applied to nonzeros)
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produce a dense matrix), so the implementer is free to declare them as members of

the dense matrix class or declare them as global functions returning a new object.

(4) In-place operations have slightly different semantics depending on whether

the operands are sparse or dense. In particular, the semantics favor leav-

ing the sparsity pattern of the underlying object intact as long as another

function (possibly not in-place) handles the more conventinal semantics that

introduces/deletes nonzeros.

For example, Scale is an overloaded method, available for all objects. It

does not destroy sparsity when called on sparse objects and it does not introduce

sparsity when called on dense objects. The semantics of the particular Scale

method is dictated by its the class object and its operand. Called on a sparse

matrix A with a vector v, it independently scales nonzero columns (or rows) of

the sparse matrix. For v being a row vector 2, Scale replaces every nonzero

A(i, j) with v(j) ·A(i, j). The parameter v can be dense or sparse. In the latter

case, only a portion of the sparse matrix is scaled. That is, v(j) being zero for a

sparse vector does not zero out the corresponding jth column of A. The Scale

operation never deletes columns from A; deletion of columns is handled by the

more expensive SpAsgn function.

2Row/column vector distinction changes the semantics only. Row and column vectors (even
distributed versions) are stored the same way.
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SpAsgn and SpRef are generalized sparse matrix assignment and indexing

operations. They are very powerful primitives that take vectors p and q of row

and column indices. When called on the sparse matrix A, SpRef returns a new

sparse matrix whose rows are the p(i)th rows of A for i = 0, ..., length(p)−1 and

whose columns are the q(j)th columns of A for j = 0, ..., length(q)−1. SpAsgn

has similar syntax, except that it returns a reference (an modifiable lvalue) to some

portion of the underlying object as opposed to returning a new object. Internally,

the implementer is free (and encouraged) to use different subroutines for special

cases such as row-wise (A(i, :)), column-wise (A(:, j)), and element-wise (A(i, j))

indexing/assignment.

4.3 A Reference Implementation

4.3.1 The Software Architecture

In our reference implementation, the main data structure is a distributed sparse

matrix object SpDistMat which HAS-A local sparse matrix that can be imple-

mented in various ways as long as it supports the interface of the base class

SpMat . All features regarding distributed-memory parallelization, such as the

communication patterns and schedules, are embedded into the distributed ob-

jects (sparse and dense) through the CommGrid object. Global properties of
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distributed objects, such as the total number of nonzeros and the overall matrix

dimensions, are not explicitly stored. They are computed by reduction operations

whenever necessary. The software architecture for matrices is illustrated in Fig-

ure 4.1. Although the inheritance relationships are shown in the traditional way

(via inclusion polymorphism [53]), the class hierarchies are static, obtained by the

parameterizing the base class with its subclasses as explained below.

!"! #!"! $%&'()* !"+

"',-. "'#&*.,-. #)/*)#&*.,-.

#&*.,-.!0112%&3

Figure 4.1: Software architecture for matrix classes

To enforce a common interface as defined by the API, all types of objects derive

from their corresponding base classes. The base classes only serve to dictate the

interface. This is achieved through static object oriented programming (OOP)

techniques [51] rather than expensive dynamic dispatch. A trick known as the
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Curiously Recurring Template Pattern (CRTP) [66] emulates dynamic dispatch

statically, with some limitations. These limitations, such as the inability to use

heterogeneous lists of objects that share the same type class, however, are not

crucial for the Combinatorial BLAS. In CRTP, the base class accepts a template

parameter of the derived class.

The SpMat base class implementation is given as an example in Figure 4.2.

As all exact types are known at compile time, there are no runtime overheads

arising from dynamic dispatch. In the presence of covariant arguments, static

polymorphism through CRTP automatically allows for better type checking of

parameters. In the SpGEMM example, with classical OOP, one would need to

dynamically inspect the actual types of A and B to see whether they are compati-

ble; and if they are, to call the right subroutines. This requires expensive run-time

type information queries and dynamic cast() operations. More problematically, it

is unsafe, as any unconforming set of parameters will lead to a run-time error or

an exception. Static OOP catches any such incompatibilities in compile time.

The SpMat object is local to a node but it need not be sequential. It can

be implemented as a shared-memory data structure, amenable to thread-level

parallelization. This flexibility will allow future versions of the Combinatorial

BLAS algorithms to support hybrid parallel programming paradigms. The main

distinguishing feature of SpMat is the contiguous storage of its sparse matrix,
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// Abs t rac t base c l a s s f o r a l l d e r i v ed s e r i a l sparse matrix c l a s s e s
// Contains no data members , hence no copy c to r / assignment opera tor
// Uses s t a t i c polymorphism through cu r i o u s l y r ecur r ing t emp la t e s
// Template parameters :
// IT ( index type ) , NT ( numerical type ) , DER ( der i v ed c l a s s type )
template <class IT , class NT, class DER>
class SpMat
{

typedef SpMat<IT ,NT,DER> SpMatIns ;
public :

// Standard de s t ruc to r , copy c to r and assignment are
// generated by compi ler , they a l l do noth ing !
// De fau l t cons t ruc t o r a l s o e x i s t s , and does noth ing more
// than c r ea t i n g Base<Derived >() and Derived () o b j e c t s
// One has to c a l l the Create func t i on to ge t a nonempty o b j e c t
void Create ( const vector<IT>& e s s e n t i a l s ) ;

SpMatIns operator ( ) ( const vector<IT>& r i , const vector<IT>& c i ) ;

template <typename SR> // SR: Semiring o b j e c t
void SpGEMM ( SpMatIns & A, SpMatIns & B, bool TrA, bool TrB ) ;

template <typename NNT> // NNT: New numeric type
operator SpMatIns ( ) const ;

void Sp l i t ( SpMatIns & partA , SpMatIns & partB ) ;
void Merge ( SpMatIns & partA , SpMatIns & partB ) ;

Arr<IT ,NT> GetArrays ( ) const ;
vector<IT> GetEs s en t i a l s ( ) const ;

void Transpose ( ) ;

bool operator== ( const SpMatIns & rhs ) const ;

o f s tream& put ( ofstream& o u t f i l e ) const ;
i f s t r e am& get ( i f s t r e am& i n f i l e ) ;

bool i sZ e r o ( ) const ;
IT getnrow ( ) const ;
IT ge tnco l ( ) const ;
IT getnnz ( ) const ;

}

Figure 4.2: Partial C++ interface of the base SpMat class
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making it accessible by all other components (threads/processes). In this regard,

it is different from the SpDistMat, which distributes the storage of its sparse

matrices.

We observe that the commonality between all sparse matrix storage formats

is their use of multiple arrays. Therefore, the parallel classes handle object creat-

ing and communication through what we call an Essentials object, which is an

adapter for the actual sparse matrix object. The Essentials of a sparse matrix ob-

ject is its dimensions, number of nonzeros, starting addresses of its internal arrays

and the sizes of those arrays. Through GetEssentials() and Create(Essentials ess)

functions, any SpDistMat object can internally have any SpMat object. For ex-

ample, communication can be overlapped with computation in the SpGEMM

function by prefetching the internal arrays through one sided communication.

Alternatively, another SpDistMat class that uses a completely different communi-

cation library, such as GASNet [39] or ARMCI [153], can be implemented without

requiring any changes to the sequential SpMat object.

Most combinatorial operations use more than the traditional floating-point

arithmetic, with integer and boolean operations being prevalent. To provide the

user the flexibility to define their objects (matrices and vectors) with any scalar

type, all of our classes and functions are templated. A practical issue is to be

able perform operations between two objects holding different scalar types, e.g.,
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multiplication of a boolean sparse matrix by an integer sparse matrix. Explicit

upcasting of one of the operands to a temporary object might have jeopardized

performance due to copying of such big objects. The template mechanism of C++

provided a neat solution to the mixed mode arithmetic problem by providing

automatic type promotion through trait classes [25]. Arbitrary semiring support

for matrix-matrix and matrix-vector products is allowed by passing a class (with

static add and multiply functions) as a template parameter to corresponding

SpGEMM and SpMV functions.

4.3.2 Management of Distributed Objects

The processors are logically organized as a two-dimensional grid in order to

limit most of the communication to take place along a processor column or row

with
√

p processors, instead of communicating potentially with all p processors.

The partitioning of distributed matrices (sparse and dense) follows this processor

grid organization, using a 2D block decomposition, also called the checkerboard

partitioning [107]. Figure 4.3 shows this for the sparse case.

Portions of dense matrices are stored locally as two dimensional dense arrays

in each processor. Sparse matrices (SpDistMat objects), on the other hand, have

many possible representations, and the right representation depends on the partic-

ular setting or the application. The problems with using the popular compressed
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SpDistMat<SpMat,CommGrid>

SpMat

Figure 4.3: Distributed sparse matrix class and storage

sparse rows (CSR) or compressed sparse columns (CSC) representations in a 2D

block decomposition are explained in Section 3.2.1. The triples format does not

have the same problems but it falls short of efficiently supporting some of the

fundamental operations. Therefore, our reference implementation uses the DCSC

format, which is explained in detail in Section 3.2.1. As previously mentioned, this

choice is by no means exclusive and anybody can replace the underlying sparse

matrix storage format with his or her favorite format without needing to change

other parts of the library, as long as the format implements the fundamental

sequential API calls mentioned in the previous section.

For distributed vectors, data is stored only on the diagonal processors of the

2D processor grid. This way, we achieve a symmetry in performance of matrix-

vector and vector-matrix multiplications. The high level structure and parallelism
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of sparse and dense vectors are the same, the only difference being how the local

data is stored in processors. A dense vector naturally uses a dense array, while a

sparse vector is internally represented as a list of index-value pairs.
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The Combinatorial BLAS:
Applications and Performance
Analysis

The joy of life consists in the exercise of one’s energies, continual
growth, constant change, the enjoyment of every new experience. To
stop means simply to die. The eternal mistake of mankind is to set up
an attainable ideal.

Aleister Crowley (1875-1947)

This chapter presents two applications of the Combinatorial BLAS library.

We report the performance of two algorithms on distributed-memory clusters,

implemented using the Combinatorial BLAS primitives. The code for these appli-

cations, along with an alpha release of the complete library, can be freely obtained

from http://gauss.cs.ucsb.edu/code/index.shtml.
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5.1 Betweenness Centrality

Betweenness centrality [96], a centrality metric based on shortest paths, is

the main computation on which we evaluate the performance of our proof-of-

concept implementation of the Combinatorial BLAS. There are two reasons for

this choice. Firstly, it is a widely-accepted metric that is used to quantify the

relative importance of vertices in the graph. Betweenness centrality (BC) of a

vertex captures the normalized ratio of the number of shortest paths that pass

through a vertex to the total number of shortest paths in the graph. This is

formalized in Equation 5.1 where σst denote the number of shortest paths from s

to t, and σst(v) is the number of such paths passing through vertex v.

BC(v) =
∑

s 6=v 6=t∈V

σst(v)

σst

(5.1)

A vertex v with a high betweenness centrality is therefore an important one

based on at least two different interpretations. From the point of view of other

vertices, it is a highly sought-after hop for reaching others as quickly as possible.

The second possible interpretation is that v itself is the best-situated vertex to

reach others as quickly as possible.

The second reason for presenting the betweenness centrality as a success metric

is its quantifiability. It is part of the HPC Scalable Graph Analysis Benchmarks
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(formerly known as the HPCS Scalable Synthetic Compact Applications #2 [16])

and various implementations on different platforms exist [18, 144, 190] for com-

parison.

We compute betweenness centrality using Brandes’ algorithm [40]. It computes

single source shortest paths from each node in the network and increases the

respective BC score for nodes on the path. The algorithm requires O(nm) time

for unweighted graphs and O(nm + n2 log n) time for weighted graphs, where n

is the number of nodes and m is the number of edges in the graph. The sizes

of real-world graphs are prohibitive for exact calculation, so we resort to efficient

approximations. An unbiased estimator of the betweenness centrality score has

been proposed based on sampling nodes from which to compute single-source

shortest paths [19]. The resulting scores approximate a uniformly scaled version

of the actual betweenness centrality score. We only focus on unweighted graphs

in this performance study.

Following the specification of the graph analysis benchmark [16], we used R-

MAT matrices as inputs. Due to the prohibitive cost of the exact algorithm,

we used the approximate algorithm with 8192 starting vertices. We measure the

performance using the Traversed Edges Per Second (TEPS) rate, which is an

algorithmic performance count that is independent of the particular implemen-

tation [16]. We randomly relabeled the vertices in the generated graph, before
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storing it for subsequent runs. For reproducibility of results, we chose starting

vertices using a deterministic process, specifically excluding disconnected vertices

as starting vertices (which would have boosted the TEPS scores artificially).

We implemented an array-based formulation of the Brandes’ algorithm, due

to Robinson and Kepner. A reference Matlab implementation is publicly avail-

able from the Graph Analysis webpage [17]. The workhorse of the algorithm is

a parallel breadth-first search that is performed from multiple source vertices.

In Combinatorial BLAS, one step of the breadth-first search is implemented as

the multiplication of the transpose of the adjacency matrix of the graph with a

rectangular matrix X where the ith column of X represents the current frontier

of the ith independent breadth-first search tree. Inially, each column of X has

only one nonzero that represents the starting vertex of the breadth-first search,

i.e. X(:, i) = ej where vertex j is the i-th starting vertex for the current iteration.

Similarly, the tallying step is also implemented as an SpGEMM operation.

For the performance results presented in this section, we use a synchronous im-

plementaton of the Sparse SUMMA algorithm described in Section 3.3.5, because

it is the most portable SpGEMM implementation that relies only on simple MPI-1

features. The other Combinatorial BLAS primitives that are used for implement-

ing the betweenness centrality algorithm are reductions along one dimension and

elementwise operations for sparse/sparse, sparse/dense, and dense/sparse input
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Figure 5.1: Parallel strong scaling of the distributed-memory betweenness cen-

trality implementation (smaller input sizes)

pairs. The experiments are run on TACC’s Lonestar cluster, which is composed

of dual-socket dual-core nodes, connected by an Infiniband interconnect. Each

individual processor is an Intel Xeon 5100, clocked at 2.66 GHz. We used the

recommended Intel C++ compilers (version 10.1), and the MVAPICH2 imple-

mentation of the MPI.

5.1.1 Parallel Strong Scaling

Figure 5.1 shows how the betweenness centrality algorithm, implemented using

the combinatorial BLAS primitives, scale for graphs of smaller size. Figure 5.2
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Figure 5.2: Parallel strong scaling of the distributed-memory betweenness cen-

trality implementation (bigger input sizes)

shows the same algorithm on larger graphs, with larger number of processors.

Both results show good scaling for this challenging tightly coupled algorithm.

According to the best of our knowledge, ours are the first distributed memory

performance results for betweenness centrality. The performance results on larger

than 500 processors are not smooth, but the overall upward trend is clear. The

heteregenous execution (soft errors, OS interrupts, etc.) on these large numbers

of processors, probably causes the unsmooth timing results. The expensive com-

putation prohibited us to run more experiments, which would have smoothed out

the results by averaging.
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The best performance results for this problem is due to Madduri et al. [144] us-

ing an optimized implementation specifically tailored for massively multithreaded

architectures. They report a maximum of 160 million TEPS for an R-MAT graph

of scale 24 on the 16-processor XMT machine. On the MTA-2 machine, which is

the predecessor to the XMT, the same optimized code achieved 353 million TEPS

on 40 processors. Our code, on the other hand, is truely generic and contains no

problem and machine specific optimizations. We did not even attempt to opti-

mize our primitives for the skewed aspect ratio (ratio of dimensions) of most of

the matrices involved. For this problem instance, 900 processors of Lonestar was

equivalent to 40 processors of MTA-2. The cost and power efficiency comparisons

of these two solutions does not exist yet.

5.1.2 Sensitivity to Batch Processing

As mentioned earlier, most of the parallelism comes from the coarse-grained

SpGEMM operation that is used to perform breadth-first searches from multiple

source vertices. By changing the batchsize, the number of source vertices that

are processed together, we obtain a trade-off between space usage and potential

parallelism. The space increases linearly with increasing batchsize. As we show

experimentally, the performance also increases substantially, especially for large

number of processors. In Figure 5.3, we show the strong scaling of our betweenness
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Figure 5.3: The effect of batch processing on the performance of the distributed-

memory betweenness centrality implementation

centrality information on an RMAT graph of scale 22 (approximately 4 million

vertices and 32 million edges), using different batchsizes. The average performance

gain of using 256, 512 and 1024 starting vertices, over using 128 vertices, is 18.2%,

29.0%, and 39.7%, respectively. The average is computed over the performance

on p = {196, 225, ..., 961} (perfect squares) processors. For larger number of

processors, the performance gain of using a large batchsize are more substantial.

For example, for p = 961, the performance increases by 40.4%, 67.0%, and 73.5%,

when using 256, 512 and 1024 starting vertices instead of 128.

156



Chapter 5. The Combinatorial BLAS: Applications and Performance Analysis

5.2 Markov Clustering

Markov clustering (MCL) algorithm [82] is a flow based graph clustering al-

gorithm that has been extremely popular in computational biology, among other

fields. It simulates a Markov process to the point where clusters can be identified

by simple interpretation of the modified adjacency matrix of the graph. Compu-

tationally, it alternates between an expansion step where the adjacency matrix

is raised to its nth power (typically n = 2, so it is practically a squaring opera-

tion), and an inflation step where in every column of the adjacency matrix, the

scalar entries are raised to the dth power (d > 1) and renormalized within the

column. Inflation operation boosts the larger entries and effectively sends the

smaller entries to close to zero. MCL achieves scalability and storage efficiency

by maintaining sparsity of its matrix. This is done by pruning up close to zero

entries after the inflation.

Implementing the MCL algorithm using the Combinatorial BLAS primitives

generates a very concise code that feels natural. Full MCL code, except for the

interpretation part, is shown in Figure 5.5, while the inflation subroutine is shown

in Figure 5.4.

Van Dongen [202] provides a fast sequential implementation of the MCL al-

gorithm. We do not attempt an apples-to-apples comparison with the original
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template <typename IT , typename NT, typename DER>
void I n f l a t e (SpParMat<IT ,NT,DER> & A, double power )
{

A. Apply ( bind2nd ( exponent ia te ( ) , power ) ) ;

/* reduce to Row, columns are c o l l a p s e d to s i n g l e e n t r i e s */
DenseParVec<IT ,NT> colsums = Reduce (Row, plus<NT>() , 0 . 0 ) ;

colsums . Apply ( b ind1st ( d iv ide s <double>() , 1 ) ) ;

/* s c a l e each Column with the g iven row vec to r */
A. DimScale ( colsums , Column ) ;

}

Figure 5.4: Inflation code using the Combinatorial BLAS primitives

int main ( )
{

SpParMat<unsigned , double , SpDCCols<unsigned , double> > A;
A. ReadDistr ibute ( ‘ ‘ inputmatr ix ’ ’ ) ;

o ldchaos = Chaos (A) ;
newchaos = oldchaos ;

// wh i l e t h e r e i s an ep s i l o n improvement
while ( ( o ldchaos − newchaos ) > EPS)
{

A. Square ( ) ; // expand
I n f l a t e (A, 2 ) ; // i n f l a t e ( and renormal i ze )
A. Prune ( bind2nd ( l e s s <double>() , 0 . 0 0 0 1 ) ) ;
o ldchaos = newchaos ;
newchaos = Chaos (A) ;

}
I n t e r p r e t (A) ;

}

Figure 5.5: MCL code using the Combinatorial BLAS primitives
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implementation, as the official mcl software has many options, something we can

not replicate in our 10-15 lines prototype. The sequential mcl code is twice as

fast as our parallel implementation running on a single processor. This is mostly

due to its finer control over sparsity parameters, such as limiting the number of

nonzeros in each row/column. Serial performance is not a bottleneck, as our code

achieves superlinear speedup until p = 1024.

Figure 5.6 shows the speedup of the three most expensive iterations, that

together make up more than 99% of the total running time. The input is a

permuted R-MAT graph of scale 14, with self loops added for convergence. On

4096 processors, we were able to cluster this graph in less than a second. The

same graph takes more than half an hour to cluster on a single processor. Note

that iteration #4 takes only 70 milliseconds using 1024 processors, which is hard

to scale further due to parallelization overheads on thousands of processors. We

were able to cluster gigascale graphs using our implementation of MCL using

the Combinatorial BLAS. We report on a smaller instance in order to provide a

complete strong scaling result.
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Figure 5.6: Strong scaling of the three most expensive iterations while clustering

an R-MAT graph of scale 14 using the MCL algorithm implemented using the

Combinatorial BLAS
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Chapter 6

Parallel Sparse y ← Ax and
y ← ATx Using Compressed Sparse
Blocks

Abstract

This chapter introduces a storage format for sparse matrices, called
compressed sparse blocks (CSB), which allows both Ax and ATx
to be computed efficiently in parallel, where A is an n×n sparse matrix
with nnz ≥ n nonzeros and x is a dense n-vector. Our algorithms
use Θ(nnz ) work (serial running time) and Θ(

√
n lg n) span (critical-

path length), yielding a parallelism of Θ(nnz /
√

n lg n), which is amply
high for virtually any large matrix. The storage requirement for CSB is
esssentially the same as that for the more-standard compressed-sparse-
rows (CSR) format, for which computing Ax in parallel is easy but ATx
is difficult. Benchmark results indicate that on one processor, the CSB
algorithms for Ax and ATx run just as fast as the CSR algorithm for
Ax, but the CSB algorithms also scale up linearly with processors until
limited by off-chip memory bandwidth.
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This chapter is based on a paper [47] by Buluç et al. from SPAA 2009. The

indices are zero based, different from the rest of the thesis.

6.1 Introduction

When multiplying a large n × n sparse matrix A having nnz nonzeros by a

dense n-vector x, the memory bandwidth for reading A can limit overall perfor-

mance. Consequently, most algorithms to compute Ax store A in a compressed

format. One simple “tuple” representation stores each nonzero of A as a triple

consisting of its row index, its column index, and the nonzero value itself. This

representation, however, requires storing 2nnz row and column indices, in addi-

tion to the nonzeros. The current standard storage format for sparse matrices in

scientific computing, compressed sparse rows (CSR) [171], is more efficient,

because it stores only n+nnz indices or pointers. This reduction in storage of CSR

compared with the tuple representation tends to result in faster serial algorithms.

In the domain of parallel algorithms, however, CSR has its limitations. Al-

though CSR lends itself to a simple parallel algorithm for computing the matrix-

vector product Ax, this storage format does not admit an efficient parallel algo-

rithm for computing the product ATx, where AT denotes the transpose of the

matrix A — or equivalently, for computing the product xTA of a row vector
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xT by A. Although one could use compressed sparse columns (CSC) to

compute ATx, many applications, including iterative linear system solvers such

as biconjugate gradients and quasi-minimal residual [171], require both Ax and

ATx. One could transpose A explicitly, but computing the transpose for either

CSR or CSC formats is expensive. Moreover, since matrix-vector multiplication

for sparse matrices is generally limited by memory bandwidth, it is desirable to

find a storage format for which both Ax and ATx can be computed in paral-

lel without performing more than nnz fetches of nonzeros from the memory to

compute either product.

This paper presents a new storage format called compressed sparse blocks

(CSB) for representing sparse matrices. Like CSR and CSC, the CSB format

requires only n+nnz words of storage for indices. Because CSB does not favor rows

over columns or vice versa, it admits efficient parallel algorithms for computing

either Ax or ATx, as well as for computing Ax when A is symmetric and only half

the matrix is actually stored.

Previous work on parallel sparse matrix-vector multiplication has focused on

reducing communication volume in a distributed-memory setting, often by using

graph or hypergraph partitioning techniques to find good data distributions for

particular matrices ([54, 203], for example). Good partitions generally exist for

matrices whose structures arise from numerical discretizations of partial differen-
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Figure 6.1: Average performance of Ax and ATx operations on 13 different ma-

trices from our benchmark test suite. CSB SpMV and CSB SpMV T use com-

pressed sparse blocks to perform Ax and ATx, respectively. CSR SpMV (Serial)

and CSR SpMV T (Serial) use OSKI [205] and compressed sparse rows without

any matrix-specific optimizations. Star-P (y=Ax) and Star-P (y’=x’A) use Star-

P [179], a parallel code based on CSR. The experiments were run on a ccNUMA

architecture powered by AMD Opteron 8214 (Santa Rosa) processors.

tial equations in two or three spatial dimensions. Our work, by contrast, is moti-

vated by multicore and manycore architectures, in which parallelism and memory

bandwidth are key resources. Our algorithms are efficient in these measures for

matrices with arbitrary nonzero structure.

Figure 6.1 presents an overall summary of achieved performance. The serial

CSR implementation uses plain OSKI [205] without any matrix-specific optimiza-
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tions. The graph shows the average performance over all our test matrices except

for the largest, which failed to run on Star-P [179] due to memory constraints.

The performance is measured in Mflops (Millions of FLoating-point OPerationS)

per second. Both Ax and ATx take 2 nnz flops. To measure performance, we di-

vide this value by the time it takes for the computation to complete. Section 6.7

provides detailed performance results.

The remainder of this paper is organized as follows. Section 6.2 discusses the

limitations of the CSR/CSC formats for parallelizing Ax and ATx calculations.

Section 6.3 describes the CSB format for sparse matrices. Section 6.4 presents

the algorithms for computing Ax and ATx using the CSB format, and Section 6.5

provides a theoretical analysis of their parallel performance. Section 6.6 describes

the experimental setup we used, and Section 6.7 presents the results. Section 6.8

offers some concluding remarks.

6.2 Conventional storage formats

This section describes the CSR and CSC sparse-matrix storage formats and

explores their limitations when it comes to computing both Ax and ATx in parallel.

We review the work/span formulation of parallelism and show that performing Ax

with CSR (or equivalently ATx with CSC) yields ample parallelism. We consider

165



Chapter 6. Parallel Sparse y ← Ax and y ← ATx Using Compressed Sparse

Blocks

various strategies for performing ATx in parallel with CSR (or equivalently Ax

with CSC) and why they are problematic.

The compressed sparse row (CSR) format stores the nonzeros (and ideally

only the nonzeros) of each matrix row in consecutive memory locations, and it

stores an index to the first stored element of each row. In one popular variant

[77], CSR maintains one floating-point array val [nnz ] and two integer arrays,

col ind [nnz ] and row ptr [n] to store the matrix A = (aij). The row ptr array

stores the index of each row in val . That is, if val [k] stores matrix element aij,

then row ptr [i] ≤ k < row ptr [i+1]. The col ind array stores the column indices

of the elements in the val array. That is, if val [k] stores matrix element aij, then

col ind [k] = j.

The compressed sparse column (CSC) format is analogous to CSR, except that

the nonzeros of each column, instead of row, are stored in contiguous memory

locations. In other words, the CSC format for A is obtained by storing AT in

CSR format.

The earliest written description of CSR that we have been able to divine from

the literature is an unnamed “scheme” presented in Table 1 of the 1967 article [195]

by Tinney and Walker, although in 1963 Sato and Tinney [175] allude to what is

probably CSR. Markowitz’s seminal paper [148] on sparse Gaussian elimination

does not discuss data structures, but it is likely that Markowitz used such a
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CSR SpMV(A, x, y)

1 n← A. rows
2 for i← 0 to n− 1 in parallel
3 do y[i]← 0
4 for k ← A. row ptr [i] to A. row ptr [i + 1]− 1
5 do y[i]← y[i] + A. val [k] · x[A. col ind [k]]

Figure 6.2: Parallel procedure for computing y ← Ax, where the n× n matrix A
is stored in CSR format.

format as well. CSR and CSC have since become ubiquitous in sparse matrix

computation [74, 83, 86, 102, 104, 171].

The following lemma states the well-known bound on space used by the index

data in the CSR format (and hence the CSC format as well). By index data, we

mean all data other than the nonzeros — that is, the row ptr and col ind arrays.

Lemma 1. The CSR format uses n lg nnz + nnz lg n bits of index data for an

n× n matrix.

For a CSR matrix A, computing y ← Ax in parallel is straightforward, as

shown in Figure 6.2. Procedure CSR SpMV in the figure computes each element

of the output array in parallel, and it does not suffer from race conditions, because

each parallel iteration i writes to a single location y[i] which is not updated by

any other iteration.
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We shall measure the complexity of this code, and other codes in this paper,

in terms of work and span [69, Ch. 27]:

• The work , denoted by T1, is the running time on 1 processor.

• The span ,1 denoted by T∞, is running time on an infinite number of pro-

cessors.

The parallelism of the algorithm is T1/T∞, which corresponds to the maximum

possible speedup on any number of processors. Generally, if a machine has some-

what fewer processors than the parallelism of an application, a good scheduler

should be able to achieve linear speedup. Thus, for a fixed amount of work, our

goal is to achieve a sufficiently small span so that the parallelism exceeds the

number of processors by a reasonable margin.

The work of CSR SpMV is Θ(nnz ), assuming, as we shall, that nnz ≥ n,

because the body of the outer loop starting in line 2 executes for n iterations, and

the body of the inner loop starting in line 4 executes for the number of nonzeros

in the ith row, for a total of nnz times.

The span of CSR SpMV depends on the maximum number nr of nonzeros

in any row of the matrix A, since that number determines the worst-case time of

any iteration of the loop in line 4. The n iterations of the parallel loop in line 2

1The literature also uses the terms depth [34] and critical-path length [35].
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contribute Θ(lg n) to the span, assuming that loops are implemented as binary

recursion. Thus, the total span is Θ(nr + lg n).

The parallelism is therefore Θ(nnz /(nr + lg n)). In many common situations,

we have nnz = Θ(n), which we will assume for estimation purposes. The maxi-

mum number nr of nonzeros in any row can vary considerably, however, from a

constant, if all rows have an average number of nonzeros, to n, if the matrix has a

dense row. If nr = O(1), then the parallelism is Θ(nnz / lg n), which is quite high

for a matrix with a billion nonzeros. In particular, if we ignore constants for the

purpose of making a ballpark estimate, we have nnz / lg n ≈ 109/(lg 109) > 3×107,

which is much larger than any number of processors one is likely to encounter in

the near future. If nr = Θ(n), however, as is the case when there is even a

single dense row, we have parallelism Θ(nnz /n) = Θ(1), which limits scalability

dramatically. Fortunately, we can parallelize the inner loop (line 4) using divide-

and-conquer recursion to compute the sparse inner product in lg(nr) span without

affecting the asymptotic work, thereby achieving parallelism Θ(nnz / lg n) in all

cases.

Computing ATx serially can be accomplished by simply interchanging the row

and column indices [79], yielding the pseudocode shown in Figure 6.3. The work

of procedure CSR SpMV T is Θ(nnz ), the same as CSR SpMV.
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CSR SpMV T(A, x, y)

1 n← A. cols
2 for i← 0 to n− 1
3 do y[i]← 0
4 for i← 0 to n− 1
5 do for k ← A. row ptr [i] to A. row ptr [i + 1]− 1
6 do y[A. col ind [k]]← y[A. col ind [k]] + A. val [k] · x[i]

Figure 6.3: Serial procedure for computing y ← ATx, where the n × n matrix A
is stored in CSR format.

Parallelizing CSR SpMV T is not straightforward, however. We shall review

several strategies to see why it is problematic.

One idea is to parallelize the loops in lines 2 and 5, but this strategy yields

minimal scalability. First, the span of the procedure is Θ(n), due to the loop in

line 4. Thus, the parallelism can be at most O(nnz /n), which is a small constant

in most common situations. Second, in any practical system, the communication

and synchronization overhead for executing a small loop in parallel is much larger

than the execution time of the few operations executed in line 6.

Another idea is to execute the loop in line 4 in parallel. Unfortunately, this

strategy introduces race conditions in the read/modify/write to y[A. col ind [k]] in

line 6.2 These races can be addressed in two ways, neither of which is satisfactory.

2In fact, if nnz > n, then the “pigeonhole principle” guarantees that the program has at least
one race condition.
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The first solution involves locking column col ind [k] or using some other form

of atomic update.3 This solution is unsatisfactory because of the high overhead

of the lock compared to the cost of the update. Moreover, if A contains a dense

column, then the contention on the lock is Θ(n), which completely destroys any

parallelism in the common case where nnz = Θ(n).

The second solution involves splitting the output array y into multiple arrays

yp in a way that avoids races, and then accumulating y ← Σpyp at the end of the

computation. For example, in a system with P processors (or threads), one could

postulate that processor p only operates on array yp, thereby avoiding any races.

This solution is unsatisfactory because the work becomes Θ(nnz +Pn), where the

last term comes from the need to initialize and accumulate P (dense) length-n

arrays. Thus, the parallel execution time is Θ((nnz +Pn)/P ) = Ω(n) no matter

how many processors are available.

A third idea for parallelizing ATx is to compute the transpose explicitly and

then use CSR SpMV. Unfortunately, parallel transposition of a sparse matrix in

CSR format is costly and encounters exactly the same problems we are trying to

avoid. Moreover, every element is accessed at least twice: once for the transpose,

and once for the multiplication. Since the calculation of a matrix-vector product

3No mainstream hardware supports atomic update of floating-point quantities, however.
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tends to be memory-bandwidth limited, this strategy is generally inferior to any

strategy that accesses each element only once.

Finally, of course, we could store the matrix AT in CSR format, that is, storing

A in CSC format, but then computing Ax becomes difficult.

To close this section, we should mention that if the matrix A is symmetric,

so that only about half the nonzeros need be stored — for example, those on or

above the diagonal — then computing Ax in parallel for CSR is also problematic.

For this example, the elements below the diagonal are visited in an inconvenient

order, as if they were stored in CSC format.

6.3 The CSB storage format

This section describes the CSB storage format for sparse matrices and shows

that it uses the same amount of storage space as the CSR and CSC formats. We

also compare CSB to other blocking schemes.

For a given block-size parameter β, CSB partitions the n×n matrix A into

n2/β2 equal-sized β × β square blocks4

A =




A00 A01 · · · A0,n/β−1

A10 A11 · · · A1,n/β−1
...

...
. . .

...
An/β−1,0 An/β−1,1 · · · An/β−1,n/β−1


 ,

4The CSB format may be easily extended to nonsquare n × m matrices. In this case, the
blocks remain as square β × β matrices, and there are nm/β2 blocks.
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where the block Aij is the β × β submatrix of A containing elements falling in

rows iβ, iβ +1, . . . , (i+1)β− 1 and columns jβ, jβ +1, . . . , (j +1)β− 1 of A. For

simplicity of presentation, we shall assume that β is an exact power of 2 and that

it divides n; relaxing these assumptions is straightforward.

Many or most of the individual blocks Aij are hypersparse [49], meaning

that the ratio of nonzeros to matrix dimension is asymptotically 0. For example,

if β =
√

n and nnz = cn, the average block has dimension
√

n and only c nonzeros.

The space to store a block should therefore depend only on its nonzero count, not

on its dimension.

CSB represents a block Aij by compactly storing a triple for each nonzero,

associating with the nonzero data element a row and column index. In contrast

to the column index stored for each nonzero in CSR, the row and column indices lie

within the submatrix Aij, and hence require fewer bits. In particular, if β =
√

n,

then each index into Aij requires only half the bits of an index into A. Since these

blocks are stored contiguously in memory, CSB uses an auxiliary array of pointers

to locate the beginning of each block.

More specifically, CSB maintains a floating-point array val [nnz ], and three

integer arrays row ind [nnz], col ind [nnz ], and blk ptr [n2/β2]. We describe each

of these arrays in turn.
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The val array stores all the nonzeros of the matrix and is analogous to CSR’s

array of the same name. The difference is that CSR stores rows contiguously,

whereas CSB stores blocks contiguously. Although each block must be contiguous,

the ordering among blocks is flexible. Let f(i, j) be the bijection from pairs of

block indices to integers in the range 0, 1, . . . , n2/β2−1 that describes the ordering

among blocks. That is, f(i, j) < f(i′, j′) if and only if Aij appears before Ai′j′ in

val . We discuss choices of ordering later in this section.

The row ind and col ind arrays store the row and column indices, respectively,

of the elements in the val array. These indices are relative to the block containing

the particular element, not the entire matrix, and hence they range from 0 to

β − 1. That is, if val [k] stores the matrix element aiβ+r,jβ+c, which is located in

the rth row and cth column of the block Aij, then row ind = r and col ind = c.

As a practical matter, we can pack a corresponding pair of elements of row ind

and col ind into a single integer word of 2 lg β bits so that they make a single

array of length nnz , which is comparable to the storage needed by CSR for the

col ind array.

The blk ptr array stores the index of each block in the val array, which is

analogous to the row ptr array for CSR. If val [k] stores a matrix element falling

in block Aij, then blk ptr [f(i, j)] ≤ k < blk ptr [f(i, j) + 1].

The following lemma states the storage used for indices in the CSB format.

174



Chapter 6. Parallel Sparse y ← Ax and y ← ATx Using Compressed Sparse

Blocks

Lemma 2. The CSB format uses (n2/β2) lg nnz +2 nnz lg β bits of index data.

Proof. Since the val array contains nnz elements, referencing an element requires

lg nnz bits, and hence the blk ptr array uses (n2/β2) lg nnz bits of storage.

For each element in val , we use lg β bits to represent the row index and lg β bits

to represent the column index, requiring a total of nnz lg β bits for each of row ind

and col ind . Adding the space used by all three indexing arrays completes the

proof.

To better understand the storage requirements of CSB, we present the follow-

ing corollary for β =
√

n. In this case, both CSR (Lemma 1) and CSB use the

same storage.

Corollary 3. The CSB format uses n lg nnz + nnz lg n bits of index data when

β =
√

n.

Thus far, we have not addressed the ordering of elements within each block or

the ordering of blocks. Within a block, we use a Z-Morton ordering [151], storing

first all those elements in the top-left quadrant, then the top-right, bottom-left,

and finally bottom-right quadrants, using the same layout recursively within each

quadrant. In fact, these quadrants may be stored in any order, but the recursive

ordering is necessary for our algorithm to achieve good parallelism within a block.
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The choice of storing the nonzeros within blocks in a recursive layout is op-

posite to the common wisdom for storing dense matrices [87]. Although most

compilers and architectures favor conventional row/column ordering for optimal

prefetching, the choice of layout within the block becomes less significant for sparse

blocks as they already do not take full advantage of such features. More impor-

tantly, a recursive ordering allows us to efficiently determine the four quadrants

of a block using binary search, which is crucial for parallelizing individual blocks.

Our algorithm and analysis do not, however, require any particular ordering

among blocks. A Z-Morton ordering (or any recursive ordering) seems desirable

as it should get better performance in practice by providing spatial locality, and

it matches the ordering within a block. Computing the function f(i, j), however,

is simpler for a row-major or column-major ordering among blocks.

Comparison with other blocking methods

A blocked variant of CSR, called BCSR, has been used for improving register

reuse [122]. In BCSR, the sparse matrix is divided into small dense blocks that

are stored in consecutive memory locations. The pointers are maintained to the

first block on each row of blocks. BCSR storage is converse to CSB storage,

because BCSR stores a sparse collection of dense blocks, whereas CSB stores a
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dense collection of sparse blocks. We conjecture that it would be advantageous to

apply BCSR-style register blocking to each individual sparse block of CSB.

Nishtala et al. [154] have proposed a data structure similar to CSB in the

context of cache blocking. Our work differs from theirs in two ways. First, CSB

is symmetric without favoring rows over columns. Second, our algorithms and

analysis for CSB are designed for parallelism instead of cache performance. As

shown in Section 6.5, CSB supports ample parallelism for algorithms computing

Ax and ATx, even on sparse and irregular matrices.

Blocking is also used in dense matrices. The Morton-hybrid layout [5, 142], for

example, uses a parameter equivalent to our parameter β for selecting the block

size. Whereas in CSB we store elements in a Morton ordering within blocks and

an arbitrary ordering among blocks, the Morton-hybrid layout stores elements

in row-major order within blocks and a Morton ordering among blocks. The

Morton-hybrid layout is designed to take advantage of hardware and compiler op-

timizations (within a block) while still exploiting the cache benefits of a recursive

layout. Typically the block size is chosen to be 32 × 32, which is significantly

smaller than the Θ(
√

n) block size we propose for CSB. The Morton-hybrid lay-

out, however, considers only dense matrices, for which designing a matrix-vector

multiplication algorithm with good parallelism is significantly easier.

177



Chapter 6. Parallel Sparse y ← Ax and y ← ATx Using Compressed Sparse

Blocks

6.4 Matrix-vector multiplication using CSB

This section describes a parallel algorithm for computing the sparse-matrix

dense-vector product y ← Ax, where A is stored in CSB format. This algorithm

can be used equally well for computing y ← ATx by switching the roles of row

and column. We first give an overview of the algorithm and then describe it in

detail.

At a high level, the CSB SpMV multiplication algorithm simply multiplies

each “blockrow” by the vector x in parallel, where the ith blockrow is the row

of blocks (Ai0Ai1 · · ·Ai,n/β−1). Since each blockrow multiplication writes to a

different portion of the output vector, this part of the algorithm contains no races

due to write conflicts.

If the nonzeros were guaranteed to be distributed evenly among block rows,

then the simple blockrow parallelism would yield an efficient algorithm with n/β-

way parallelism by simply performing a serial multiplication for each blockrow.

One cannot, in general, guarantee that distribution of nonzeros will be so nice,

however. In fact, sparse matrices in practice often include at least one dense row

containing roughly n nonzeros, whereas the number of nonzeros is only nnz ≈

cn for some small constant c. Thus, performing a serial multiplication for each

blockrow yields no better than c-way parallelism.

178



Chapter 6. Parallel Sparse y ← Ax and y ← ATx Using Compressed Sparse

Blocks

To make the algorithm robust to matrices of arbitrary nonzero structure, we

must parallelize the blockrow multiplication when a blockrow contains “too many”

nonzeros. This level of parallelization requires care to avoid races, however, be-

cause two blocks in the same blockrow write to the same region within the output

vector. Specifically, when a blockrow contains Ω(β) nonzeros, we recursively di-

vide it “in half,” yielding two subblockrows, each containing roughly half the

nonzeros. Although each of these subblockrows can be multiplied in parallel, they

may need to write to the same region of the output vector. To avoid the races that

might arise due to write conflicts between the subblockrows, we allocate a tem-

porary vector to store the result of one of the subblockrows and allow the other

subblockrow to use the output vector. After both subblockrow multiplications

complete, we serially add the temporary vector into the output vector.

To facilitate fast subblockrow divisions, we first partition the blockrow into

“chunks” of consecutive blocks, each containing at most O(β) nonzeros (when

possible) and Ω(β) nonzeros on average. The lower bound of Ω(β) will allow

us to amortize the cost of writing to the length-β temporary vector against the

nonzeros in the chunk. By dividing a blockrow “in half,” we mean assigning to

each subblockrow roughly half the chunks.

Figure 6.4 gives the top-level algorithm, performing each blockrow vector mul-

tiplication in parallel. The notation x[a . . b] means the subarray of x starting
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CSB SpMV(A, x, y)

1 for i← 0 to n/β − 1 in parallel � For each blockrow.
2 do Initialize a dynamic array Ri

3 Ri[0]← 0
4 count ← 0 � Count nonzeroes in chunk.
5 for j ← 0 to n/β − 2
6 do count ← count + nnz (Aij)
7 if count + nnz (Ai,j+1) > Θ(β)
8 then � End the chunk, since the next block

� makes it too large.
9 append j to Ri � Last block in chunk.

10 count ← 0
11 append n/β − 1 to Ri

12 CSB BlockrowV(A, i, Ri, x, y[iβ . . (i + 1)β − 1])

Figure 6.4: Pseudocode for the matrix-vector multiplication y ← Ax. The pro-
cedure CSB BlockrowV (pseudocode for which can be found in Figure 6.5) as
called here multiplies the blockrow by the vector x and writes the output into the
appropriate region of the output vector y.
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at index a and ending at index b. The function nnz (Aij) is a shorthand for

A. blk ptr [f(i, j)+1]−A. blk ptr [f(i, j)], which calculates the number of nonzeros

in the block Aij. For conciseness, we have overloaded the Θ(β) notation (in line 7)

to mean “a constant times β”; any constant suffices for the analysis, and we use

the constant 3 in our implementation. The “for . . . in parallel do” construct

means that each iteration of the for loop may be executed in parallel with the

others.

For each loop iteration, we partition the blockrow into chunks in lines 2–11 and

then call the blockrow multiplication in line 12. The array Ri stores the indices

of the last block in each chunk; specifically, the kth chunk, for k > 0, includes

blocks (Ai,Ri[k−1]+1Ai,Ri[k−1]+2 · · ·Ai,Ri[k]). A chunk consists of either a single block

containing Ω(β) nonzeros, or it consists of many blocks containing O(β) nonzeros

in total. To compute chunk boundaries, just iterate over blocks (in lines 5–10)

until enough nonzeros are accrued.

Figure 6.5 gives the parallel algorithm CSB BlockrowV for multiplying

a blockrow by a vector, writing the result into the length-β vector y. The

in parallel do . . .do . . . construct indicates that all of the do code blocks may

execute in parallel. The procedure CSB BlockV (pseudocode for which can be

found in Figure 6.6) calculates the product of the block and the vector in paral-

lel. In lines 12–19 of CSB BlockrowV, the algorithm recursively divides the
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CSB BlockrowV(A, i, R, x, y)

1 if R. length = 2 � The subblockrow is a single chunk.
2 then ℓ← R[0] + 1 � Leftmost block in chunk.
3 r ← R[1] � Rightmost block in chunk.
4 if ℓ = r
5 then � The chunk is a single (dense) block.
6 start ← A. blk ptr [f(i, ℓ)]
7 end ← A. blk ptr [f(i, ℓ) + 1]− 1
8 CSB BlockV(A, start , end , β, x, y)
9 else � The chunk is sparse.

10 multiply y ← (AiℓAi,ℓ+1 · · ·Air)x serially
11 return

� Since the block row is “dense,” split it in half.
12 mid ← ⌈R. length /2⌉ − 1 � Divide chunks in half.

� Calculate the dividing point in the input vector x.
13 xmid ← β · (R[mid ]−R[0])
14 allocate a length-β temporary vector z, initialized to 0
15 in parallel
16 do CSB BlockrowV(A, i, R[0 . .mid ], x[0 . . xmid −1], y)
17 do CSB BlockrowV(A, i, R[mid . . R. length −1],

x[xmid . . x. length −1], z)
18 for k ← 0 to β − 1
19 do y[k]← y[k] + z[k]

Figure 6.5: Pseudocode for the subblockrow vector product y ← (AiℓAi,ℓ+1 · · ·
Air)x.
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blockrow such that each half receives roughly the same number of chunks. We

find the appropriate middles of the chunk array R and the input vector x in lines

12 and 13, respectively. We then allocate a length-β temporary vector z (line 14)

and perform the recursive multiplications on each subblockrow in parallel (lines

15–17), having one of the recursive multiplications write its output to z. When

these recursive multiplications complete, we merge the outputs into the vector y

(lines 18–19).

The recursion bottoms out when the blockrow consists of a single chunk (lines

2–11). If this chunk contains many blocks, it is guaranteed to contain at most

Θ(β) nonzeros, which is sufficiently sparse to perform the serial multiplication

in line 10. If, on the other hand, the chunk is a single block, it may contain

as many as β2 ≈ n nonzeros. A serial multiplication here, therefore, would be

the bottleneck in the algorithm. Instead, we perform the parallel block-vector

multiplication CSB BlockV in line 8.

If the blockrow recursion reaches a single block, we perform a parallel multi-

plication of the block by the vector. Pseudocode for the subblock-vector prod-

uct y ← Mx, is shown in Figure 6.6, where M is the list of tuples stored

in A. val [start . . end ], A. row ind [start . . end ], and A. col ind [start . . end ] in Z-

morton order. The & operator is a bitwise AND of the two operands. The

block-vector multiplication proceeds by recursively dividing the (sub)block M into
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quadrants M00, M01, M10, and M11, each of which is conveniently stored contigu-

ously in the Z-Morton-ordered val , row ind , and col ind arrays between indices

start and end . We perform binary searches to find the appropriate dividing points

in the array in lines 7–9.

To understand the pseudocode, consider the search for the dividing point s2

between M00M01 and M10M11. For any recursively chosen dim × dim matrix M ,

the column indices and row indices of all elements have the same leading lg β −

lg dim bits. Moreover, for those elements in M00M01, the next bit in the row index

is a 0, whereas for those in elements in M10M11, the next bit in the row index is 1.

The algorithm does a binary search for the point at which this bit flips. The cases

for the dividing point between M00 and M01 or M10 and M11 are similar, except

that we focus on the column index instead of the row index.

After dividing the matrix into quadrants, we execute the matrix products in-

volving matrices M00 and M11 in parallel (lines 10–12), as they do not conflict on

any outputs. After completing these products, we execute the other two matrix

products in parallel (lines 13–15).5 This procedure resembles a standard parallel

divide-and-conquer matrix multiplication, except that our base case of serial mul-

tiplication starts at a matrix containing Θ(dim) nonzeros (lines 2–5). Note that

5The algorithm may instead do M00 and M10 in parallel followed by M01 and M11 in parallel
without affecting the performance analysis. Presenting the algorithm with two choices may yield
better load balance.
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CSB BlockV(A, start , end , dim, x, y)

� A. val [start . . end ] is a dim × dim matrix M .
1 if end − start ≤ Θ(dim)
2 then � Perform the serial computation y ← y + Mx.
3 for k ← start to end
4 do y[A. row ind [k]]← y[A. row ind [k]]

+A. val [k] · x[A. col ind [k]]
5 return
6 � Recurse. Find the indices of the quadrants.
7 binary search start , start +1, . . . , end for the smallest s2

such that (A. row ind [s2] & dim /2) 6= 0
8 binary search start , start +1, . . . , s2 − 1 for the smallest s1

such that (A. col ind [s1] & dim /2) 6= 0
9 binary search s2, s2 + 1, . . . , end for the smallest s3

such that (A. col ind [s3] & dim /2) 6= 0
10 in parallel
11 do CSB BlockV(A, start , s1 − 1, dim /2, x, y) � M00.
12 do CSB BlockV(A, s3, end , dim /2, x, y) � M11.
13 in parallel
14 do CSB BlockV(A, s1, s2 − 1, dim /2, x, y) � M01.
15 do CSB BlockV(A, s2, s3 − 1, dim /2, x, y) � M10.

Figure 6.6: Pseudocode for the subblock-vector product y ←Mx.
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although we pass the full length-β arrays x and y to each recursive call, the ef-

fective length of each array is halved implicitly by partitioning M into quadrants.

Passing the full arrays is a technical detail required to properly compute array

indices, as the indices A. row ind and A. col ind store offsets within the block.

The CSB SpMV T algorithm is identical to CSB SpMV, except that we

operate over blockcolumns rather than blockrows.

6.5 Analysis

In this section, we prove that for an n×n matrix with nnz nonzeros, CSB SpMV

operates with work Θ(nnz ) and span O(
√

n lg n) when β =
√

n, yielding a paral-

lelism of Ω(nnz /
√

n lg n). We also provide bounds in terms of β and analyze the

space usage.

We begin by analyzing block-vector multiplication.

Lemma 4. On a β × β block containing r nonzeros, CSB BlockV runs with

work Θ(r) and span O(β).

Proof. The span for multiplying a dim × dim matrix can be described by the

recurrence S(dim) = 2S(dim /2) + O(lg dim) = O(dim). The lg dim term repre-

sents a loose upper bound on the cost of the binary searches. In particular, the
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binary-search cost is O(lg z) for a submatrix containing z nonzeros, and we have

z ≤ dim2, and hence O(lg z) = O(lg dim), for a dim × dim matrix.

To calculate the work, consider the degree-4 tree of recursive procedure calls,

and associate with each node the work done by that procedure call. We say that

a node in the tree has height h if it corresponds to a 2h × 2h subblock, i.e., if

dim = 2h is the parameter passed into the corresponding CSB BlockV call.

Node heights are integers ranging from 0 to lg β. Observe that each height-h node

corresponds to a distinct 2h × 2h subblock (although subblocks may overlap for

nodes having different heights). A height-h leaf node (serial base case) corresponds

to a subblock containing at most z = O(2h) nonzeros and has work linear in this

number z of nonzeros. Summing across all leaves, therefore, gives Θ(r) work. A

height-h internal node, on the other hand, corresponds to a subblock containing

at least z′ = Ω(2h) nonzeros (or else it would not recurse further and be a leaf)

and has work O(lg 2h) = O(h) arising from the binary searches. There can thus be

at most O(r/2h) height-h internal nodes having total work O((r/2h)h). Summing

across all heights gives total work of
∑lg β

h=0 O((r/2h)h) = r
∑lg β

h=0 O(h/2h) = O(r)

for internal nodes. Combining the work at internal nodes and leaf nodes gives

total work Θ(r).

The next lemma analyzes blockrow-vector multiplication.
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Lemma 5. On a blockrow containing n/β blocks and r nonzeros, CSB BlockrowV

runs with work Θ(r) and span O(β lg(n/β)).

Proof. Consider a call to CSB BlockrowV on a row that is partitioned into

C chunks, and let W (C) denote the work. The work per recursive call on a

multichunk subblockrow is dominated by the Θ(β) work of initializing a tempo-

rary vector z and adding the vector z into the output vector y. The work for

a CSB BlockrowV on a single-chunk subblockrow is linear in the number of

nonzeros in the chunk. (We perform linear work either in line 10 or in line 8 — see

Lemma 4 for the work of line 8.) We can thus describe the work by the recurrence

W (C) ≤ 2W (⌈C/2⌉)+Θ(β) with a base case of work linear in the nonzeros, which

solves to W (C) = Θ(Cβ + r) for C > 1. When C = 1, we have W (C) = Θ(r), as

we do not operate on the temporary vector z.

To bound work, it remains to bound the maximum number of chunks in a row.

Notice that any two consecutive chunks contain at least Ω(β) nonzeros. This fact

follows from the way chunks are chosen in lines 2–11: a chunk is terminated only

if adding the next block to the chunk would increase the number of nonzeros to

more than Θ(β). Thus, a blockrow consists of a single chunk whenever r = O(β)

and at most O(r/β) chunks whenever r = Ω(β). Hence, the total work is Θ(r).

We can describe the span of CSB BlockrowV by the recurrence S(C) =

S(⌈C/2⌉) + O(β) = O(β lg C) + S(1). The base case involves either serially mul-
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tiplying a single chunk containing at most O(β) nonzeros in line 10, which has

span O(β), or multiplying a single block in parallel in line 8, which also has span

O(β) from Lemma 4. We have, therefore, a span of O(β lg C) = O(β lg(n/β)),

since C ≤ n/β.

We are now ready to analyze matrix-vector multiplication itself.

Theorem 6. On an n × n matrix containing nnz nonzeros, CSB SpMV runs

with work Θ(n2/β2 + nnz ) and span O(β lg(n/β) + n/β).

Proof. For each blockrow, we add Θ(n/β) work and span for computing the

chunks, which arise from a serial scan of the n/β blocks in the blockrow. Thus,

the total work is O(n2/β2) in addition to the work for multiplying the blockrows,

which is linear in the number of nonzeros from Lemma 5.

The total span is O(lg(n/β)) to parallelize all the rows, plus O(n/β) per row

to partition the row into chunks, plus the O(β lg(n/β)) span per blockrow from

Lemma 5.

The following corollary gives the work and span bounds when we choose β to

yield the same space for the CSB storage format as for the CSR or CSC formats.

Corollary 7. On an n × n matrix containing nnz ≥ n nonzeros, by choosing

β = Θ(
√

n), CSB SpMV runs with work Θ(nnz ) and span O(
√

n lg n), achieving

a parallelism of Ω(nnz /
√

n lg n).
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Since CSB SpMV T is isomorphic to CSB SpMV, we obtain the following

corollary.

Corollary 8. On an n×n matrix containing nnz ≥ n nonzeros, by choosing β =

Θ(
√

n), CSB SpMV T runs with work Θ(nnz ) and span O(
√

n lg n), achieving

a parallelism of Ω(nnz /
√

n lg n).

The work of our algorithm is dominated by the space of the temporary vec-

tors z, and thus the space usage on an infinite number of processors matches the

work bound. When run on fewer processors however, the space usage reduces dras-

tically. We can analyze the space in terms of the serialization of the program,

which corresponds to the program obtained by removing all parallel keywords.

Lemma 9. On an n × n matrix, by choosing β = Θ(
√

n), the serialization of

CSB SpMV requires O(
√

n lg n) space (not counting the storage for the matrix

itself).

Proof. The serialization executes one blockrow multiplication at a time. There are

two space overheads. First, we use O(n/β) = O(
√

n) space for the chunk array.

Second, we use β space to store the temporary vector z for each outstanding

recursive call to CSB BlockrowV. Since the recursion depth is O(lg n), the

total space becomes O(β lg n) = O(
√

n lg n).

190



Chapter 6. Parallel Sparse y ← Ax and y ← ATx Using Compressed Sparse

Blocks

A typical work-stealing scheduler executes the program in a depth-first (serial)

manner on each processor. When a processor completes all its work, it “steals”

work from a different processor, beginning a depth-first execution from some un-

executed parallel branch. Although not all work-stealing schedulers are space

efficient, those maintaining the busy-leaves property [36] (e.g., as used in the

Cilk work-stealing scheduler [35]) are space efficient. The “busy-leaves” prop-

erty roughly says that if a procedure has begun (but not completed) executing,

then there exists a processor currently working on that procedure or one of its

descendants procedures.

Corollary 10. Suppose that a work-stealing scheduler with the busy-leaves prop-

erty schedules an execution of CSB SpMV on an n × n matrix with the choice

β =
√

n. Then, the execution requires O(P
√

n lg n) space.

Proof. Combine Lemma 9 and Theorem 1 from [35].

The work overhead of our algorithm may be reduced by increasing the con-

stants in the Θ(β) threshold in line 7. Specifically, increasing this threshold by

a constant factor reduces the number of reads and writes to temporaries by the

same constant factor. As these temporaries constitute the majority of the work

overhead of the algorithm, doubling the threshold nearly halves the overhead. In-
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creasing the threshold, however, also increases the span by a constant factor, and

so there is a trade-off.

6.6 Experimental design

This section describes our implementation of the CSB SpMV and CSB SpMV T

algorithms, the benchmark matrices we used to test the algorithms, the machines

on which we ran our tests, and the other codes with which we compared our

algorithms.

Implementation

We parallelized our code using Cilk++ [62], which is a faithful extension of

C++ for multicore and shared-memory parallel programming. Cilk++ is based

on the earlier MIT Cilk system [98], and it employs dynamic load balancing and

provably optimal task scheduling. The CSB code used for the experiments is freely

available for academic use at http://gauss.cs.ucsb.edu/~aydin/software.

html.

The row ind and col ind arrays of CSB, which store the row and column

indices of each nonzero within a block (i.e., the lower-order bits of the row and

column indices within the matrix A), are implemented as a single index array
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by concatenating the two values together. The higher-order bits of row ind and

col ind are stored only implicitly, and are retrieved by referencing the blk ptr

array.

The CSB blocks themselves are stored in row-major order, while the nonzeros

within blocks are in Z-Morton order. The row-major ordering among blocks may

seem to break the overall symmetry of CSB, but in practice it yields efficient han-

dling of block indices for look-up in A. blk ptr by permitting an easily computed

look-up function f(i, j). The row-major ordering also allowed us to count the

nonzeros in a subblockrow more easily when computing y ← Ax. This optimiza-

tion is not symmetric, but interestingly, we achieved similar performance when

computing y ← ATx, where we must still aggregate the nonzeros in each block.

In fact, in almost half the cases, computing ATx was faster than Ax, depending

on the matrix structure.

The Z-Morton ordering on nonzeros in each block is equivalent to first inter-

leaving the bits of row ind and col ind , and then sorting the nonzeros using these

bit-interleaved values as the keys. Thus, it is tempting to store the index array

in a bit-interleaved fashion, thereby simplifying the binary searches in lines 7–9.

Converting to and from bit-interleaved integers, however, is expensive with cur-

rent hardware support,6 which would be necessary for the serial base case in lines

6Recent research [166] addresses these conversions.
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2–5. Instead, the kth element of the index array is the concatenation of row ind [k]

and col ind [k], as indicated earlier. This design choice of storing concatenated,

instead of bit-interleaved, indices requires either some care when performing the

binary search (as presented in Figure 6.6) or implicitly converting from the con-

catenated to interleaved format when making a binary-search comparison. Our

preliminary implementation does the latter, using a C++ function object for com-

parisons [188]. In practice, the overhead of performing these conversions is small,

since the number of binary-search steps is small.

Performing the actual address calculation and determining the pointers to x

and y vectors are done by masking and bit-shifting. The bitmasks are deter-

mined dynamically by the CSB constructor depending on the input matrix and

the data type used for storing matrix indices. Our library allows any data type

to be used for matrix indices and handles any type of matrix dynamically. For

the results presented in Section 6.7, nonzero values are represented as double-

precision floating-point numbers, and indices are represented as 32-bit unsigned

integers. Finally, as our library aims to be general instead of matrix specific, we

did not employ speculative low-level optimizations such as software prefetching,

pipelining, or matrix-specific optimizations such as index and/or value compres-

sion [131, 207], but we believe that CSB and our algorithms should not adversely

affect incorporation of these approaches.
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Choosing the block size β

We investigated different strategies to choose the block size that achieves the

best performance. For the types of loads we ran, we found that a block size

slightly larger than
√

n delivers reasonable performance. Figure 6.7 shows the

effect of different blocksizes on the performance of the y ← Ax operation with

the representative matrix Kkt power. The closest exact power of 2 to
√

n is

1024, which turns out to be slightly suboptimal. In our experiments, the overall

best performance was achieved when β satisfies the equation ⌈lg√n⌉ ≤ lg β ≤

3 + ⌈lg√n⌉.

Merely setting β to a hard-coded value, however, is not robust for various

reasons. First, the elements stored in the index array should use the same data

type as that used for matrix indices. Specifically, the integer β − 1 should fit in

2 bytes so that a concatenated row ind and col ind fit into 4 bytes. Second, the

length-β regions of the input vector x and output vector y (which are accessed

when multiplying a single block) should comfortably fit into L2 cache. Finally,

to ensure speedup on matrices with evenly distributed nonzeros, there should be

enough parallel slackness for the parallelization across blockrows (i.e., the highest

level parallelism). Specifically, when β grows large, the parallelism is roughly

bounded by O(nnz /(β lg(n/β))) (by dividing the work and span from Theorem 6).
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Figure 6.7: The effect of block size parameter β on SpMV performance using the

Kkt power matrix. For values β > 32768 and β < 32, the experiment failed to

finish due to memory limitations. The experiment was conducted on the AMD

Opteron.

Thus, we want nnz /(β lg(n/β)) to be “large enough,” which means limiting the

maximum magnitude of β.

We adjusted our CSB constructor, therefore, to automatically select a reason-

able block-size parameter β. It starts with β = 3 + ⌈lg√n⌉ and keeps decreasing

it until the aforementioned constraints are satisfied. Although a research opportu-

nity may exist to autotune the optimal block size with respect to a specific matrix

and architecture, in most test matrices, choosing β =
√

n degraded performance

by at most 10%–15%. The optimal β value barely shifts along the x-axis when

running on different numbers of processors and is quite stable overall.
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An optimization heuristic for structured matrices

Even though CSB SpMV and CSB SpMV T are robust and exhibit plenty

of parallelism on most matrices, their practical performance can be improved on

some sparse matrices having regular structure. In particular, a block diagonal

matrix with equally sized blocks has nonzeros that are evenly distributed across

blockrows. In this case, a simple algorithm based on blockrow parallelism would

suffice in place of the more complicated recursive method from CSB BlockV.

This divide-and-conquer within blockrows incurs overhead that might unnecessar-

ily degrade performance. Thus, when the nonzeros are evenly distributed across

the blockrows, our implementation of the top-level algorithm (given in Figure 6.4)

calls the serial multiplication in line 12 instead of the CSB BlockrowV proce-

dure.

To see whether a given matrix is amenable to the optimization, we apply the

following “balance” heuristic. We calculate the imbalance among blockrows (or

blockcolumns in the case of y ← ATx) and apply the optimization only when no

blocks have more than twice the average number of nonzeros per blockrow. In

other words, if max(nnz (Ai)) < 2 · mean(nnz (Ai)), then the matrix is consid-

ered to have balanced blockrows and the optimization is applied. Of course, this

optimization is not the only way to achieve a performance boost on structured

matrices.
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Optimization of temporary vectors

One of the most significant overheads of our algorithm is the use of temporary

vectors to store intermediate results when parallelizing a blockrow multiplication

in CSB BlockRowV. The “balance” heuristic above is one way of reducing this

overhead when the nonzeros in the matrix are evenly distributed. For arbitrary

matrices, however, we can still reduce the overhead in practice. In particular, we

only need to allocate the temporary vector z (in line 14) if both of the subsequent

multiplications (lines 15–17) are scheduled in parallel. If the first recursive call

completes before the second recursive call begins, then we instead write directly

into the output vector for both recursive calls. In other words, when a blockrow

multiplication is scheduled serially, the multiplication procedure detects this fact

and mimics a normal serial execution, without the use of temporary vectors. Our

implementation exploits an undocumented feature of Cilk++ to test whether the

first call has completed before making the second recursive call, and we allocate

the temporary as appropriate. This test may also be implemented using Cilk++

reducers [97].

Sparse-matrix test suite

We conducted experiments on a diverse set of sparse matrices from real appli-

cations including circuit simulation, finite-element computations, linear program-

198



Chapter 6. Parallel Sparse y ← Ax and y ← ATx Using Compressed Sparse

Blocks

Name

Spy Plot

Dimensions CSC (mean/max)

Description Nonzeros CSB (mean/max)

Asic 320k 321K× 321K 6.0 / 157K

circuit simulation 1, 931K 4.9 / 2.3K

Sme3Dc 42K× 42K 73.3 / 405

3D structural mechanics 3, 148K 111.6 / 1368

Parabolic fem 525K× 525K 7.0 / 7

diff-convection reaction 3, 674K 3.5 / 1, 534

Mittelmann 1, 468K× 1, 961K 2.7 / 7

LP problem 5, 382K 2.0 / 3, 713

Rucci 1, 977K× 109K 70.9 / 108

Ill-conditioned least-squares 7, 791K 9.4 / 36

Torso 116K× 116K 73.3 / 1.2K

Finite diff, 2D model of torso 8, 516K 41.3 / 36.6K

Kkt power 2.06M× 2.06M 6.2 / 90

optimal power flow, nonlinear opt. 12.77M 3.1 / 1, 840

Rajat31 4.69M× 4.69M 4.3 / 1.2K

circuit simulation 20.31M 3.9 / 8.7K

Ldoor 952K× 952K 44.6 / 77

structural prob. 42.49M 49.1 / 43, 872

Bone010 986K× 986K 48.5 / 63

3D trabecular bone 47.85M 51.5 / 18, 670

Grid3D200 8M× 8M 6.97 / 7

3D 7-point finite-diff mesh 55.7M 3.7 / 9, 818

RMat23 8.4M× 8.4M 9.4 / 70.3K

Real-world graph model 78.7M 4.7 / 222.1K

Cage15 5.15M× 5.15M 19.2 / 47

DNA electrophoresis 99.2M 15.6 / 39, 712

Webbase2001 118M× 118M 8.6 / 816K

Web connectivity 1, 019M 4.9 / 2, 375K

Figure 6.8: Structural information on the sparse matrices used in our experiments,
ordered by increasing number of nonzeros.
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ming, and web-connectivity analysis. These matrices not only cover a wide range

of applications, but they also greatly vary in size, density, and structure. The test

suite contains both rectangular and square matrices. Almost half of the square

matrices are asymmetric. Figure 6.8 summarizes the 14 test matrices. The first

ten matrices and Cage15 are from the University of Florida sparse matrix collec-

tion [73]. Grid3D200 is a 7-point finite difference mesh generated using the Matlab

Mesh Partitioning and Graph Separator Toolbox [103]. The RMat23 matrix [140],

which models scale-free graphs, is generated by using repeated Kronecker prod-

ucts [16]. We chose parameters A = 0.7, B = C = D = 0.1 for RMat23 in order

to generate skewed matrices. Webbase2001 is a crawl of the World Wide Web

from the year 2001 [59].

Included in Figure 6.8 is the load imbalance that is likely to occur for an

SpMV algorithm parallelized with respect to columns (CSC) and blocks (CSB).

In the last column, the average (mean) and the maximum number of nonzeros

among columns (first line) and blocks (second line) are shown for each matrix.

The sparsity of matrices can be quantified by the average number of nonzeros per

column, which is equivalent to the mean of CSC. The sparsest matrix (Rajat31)

has 4.3 nonzeros per column on the average while the densest matrix has about

73 nonzeros per column (Sme3Dc and Torso). For CSB, the reported mean/max
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values are obtained by setting the block dimension β to be approximately
√

n, so

that they are comparable with statistics from CSC.

Architectures and comparisons

We ran our experiments on three multicore superscalar architectures. Opteron

is a ccNUMA architecture powered by AMD Opteron 8214 (Santa Rosa) processors

clocked at 2.2 GHz. Each core of Opteron has a private 1 MB L2 cache, and each

socket has its own integrated memory controller. Although it is an 8-socket dual-

core system, we only experimented with up to 8 processors. Harpertown is a

dual-socket quad-core system running two Intel Xeon X5460’s, each clocked at

3.16 GHz. Each socket has 12 MB of L2 cache, shared among four cores, and a

front-side bus (FSB) running at 1333 MHz. Nehalem is a single-socket quad-core

Intel Core i7 920 processor. Like Opteron, Nehalem has an integrated memory

controller. Each core is clocked at 2.66 GHz and has a private 256 KB L2 cache.

The four cores share an 8 MB L3 cache.

While Opteron has 64 GB of RAM, Harpertown and Nehalem have only 8GB

and 6 GB, respectively, which forced us to exclude our biggest test matrix (Web-

base2001) from our runs on Intel architectures. We compiled our code using gcc

4.1 on Opteron and Harpertown and with gcc 4.3 on Nehalem, all with opti-

mization flags -O2 -fno-rtti -fno-exceptions.
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To evaluate our code on a single core, we compared its performance with “pure”

OSKI matrix-vector multiplication [205] running on one processor of Opteron.

We did not enable OSKI’s preprocessing step, which chooses blockings for cache

and register usage that are tuned to a specific matrix. We conjecture that such

matrix-specific tuning techniques can be combined advantageously with our CSB

data structure and parallel algorithms.

To compare with a parallel code, we used the matrix-vector multiplication of

Star-P [179] running on Opteron. Star-P is a distributed-memory code that uses

CSR to represent sparse matrices and distributes matrices to processor memories

by equal-sized blocks of rows.

6.7 Experimental results

Figures 6.9 and 6.10 show how CSB SpMV and CSB SpMV T, respectively,

scale for the seven smaller matrices on Opteron, and Figures 6.11 and 6.12 show

similar results for the seven larger matrices. In most cases, the two codes show

virtually identical performance, confirming that the CSB data structure and algo-

rithms are equally suitable for both operations. In all the parallel scaling graphs,

only the values p = 1, 2, 4, 8 are reported. They should be interpreted as perfor-

202



Chapter 6. Parallel Sparse y ← Ax and y ← ATx Using Compressed Sparse

Blocks

 0

 100

 200

 300

 400

 500

 600

 700

Asic_320k

Sm
e3Dc

Parabolic_fem

M
ittelm

ann

Rucci

Torso
Kkt_power

M
F

lo
ps

/s
ec

p=1
p=2
p=4
p=8

Figure 6.9: CSB SpMV performance on Opteron (smaller matrices).

mance achievable by doubling the number of cores instead of as the exact perfor-

mance on p threads (e.g. , p = 8 is the best performance achieved for 5 ≤ p ≤ 8).

In general, we observed better speedups for larger problems. For example,

the average speedup of CSB SpMV for the first seven matrices was 2.75 on 8

processors, whereas it was 3.03 for the second set of seven matrices with more

nonzeros. Figure 6.13 summarizes these results. The speedups are relative to the

CSB code running on a single processor, which Figure 6.1 shows is competitive

with serial CSR codes. In another study [208] on the same Opteron architecture,

multicore-specific parallelization of the CSR code for 4 cores achieved comparable

speedup to what we report here, albeit on a slightly different sparse-matrix test

suite. That study does not consider the y ← ATx operation, however, which
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Figure 6.10: CSB SpMV T performance on Opteron (smaller matrices).

is difficult to parallelize with CSR but which achieves the same performance as

y ← Ax when using CSB.

For CSB SpMV on 4 processors, CSB reached its highest speedup of 2.80

on the RMat23 matrix, showing that this algorithm is robust even on a matrix

with highly irregular nonzero structure. On 8 processors, CSB SpMV reached

its maximum speedup of 3.93 on the Webbase2001 matrix, indicating the code’s

ability to handle very large matrices without sacrificing parallel scalability.

Sublinear speedup occurs only after the memory-system bandwidth becomes

the bottleneck. This bottleneck occurs at different numbers of cores for different

matrices. In most cases, we observed nearly linear speedup up to 4 cores. Although

the speedup is sublinear beyond 4 cores, in every case (except CSB SpMV on

Mittelmann), we see some performance improvement going from 4 to 8 cores on
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Figure 6.11: CSB SpMV performance on Opteron (larger matrices).

Opteron. Sublinear speedup of SpMV on superscalar multicore architectures has

been noted by others as well [208].

We conducted an additional experiment to verify that performance was limited

by the memory-system bandwidth, not by lack of parallelism. We repeated each

scalar multiply-add operation of the form yi ← yi+Aijxj a fixed number t of times.

Although the resulting code computes y ← tAx, we ensured that the compiler did

not optimize away any multiply-add operations. Setting t = 10 did not affect

the timings significantly—flops are indeed essentially free—but, for t = 100, we

saw almost perfect linear speedup up to 16 cores, as shown in Figure 6.14. We

performed this experiment with Asic 320k, the smallest matrix in the test suite,

which should exhibit the least parallelism. Asic 320k is also irregular in structure,
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Figure 6.12: CSB SpMV T performance on Opteron (larger matrices).

Processors
CSB SpMV CSB SpMV T

1–7 8–14 1–7 8–14

P = 2 1.65 1.70 1.44 1.49

P = 4 2.34 2.49 2.07 2.30

P = 8 2.75 3.03 2.81 3.16

Figure 6.13: Average speedup results for relatively smaller (1–7) and larger (8–14)
matrices. These experiments were conducted on Opteron.

which means that our balance heuristic does not apply. Nevertheless, CSB SpMV

scaled almost perfectly given enough flops per byte.

The parallel performance of CSB SpMV and CSB SpMV T is generally not

affected by highly uneven row and column nonzero counts. The highly skewed

matrices RMat23 and Webbase2001 achieved speedups as good as for matrices

with flat row and column counts. An unusual case is the Torso matrix, where

both CSB SpMV and CSB SpMV T were actually slower on 2 processors than
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Figure 6.14: Parallelism test for CSB SpMV on Asic 320k obtained by artificially

increasing the flops per byte. The test shows that the algorithm exhibits substan-

tial parallelism and scales almost perfectly given sufficient memory bandwidth.

serially. This slowdown does not, however, mark a plateau in performance, since

Torso speeds up as we add more than 2 processors. We believe this behavior

occurs because the overhead of intrablock parallelization is not amortized for

2 processors. Torso requires a large number of intrablock parallelization calls,

because it is unusually irregular and dense.

Figure 6.15 shows the performance of CSB SpMV on Harpertown for a subset

of test matrices. We do not report performance for CSB SpMV T, as it was

consistently close to that of CSB SpMV. The performance on this platform levels

off beyond 4 processors for most matrices. Indeed, the average Mflops/sec on 8

207



Chapter 6. Parallel Sparse y ← Ax and y ← ATx Using Compressed Sparse

Blocks

processors is only 3.5% higher than on 4 processors. We believe this plateau results

from insufficient memory bandwidth. The continued speedup on Opteron is due

to its higher ratio of memory bandwidth (bytes) to peak performance (flops) per

second.

Figure 6.16 summarizes the performance results of CSB SpMV for the same

subset of test matrices on Nehalem. Despite having only 4 physical cores, for most

matrices, Nehalem achieved scaling up to 8 threads thanks to hyperthreading.

Running 8 threads was necessary to utilize the processor fully, because hyper-

threading fills the pipeline more effectively. We observed that the improvement

from oversubscribing is not monotonic, however, because running more threads

reduces the effective cache size available to each thread. Nehalem’s point-to-point

interconnect is faster than Opteron’s (a generation old Hypertransport 1.0), which

explains its better speedup values when comparing the 4-core performance of both

architectures. Its raw performance is also impressive, beating both Opteron and

Harpertown by large margins.

To determine CSB’s competitiveness with a conventional CSR code, we com-

pared the performance of the CSB serial code with plain OSKI using no matrix-

specific optimizations such as register or cache blocking. Figures 6.17 and 6.18

present the results of the comparison. As can be seen from the figures, CSB

achieves similar serial performance to CSR.

208



Chapter 6. Parallel Sparse y ← Ax and y ← ATx Using Compressed Sparse

Blocks

 0

 200

 400

 600

 800

 1000

Asic_320k

Sm
e3Dc

Parabolic_fem

M
ittelm

ann

Rucci

Torso
Kkt_power

Rajat31

Ldoor

Grid3D200

Cage15

RM
at23

M
F

lo
ps

/s
ec

p=1
p=2
p=4
p=8

Figure 6.15: CSB SpMV performance on Harpertown.

In general, CSR seems to perform best on banded matrices , all of whose

nonzeros are located near the main diagonal. (The maximum distance of any

nonzero from the diagonal is called the matrix’s bandwidth , not to be confused

with memory bandwidth.) If the matrix is banded, memory accesses to the input

vector x tend to be regular and thus favorable to cacheline reuse and automatic

prefetching. Strategies for reducing the bandwidth of a sparse matrix by per-

muting its rows and columns have been studied extensively (see [70, 197], for

example). Many matrices, however, cannot be permuted to have low bandwidth.

For matrices with scattered nonzeros, CSB outperforms CSR, because CSR incurs

many cache misses when accessing the x vector. An example of this effect occurs

for the RMat23 matrix, where the CSB implementation is almost twice as fast as

CSR.
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Figure 6.16: CSB SpMV performance on Nehalem.

Figure 6.19 compares the parallel performance of the CSB algorithms with

Star-P. Star-P’s blockrow data distribution does not afford any flexibility for load-

balancing across processors. Load balance is not an issue for matrices with nearly

flat row counts, including finite-element and finite-difference matrices, such as

Grid3D200. Load balance does become an issue for skewed matrices such as

RMat23, however. Our performance results confirm this effect. CSB SpMV is

about 500% faster than Star-P’s SpMV routine for RMat23 on 8 cores. Moreover,

for any number of processors, CSB SpMV runs faster for all the matrices we

tested, including the structured ones.
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Figure 6.17: Serial performance comparison of SpMV for CSB and CSR.

6.8 Conclusion

Compressed sparse blocks allow parallel operations on sparse matrices to pro-

ceed either row-wise or column-wise with equal facility. We have demonstrated

the efficacy of the CSB storage format for SpMV calculations on a sparse ma-

trix or its transpose. It remains to be seen, however, whether the CSB format

is limited to SpMV calculations or if it can also be effective in enabling parallel

algorithms for multiplying two sparse matrices, performing LU-, LUP-, and re-

lated decompositions, linear programming, and a host of other problems for which

serial sparse-matrix algorithms currently use the CSC and CSR storage formats.

The CSB format readily enables parallel SpMV calculations on a symmetric

matrix where only half the matrix is stored, but we were unable to attain one
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Figure 6.18: Serial performance comparison of SpMV T for CSB and CSR.

optimization that serial codes exploit in this situation. In a typical serial code

that computes y ← Ax, where A = (aij) is a symmetric matrix, when a processor

fetches aij = aji out of memory to perform the update yi ← yi + aijxj, it can

also perform the update yj ← yj + aijxi at the same time. This strategy halves

the memory bandwidth compared to executing CSB SpMV on the matrix, where

aij = aji is fetched twice. It remains an open problem whether the 50% savings

in storage for sparse matrices can be coupled with a 50% savings in memory

bandwidth, which is an important factor of 2, since it appears that the bandwidth

between multicore chips and DRAM will scale more slowly than core count.

212



Chapter 6. Parallel Sparse y ← Ax and y ← ATx Using Compressed Sparse

Blocks

 0

 1

 2

 3

 4

 5

 6

 7

 8

Asic_320k

Sm
e3Dc

Parabolic_fem

M
ittelm

ann

Rucci

Torso
Kkt_power

Rajat31

Ldoor

Grid3D200

Cage15

RM
at23

Bone010

C
S

B
_S

pM
V

 / 
S

ta
r-

P
 (

M
F

lo
ps

/s
ec

 r
at

io
)

p=1
p=2
p=4
p=8

Figure 6.19: Performance comparison of parallel CSB SpMV with Star-P, which

is a parallel-dialect of Matlab. The vertical axis shows the performance ratio of

CSB SpMV to Star-P. A direct comparison of CSB SpMV T with Star-P was

not possible, because Star-P does not natively support multiplying the transpose

of a sparse matrix by a vector.
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Chapter 7

Solving Path Problems on the
GPU

Abstract

We consider the computation of shortest paths on Graphic Processing
Units (GPUs). The blocked recursive elimination strategy we use is ap-
plicable to a class of algorithms (such as all-pairs shortest-paths, tran-
sitive closure, and LU decomposition without pivoting) having similar
data access patterns. Using the all-pairs shortest-paths problem as an
example, we uncover potential gains over this class of algorithms. The
impressive computational power and memory bandwidth of the GPU
make it an attractive platform to run such computationally intensive
algorithms. Although improvements over CPU implementations have
previously been achieved for those algorithms in terms of raw speed,
the utilization of the underlying computational resources was quite
low. We implemented a recursively partitioned all-pairs shortest-paths
algorithm that harnesses the power of GPUs better than existing im-
plementations. The alternate schedule of path computations allowed
us to cast almost all operations into matrix-matrix multiplications on a
semiring. Since matrix-matrix multiplication is highly optimized and
has a high ratio of computation to communication, our implemen-
tation does not suffer from the premature saturation of bandwidth
resources as iterative algorithms do. By increasing temporal locality,
our implementation runs more than two orders of magnitude faster on
an NVIDIA 8800 GPU than on an Opteron. Our work provides evi-
dence that programmers should rethink algorithms instead of directly
porting them to GPU.
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This chapter is based on a paper [50] by Buluç et al. from Parallel Computing.

7.1 Introduction

The massively parallel nature of GPUs makes them capable of yielding the-

oretically much higher GFlops rates than current state-of-the-art CPUs. GPU

performance also grows much faster than CPU performance due to specialized

explicit parallelism. The amount of computational power to be harvested has also

attracted the high-performance computing (HPC) community, and we have seen

many scientific applications successfully implemented with significant performance

gains on the GPU [37, 178].

Implementing HPC applications to run on a GPU requires significant exper-

tise, even with the recently introduced C-like APIs such as Nvidia’s Cuda plat-

form [141]. The key to performance is to hide the data access latency by having

many threads on the fly. The performance is usually fragile and requires careful

craftmanship from the programmer’s side. It is up to the programmer to make

sure that the registers and other levels of cache are neither underutilized nor over-

pressured. Several papers are devoted to the issue of achieving the right balance

to get optimal performance on GPUs [170, 204], relying on novel programming

techniques that are not necessarily intuitive to the existing HPC programmer.
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An important class of algorithms with triple nested loops, which will be sub-

sequently mentioned as Gaussian Elimination (GE) based algorithms, have very

similar data access patterns. Examples include LU decomposition without pivot-

ing, Cholesky factorization, all-pairs shortest paths (APSP), and transitive clo-

sure. The similarity among those problems has led researchers to approach them

in a unified manner. For example, the Gaussian Elimination Paradigm of Chowd-

hury and Ramachandran provides a cache-oblivious framework for these prob-

lems [60]. In this paper, we specifically focus on the APSP problem because it

usually operates on single precision floating point data, making it suitable to cur-

rent generation GPUs. On the contrary, factorizations such as LU and Cholesky

require double precision arithmetic that was not available on the GPUs until very

recently (with AMD FireStream 9170 and Nvidia GeForce GTX 280). Even now,

the double precision performance is 4-8 times slower than single precision, and

the limited global memory of current generation GPUs discourage the use of dou-

ble precision floating point numbers. Furthermore, numerical LU decomposition

without pivoting is unstable [106] at best (it may not even exist), and pivoting

strategies on the GPU are beyond the scope of this paper. Volkov and Demmel

did an excellent job of implementing LU, QR, and Cholesky factorizations on the

GPU, albeit in single precision [204]. It is worth noting that even though our

implementation computes only the distance version of the APSP problem, it is
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possible to obtain the actual minimal paths, at the cost of doubling the memory

requirements, by keeping a predecessor matrix.

Our two main contributions in this paper are:

1. Recursive partitioning is used as a tool to express a different schedule of

path computations that allows extensive use of highly optimized matrix-

matrix operations. Specifically, we use matrix multiplication on semirings

as a building block for GE based algorithms. By doing so, we increase data

locality, which is even more important for high performance computing on

the GPU than on the CPU

2. As a proof of concept, we provide an efficient implementation of the APSP

algorithm on the GPU that is up to 480x faster than our reference CPU

implementation, and up to 75x faster than an existing GPU implementation

on a similar architecture.

Locality of reference has always been an issue in algorithm design, and it will

be even more important with GPUs. This is because stream processors, such as

GPUs, achieve efficiency through locality [72]. Our work highlights the importance

of recursion as a technique for automatically creating locality of reference.

As minor contributions, we give an alternate (arguably simpler) proof of cor-

rectness based on path expressions for the recursively partitioned APSP algorithm.
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On the GPU, we compare iterative, and recursive versions of the same algorithm

and provide insights into their performance difference through micro benchmarks.

Therefore, we provide evidence that Level 3 BLAS [80] routines on semirings can

be used to speed up certain graph algorithms. Finally, we compare different CPUs

and GPUs on their power efficiency in solving this problem.

The remainder of this paper is organized as follows. Section 7.2 describes

the algorithms based on block-recursive elimination, starting from the well-known

Gaussian Elimination procedure and using it as an analogy to explain block-

recursive elimination on other algebraic structures. Most specifically, it shows

how block-recursive elimination can be used to solve the all-pairs shortest-paths

problem. Section 7.3 is devoted to GPU programming on the Cuda platform,

showing difficulties and important points to achieve high performance on GPUs.

Section 7.4 describes our implementation and evaluation strategies, and reports

on the results of our experiments. Section 7.5 offers some concluding remarks.

7.2 Algorithms Based on Block-Recursive Elim-

ination

Gaussian elimination is used to solve a system of linear equations Ax = b,

where A is an n × n matrix of coefficients, x is a vector of unknowns, and b

218



Chapter 7. Solving Path Problems on the GPU

is a vector of constants. Recursive blocked LU factorization is an efficient way

of performing Gaussian elimination on architectures with deep memory hierar-

chies [87, 198]. This is mostly due to its extensive use of matrix-matrix operations

(Level 3 BLAS [80]) that are optimized for the underlying architecture. Let A

and its factors L and U be partitioned as

A =




A11 A12

A21 A22


 =




L11

L21 L22


 ·




U11 U12

U22


 (7.1)

Then, the block-recursive LU decomposition without pivoting can be written

as

L11, U11 ←LU(A11)

U12 ←L11\A12 (7.2)

L21 ←A21/U11

L22, U22 ←LU(A22 − L21U12).

In this pseudocode, LU is the recursive call to the function itself, \ and / denote

triangular solve operations with multiple right hand sides (matrix division on the

left and on the right, in Matlab notation).

LU factorization operates on the field of real numbers, but the same algo-

rithm can be used to solve a number of graph problems, albeit using a different
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algebra. Specifically, closed semirings provide a general algebraic structure that

can be used to solve a number of path problems on graphs [7, 192]. A semiring

has all the properties of a ring, except that there might be elements without an

additive inverse. One practical implication is that fast matrix multiplication al-

gorithms that use additive inverses, such as the Strassen algorithm [187] and the

Coppersmith-Winograd algorithm [67], do not apply to matrices over semirings.

A closed semiring is formally denoted by (S,⊕,⊗, 0, 1), where ⊕ and ⊗ are

binary operations defined on the set S with identity elements 0 and 1 respec-

tively. Fletcher [93] gives a complete definition of a closed semiring. Two im-

portant semirings used in this work are the Boolean semiring, formally defined as

({0, 1},∨,∧, 0, 1) and the tropical semiring, formally defined as (R+, min, +,∞, 0).

A closed semiring is said to be idempotent if a⊕a = a for all a ∈ S. Although idem-

potence of the semiring is not a requirement for the solution of path problems on

graphs [93], the correctness of our in-place algorithms relies on idempotence. Both

the Boolean semiring and the tropical semiring are idempotent, as min(a, a) = a

for all a ∈ R
+, and 0 ∨ 0 = 0, 1 ∨ 1 = 1.

7.2.1 The All-Pairs Shortest-Paths Problem

The all-pairs shortest-paths (APSP) is a fundamental graph problem. Given

a directed graph G = (V,E) with vertices V = {v1, v2, ..., vn} and edges E =
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{e1, e2, ..., em}, the problem is to compute the length of the shortest path from

vi to vj for all (vi, vj) pairs. APSP corresponds to finding the matrix closure

A∗ =
∑∞

i=0 Ai =
∑n

i=0 Ai = I ⊕ A⊕ ...⊕ An on the tropical semiring. Note that

we were able to avoid the problems with the infinite sum by converting it to a

finite sum, because An+i = An for i > 0 in any idempotent semiring.

APSP is the focus of this paper among the set of GE based algorithms due

to its practical importance and the lack of fast implementations on the GPU. All

the algorithms discussed in this paper take the adjacency matrix A of the graph,

where A(i, j) represents the length of the edge vi → vj, as the input. They output

A∗, where A∗(i, j) represents the length of the shortest path from vi to vj. Edge

weights can be arbitrary (positive, negative, or zero), but we assume that there

are no negative cycles in the graph. Also, the cost of staying at the same vertex

is zero, i.e., A(i, i) = 0. If not, we can delete any edge of the form A(i, i) 6= 0 as it

will certainly not contribute to any shortest path. This is because shortest paths

are simple when there are no negative cycles.

The standard algorithm for solving the APSP problem is the Floyd-Warshall

(FW) algorithm. The pseudocode for the FW algorithm, in standard notation and

in linear algebra notation, are given in Figures 7.1 and 7.2. It is especially well-

suited for dense graphs due to its O(n3) complexity. It is a dynamic programming

algorithm that consists of a triply nested loop similar to matrix multiplication. In
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A∗ : R
N×N = FW(A : R

N×N)

1 for k ← 0 to N − 1
2 do for i← 0 to N − 1
3 do for j ← 0 to N − 1
4 do A(i, j)← min(A(i, j), A(i, k) + A(k, j))
5 A∗ ← A

Figure 7.1: FW algorithm in the standard notation

fact, computing the APSP problem is computationally equivalent to computing

the product of two matrices on a semiring [7]. However, the order of the loops

cannot be changed arbitrarily as in the case of matrix multiplication. In the

linear algebra sense, the algorithm computes the outer product of the kth row

and the kth column, and does rank-1 updates on the whole matrix, for k =

1, 2, ..., n. The order of the outer product updates cannot be changed, but one

is free to compute the outer product in any order. This means that the k-loop

should be the outermost loop, and the other loops can be freely interchanged.

Although the added constraint on the order of loops hinders some of the loop-

interchange optimizations that are applied to matrix multiplication, automatic

program generators for the FW algorithm have been shown to provide formidable

speedups [115].

For sparse graphs, Johnson’s algorithm [126], which runs Dijkstra’s single-

source shortest paths algorithm from every vertex (after some preprocessing that
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A∗ : R
N×N = FW(A : R

N×N)

1 for k ← 0 to N − 1
2 do A← A⊕ A(:, k)⊗ A(k, :) � Algebra on the (min,+) semiring
3 A∗ ← A

Figure 7.2: FW algorithm in linear algebra notation

lets the algorithm run on graphs having edges with negative weights), is proba-

bly the algorithm of choice for an implementation on the CPU. However, as we

demonstrate in Section 7.4, the GE based algorithm clearly outperforms both the

FW algorithm and Johnson’s algorithm when implemented on the GPU.

For unweighted graphs, it is possible to embed the semiring into the ring

of integers and use a fast, sub-cubic matrix multiplication algorithm such as

Strassen’s [187]. For an undirected and unweighted graph, Seidel [177] gives a

O(M(n) lg n) algorithm, where M(n) is the time to multiply two n × n matrices

on the ring of integers. This elegant algorithm repeatedly squares the adjacency

matrix of the graph. However, it is not currently known how to generalize Seidel’s

algorithm to weighted or directed graphs [213].

7.2.2 Recursive In-Place APSP Algorithm

The closure of a matrix can be computed using an algorithm similar to re-

cursive Gaussian elimination without pivoting. It is guaranteed to terminate on
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A∗ : R
N×N = APSP(A : R

N×N)

1 if N < β
2 then A← FW(A) � Base case: perform iterative FW serially
3 else

4 A =




A11 A12

A21 A22




5 A11 ← APSP(A11)
6 A12 ← A11A12

7 A21 ← A21A11

8 A22 ← A22 ⊕ A21A12

9 A22 ← APSP(A22)
10 A21 ← A22A21

11 A12 ← A12A22

12 A11 ← A11 ⊕ A12A21

Figure 7.3: Pseudocode for recursive in-place APSP

a closed semiring like the tropical semiring. The only subroutine of this algo-

rithm is matrix multiplication on a semiring. The n-by-n adjacency matrix is

recursively partitioned into four equal-sized n/2-by-n/2 submatrices as before;

the pseudocode for the algorithm is shown in Figure 7.3. We use juxtaposition

(AB) to denote the multiplication of A and B on the semiring. β is the thresh-

old after which the algorithm performs iterative FW serially instead of recursing

further. The algorithm does not require n to be even. If n is odd, the same

decomposition in (7.1) works with ⌊n/2⌋ and ⌈n/2⌉.

Both the original FW implementation given in Figures 7.1 and 7.2 as well as

the recursive algorithm given in Figure 7.3 can be easily extended to obtain the
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actual minimal paths. In this case, an additional integer matrix Π of predecessor

vertices is maintained. Initially, Π(i, j) ← i for all i. It is updated whenever

a previously unknown path with shorter length is discovered, i.e., Π(i, j) ← k

whenever A(i, k) + A(k, j) < A(i, j) during the computation. As FW and APSP

are essentially performing the same computation, the discovered shortest path is

guaranteed to be a path with minimal length. However, they may find different,

yet equal in length, paths in the presence of multiple shortest paths for a source-

destination pair. This is due to possibly different schedule of path computation.

Recursive formulations of APSP have been presented by many researchers over

the years [71, 158, 196]. The connection to semiring matrix multiplication was

shown by Aho et al. [7], but they did not present a complete algorithm. Ours is

a modified version of the algorithm of Tiskin [196] and R-Kleene algorithm [71].

Especially, the in-place nature of the R-Kleene algorithm helped us avoid expen-

sive global memory to global memory data copying. As the algorithm makes use

of matrix multiplication as a subroutine, it has a much higher data reuse ratio

while having asymptotically the same operation count.

The correctness of the recursive algorithm has been formally proven in various

ways before [71, 158]. Here we present a simpler proof based on algebraic paths.

As in Aho et al. [7], we partition the set of vertices into V1 = {v1, ..., vn/2} and

V2 = {vn/2+1, ..., vn}. Submatrix A11 represents the edges within V1, submatrix
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w

v

x

t

q

y

r

s
V1

A∗
11

V2

A∗
11

A12

A21

A21

A12
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Figure 7.4: An example path in A∗
11

A12 the edges from V1 to V2, submatrix A21 the edges from V2 to V1, and submatrix

A22 the edges within V2.

Now, consider the paths in A∗
11. They can either travel within V1 only or move

from V1 to V2 following an edge in A12, and then come back to V2 through an

edge in A21, possibly after traveling within V2 for a while by following edges in

A22. The regular expression for the latter path is A12A
∗
22A21. This partial path

can be repeated a number of times, possibly going through different vertices each

time. An example path from v to w is shown in Figure 7.4. The complete regular

expression becomes

A∗
11 = (A11 |A12A

∗
22A21)

∗. (7.3)
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On the other hand, the regular expression we get after the recursive algorithm

terminates is

A∗
11 = A∗

11 | (A∗
11A12(A22 |A21A

∗
11A12)

∗A21A
∗
11). (7.4)

These two regular expressions define the same language, hence represent the

same set of paths [192]. By converting these regular expressions into deterministic

finite automata (DFA), and minimizing them [121], we see that both have the same

minimum-state DFA shown in Figure 7.5. Since the minimum-state DFA is unique

for a language, this proves that the algorithm computes the correct set of paths.

q1
A11

A12

A21

A22

A11
q0 q2

Figure 7.5: Minimum-state DFA for the path expressions in A∗
11, starting state is

q0

It is also possible to implement this algorithm in a blocked iterative way as

previously done for transitive closure [200]. The percentage of work done itera-

tively (without using matrix multiplication) is the same, and corresponds to the

block diagonal part of the matrix. However, the multiplications in the blocked
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algorithm are always between matrices of size B × B, where B is the blocking

factor. This is potentially a limiting factor on GPUs because multiplication tends

to get drastically faster as matrices get bigger (less than 20 GFlops/s when N=64

versus 200 GFlops/s when N=1024) [204]. With the recursive formulation, on the

other hand, more work can be done during multiplication of large matrices.

Furthermore, the recursive algorithm does fewer kernel launches than the block

iterative one. The block iterative algorithm launches O((N/B)3) kernels for matrix

multiplications and O(N/B) kernels for computing closures of B × B blocks on

the diagonal. On the other hand, at each level of the recursion tree, the recursive

algorithm launches 6 kernels for matrix multiplications, and does 2 recursive calls.

This makes a total of only O(N/B) kernel launches because the height of the

recursion tree is lg (N/B), and the number of kernel launches doubles at each

level ({6, 12, 24, ..., 6(N/B)}). The O((N/B)2) factor of improvement can be quite

significant, as kernel launches incur significant overhead in CUDA.

One important feature of our implementation is that it is performed in place,

overwriting the input with the output without constraining the order of loops

in the matrix multiplication. For the matrix multiply-add operations A22 ←

A22 ⊕ A21A12 and A11 ← A11 ⊕ A12A21, there are no issues of correctness. How-

ever, for other multiplications of the form B ← BA or B ← AB, the order of

evaluation (whether it is an ijk loop or an kji loop) matters on a general semiring.
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This is because updating the output automatically updates the input, and the al-

gorithm will now use a different input for the rest of the computation. As proved

by D’Alberto and Nicolau [71], this is not a problem as long as the semiring is

idempotent and A is a closure. The intuition is that if the algorithm prematurely

overwrites its input, this just makes the algorithm find shortest paths quicker. In

other words, it speeds up the information dissemination, but the correctness is

preserved thanks to idempotence.

Note that four of the six multiplications at any level of the recursion tree are

of the form B ← BA or B ← AB. In other words, they perform multiply instead

of multiply-add operations. Using B ← B + BA or B ← B + AB would be

equally correct, but unnecessary. Remember that the cost of staying in a vertex is

zero, i.e., A(i, i) = 0. Consider B ← AB: If B contains a path vi ⇒ vj before the

operation, AB generates a cost-equivalent path vi ⇒ vi ⇒ vj and safely overwrites

B.

7.3 GPU Computing Model with CUDA

More and more applications that traditionally run on the CPU are now being

reimplemented to run on the GPU, a technique called general-purpose computing

on graphics processing units (GPGPU). Both Nvidia and AMD offer programming
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interfaces for making GPGPU accessible to programmers who are not experts in

computer graphics [1, 2]. Nvidia’s Compute Unified Device Architecture (Cuda)

offers a higher level C-like API, whereas AMD’s Close-to-Metal (CTM) allows the

programmers to access lower levels of hardware. As opposed to CTM, the Cuda

platform is unified in the sense that it has no architectural division for vertex and

pixel processing.

7.3.1 GPU Programming

The new generation of GPUs are basically multithreaded stream processors.

They offer tremendous amounts of bandwidth and single-precision floating point

arithmetic computation rates. In stream processing, a single data parallel func-

tion (kernel) is executed on a stream of data, and that is exactly how the Cuda

programming model works. A Cuda program is composed of two parts: A host

(CPU) code that makes kernel calls, and a device (GPU) code that actually im-

plements the kernel. The host code is conceptually a serial C program, but the

device code should be massively parallel in order to harness the power of the GPU.

The fundamental building block of Nvidia 8 and 9 series is the streaming

multiprocessors (SMs), sometimes called the GPU chips. Each SM consists of 8

streaming processors (cores), but only one instruction fetch/decode unit. This

implies that all 8 cores must simultaneously execute the same instruction. This
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is why divergence in the device code should be avoided as much as possible. The

memory hierarchy consists of multiple levels. Each SM has 8192 registers and

16KB on-chip shared memory, which is as fast as registers provided that bank

conflicts are avoided. A high-latency (200-300 cycles) off-chip global memory

provides the main storage for the application on the GPU. Part of the off-chip

memory, called the local memory, is used for storing variables that are spilled from

registers.

A kernel is executed by many threads on the GPU. These threads are organized

as a grid of thread blocks, which are batches of threads that can cooperate/com-

municate through on-chip shared memory and synchronize their execution. Each

thread block is executed by only one SM, but each SM can execute multiple thread

blocks simultaneously.

The main scheduling unit in Cuda is a warp, a group of 32 threads from

the same thread block. All threads in a warp execute the same instruction, and

execution of an arithmetic instruction for the whole warp takes 4 clock cycles.

The number of active warps in a block is an important factor in tolerating global

memory access latency.
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7.3.2 Experiences and Observations

Some limitations exist for the device code. For example, recursion and static

variables are not allowed. These limitations do not apply to the host code, as

it is just a regular C code running on the CPU. In fact, recursion in the host

code is a powerful technique, since it naturally separates the recursion stack from

the floating-point intensive part of the program. Although recursive divide-and-

conquer algorithms are naturally cache efficient [114], they have traditionally not

achieved their full performance due to the overheads associated with recursion.

We do not have such a limitation with CUDA because the recursion stack, which

is on the CPU, does not interfere with the kernel code on the GPU.

Code optimization on a GPU is a tedious job with many pitfalls. Performance

on a GPU is often more fragile than performance on a CPU. It has been observed

that small changes can cause huge effects on the performance [170]. For example,

in the optimized GEMM routine of Volkov [204], each thread block is 16× 4 and

each thread uses 32 registers. This allows 8192/32 = 256 threads and 256/64 = 4

thread blocks can simultaneously be active on each SM. As there are two warps

per thread block and it takes 4 cycles to execute an instruction for the whole warp,

a latency of 8×4 = 32 cycles can be completely hidden. In the case that an extra

variable is required, the compiler can either choose to spill it out to local memory

and keep the register count intact, or increase the register usage per thread by
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one. In the latter case, the number of active thread blocks decreases to 3. This

introduces a 25% reduction in parallelism, but the former option may perform

worse if the kernel has few instructions because access to a local variable will

introduce one-time extra latency of 200-300 cycles. Whichever option is chosen, it

is obvious that performance is fragile: by just adding one extra line, it is possible

to drastically slow down the computation.

Another pitfall awaiting the programmer is bandwidth optimizations. In Cuda,

peak bandwidth can only be achieved through memory coalescing, i.e., by making

consecutively numbered threads access consecutive memory locations. One can

heavily underutilize the GPU bandwidth by not paying attention to memory co-

alescing. However, the way memory coalescing works is quite counter-intuitive to

a multicore programmer. Assume that one wants to scan a 16×N matrix stored

in row-major order. On an SMP system with 16 cores, the most bandwidth-

friendly way is to let each processor scan a different row of the matrix; in this

case, each processor makes at most N/B cache misses, which is optimal. On an

Nvidia GPU, on the other hand, this will create multiple memory accesses per

warp since these threads do not access contiguous range of memory addresses.

An example with N = 8 is shown in Figure 7.6. However, if the matrix were

stored in column-major order, having each thread scan a different row would be

optimal on an Nvidia GPU. This is because memory accesses at each step would
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be coalesced into a single access by the NVCC compiler [155]. Consequently, the

right programming practices for achieving high bandwidth are quite different for

the GPU than for traditional parallel programming.

Thread 16

Thread 1

Thread 2

Thread 3

Thread 4

Thread 15

Figure 7.6: Stride-1 access per thread (row-major storage)

As a result, we advocate the use of optimized primitives as much as possible on

the GPU. Harris et al. provide an excellent optimized scan primitive with Cuda

and encourage its use as a building block for implementing parallel algorithms on

Nvidia GPUs [117]. Here, we advocate the use of matrix-matrix multiplication

as an important primitive, not only for solving systems of linear equations, but

also for graph computations. In terms of performance, matrix multiplication has

been claimed to be unsuitable to run on GPUs due to the lack of sufficient band-

width [89]. The new generation GPUs, however, offer a tremendous bandwidth

of more than 100 GB/s. Moreover, alternate implementations that are not band-
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width bound achieved close to peak performance [204]. It would be wise to take

advantage of such an efficient primitive whenever possible.

7.4 Implementation and Experimentation

7.4.1 Experimental Platforms

We ran our GPU code on an Nvidia GeForce 8800 Ultra with Cuda SDK

1.1 and GCC version 4.1. The graphics card driver installed in our system is

Nvidia Unix x86 64 kernel module 169.09. The GeForce 8800 Ultra has 768 MB

DRAM, a core clock of 612 MHz, a stream processor clock of 1.5 GHz, a memory

clock of 1080 MHz, and an impressive bandwidth of 103.7 GB/s. It consists of

16 SMs, each containing 8 cores, making up a total of 128 cores. Each core

can perform a multiply-add operation in a single cycle, which accounts for two

floating-point operations (Flops). Therefore, it offers a peak multiply-add rate of

2× 1.5× 128 = 384 GFlops/s (not counting the extra MUL operation that cores

can issue only under certain circumstances).

For comparison, we ran our CPU experiments in three different settings:

1. Serial C++ code on Intel Core 2 Duo T2400 1.83 Ghz with 1 GB RAM

running Windows XP. Two cores share a 2 MB L2 Cache.
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2. Serial C++ code on AMD Opteron 8214 2.2 Ghz with 64 GB RAM running

Linux kernel 2.6.18. Each core has a private 1 MB L2 cache.

3. Parallel Cilk++ code on a Numa machine (Neumann) with 64 GB RAM,

and 8 dual-core Opteron processors clocked at 2.2 Ghz.

7.4.2 Implementation Details

We implemented both the recursive and the iterative algorithm on the GPU

using Cuda. For the recursive algorithm, we experimented with two different

versions: one that uses a simple GEMM kernel, and one that uses the optimized

GEMM routine of Volkov [204]. When reporting experimental results, we call the

latter recursive optimized. Both recursive codes implement the same algorithm

given in Figure 7.3. Our recursive Cuda code is freely available at http://gauss.

cs.ucsb.edu/~aydin/apsp_cuda.html.

Our iterative APSP implementation uses a logical 2D partitioning of the whole

adjacency matrix. Such a decomposition was previously employed by Jenq and

Sahni on a hypercube multiprocessor [125], and found to be more effective than

1D partitioning. However, keep in mind that there is no explicit data partitioning,

only a logical mapping of submatrices to thread blocks. Host code invokes the

kernel n times, where each thread block does a rank-1 update to its submatrix
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per invocation. An initial snapshot of the execution is illustrated in Figure 7.7

from the viewpoint of (2, 2) thread block.

k=1

k=1

A(2,2)

Figure 7.7: A shapshot from the execution of the iterative algorithm

Our serial iterative and recursive implementations run on the CPU as refer-

ences. The iterative implementation is the standard implementation of FW, as

shown in Figure 7.1. The recursive implementation is based on our recursive for-

mulation shown in Figure 7.3. The recursive implementation stops the recursion

when the submatrices completely fit into L1-cache to achieve better results.

Our reference parallel implementation runs on Neumann, a Numa machine

with a total of 16 processor cores (8 dual-core 2.2 Ghz Opterons). We used

Cilk++ [62] to parallelize our code, which enabled speedups up to 15x.
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7.4.3 Performance Results

Timings for our APSP implementations on Cuda are given in Table 7.1. Please

note the orders of magnitude difference among implementations.

Table 7.1: GPU timings on GeForce 8800 Ultra (in milliseconds)

Num. of Vertices Iterative Recursive Recursive Optimized
512 2.51× 102 1.62× 101 6.43× 100

1024 2.42× 103 1.00× 102 2.44× 101

2048 4.60× 104 7.46× 102 1.41× 102

4096 4.13× 105 5.88× 103 1.01× 103

8192 5.47× 106 5.57× 104 7.87× 103

Among our reference implementations, the best CPU performance is obtained

on the Intel Core 2 Duo, even though the processor had a slower clock speed

than the Opteron. We attribute this difference to the superior performance of

MS Visual Studio’s C++ compiler. Full listings of timings obtained on two dif-

ferent CPUs and various compilers can be found in Appendix B. Table 7.2 shows

the speedup of various GPU implementations with respect to the best CPU per-

formance achieved for the given number of vertices. The results are impressive,

showing up to 480x speedups over our reference CPU implementation. Using an

iterative formulation, only a modest 3.1x speedup is achieved for relatively small

inputs.
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Table 7.2: Speedup on 8800 Ultra w.r.t. the best CPU implementation

Num. of Vertices Iterative Recursive Recursive Optimized
512 3.1 48.1 121.4
1024 3.0 73.4 301.5
2048 1.3 79.6 420.7
4096 1.2 81.5 473.2
8192 0.7 67.7 479.3

Figure 7.8 shows a log-log plot of running times of 5 different implementations.

Iterative CPU and recursive CPU are timings obtained by our serial code running

on Intel Core 2 Duo. For the rest of this section, we will be referring to the

recursive optimized code as our best GPU code.

Although all of the APSP algorithms scale as n3, the observed exponent of the

recursive GPU implementation turned out to be slightly different than theoretical

values. To reveal that, we performed a least-squares polynomial data fit on the

log-log data. The input size(|V |) - running time(t) relationship is of the form t =

c|V |n. This can be converted to lg t = lg c+n lg |V |, on which we can do linear data

fitting. The difference shows that in practice the performance is heavily affected

by the memory traffic, not just the number of arithmetic operations performed.

The observed exponents and constants are reported in Table 7.3.

Our best GPU implementation still outperforms the parallelized CPU code by

a factor of 17-45x, even on 16 processors. Timings are listed in Table 7.4.
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Table 7.3: Observed exponents and constants for the asymptotic behaviour of our

APSP implementations with increasing problem size

t = c|V |n CPU (Intel Core 2 Duo) GPU (GeForce 8800 Ultra)

Iterative Recursive Iterative Recursive Recur. Optimized

Exponent (n) 3.02 3.23 3.62 2.94 2.59
Constant (c) 5.5× 10−6 1.4× 10−6 3.6× 10−8 1.5× 10−7 4.7× 10−7

Table 7.4: Performance comparison of our best (optimized recursive) GPU imple-

mentation with parallel Cilk++ code running on Neumann, using all 16 cores

Num. of Vertices Best GPU (secs) Parallel CPU (secs) GPU Speedup
512 0.00643 0.113 17.5×
1024 0.0244 0.708 29×
2048 0.141 5.146 36.5×
4096 1.01 40.36 40×
8192 7.87 354.9 45×
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Figure 7.8: Log-log plot of absolute running times

7.4.4 Comparison with Earlier Performance Results

We compare the performance of our code with two previously reported results.

One is an automatically generated, highly optimized serial program running on a

3.6 Ghz Pentium 4 CPU [115]. The other is due to Harish and Narayanan on a

GPU platform very similar to ours [116]. Our GeForce 8800 Ultra is slightly faster

than the GeForce 8800 GTX used by Harish and Narayanan, so we underclocked

our GPU to allow a direct comparison in terms of absolute values.

On the GPU, Harish and Narayanan implemented two variants of APSP: one

that uses the FW algorithm and one that runs Dijkstra’s single source shortest

paths (SSSP) algorithm for every vertex. For sparse graphs with m = O(n),
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Figure 7.9: Comparison of different GPU implementations on 8800 GTX settings

the latter is theoretically faster than both the FW algorithm and our recursive

formulation in the classical RAM model of computation [7]. It runs in O(n2 lg n+

nm) time using Fibonacci heaps [95].

As seen in Figure 7.9, our recursive implementation significantly outperforms

both their FW implementation (H&N APSP) and Dijkstra based implementa-

tion (H&N SSSP) when implemented on a GPU. The running times for the H&N

SSSP code are observed for randomly generated Erdős-Rényi graphs with an av-

erage vertex degree of 6. The running times of the other two implementations are

not sensitive to sparsity. When timing our algorithm, we underclocked our GPU’s

clocks down to the speed of 8800 GTX for a head-to-head comparison. Due to the
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adjacency matrix representation, our algorithm runs on graphs of at most 8192

vertices. Therefore, the H&N SSSP implementation is currently more favorable

for large sparse graphs, although it lags behind in terms of raw speed. We plan to

implement an out-of-core version of our algorithm for larger graphs. The asymp-

totic behavior (the slope of the curve) of the H&N SSSP implementation is also

favorable but the test graphs used by them are extremely sparse, which helps the

SSSP implementation whose complexity depends on the sparsity of the input.

The performance results for our iterative algorithm, given in Section 7.4.3,

agree with the 2x-3x speedup over a CPU implementation achieved by H&N APSP.

That implementation was also limited to 4096 vertices, while ours extends to 8192

with only a slowdown over the CPU implementation. Our best APSP code is faster

than H&N APSP by a factor of 35-75x.

Comparing our results with the timings reported by Han et al. for the op-

timized code obtained using their auto generation tool Spiral [115], we also see

significant speedups achieved by our best (optimized recursive) GPU implementa-

tion. Our comparisons are against their vectorized code (typically 4-5x faster than

scalar code), and we see speedups up to 28x against Pentium 4, and 42x against

Athlon 64. A detailed comparison can be found in Table 7.5. Those results also

show that the GPU implementation scales better with increasing problem size,

because the speedup we get over Spiral increases as the problem size increases.
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Table 7.5: Comparisons of our best GPU implementation with the timings re-

ported for Han et al. ’s auto generation tool Spiral

Num. of Vertices
GFlops/s Speedup of GeForce

GeForce 8800 Pentium 4 Athlon 64 Pentium 4 Athlon 64
512 38.6 5.08 3.17 7.6x 12.2x
1024 82.0 5.00 2.77 16.4x 29.6x
2048 113.5 4.78 2.73 23.7x 41.6x
4096 126.7 4.47 2.96 28.3x 42.8x

7.4.5 Scalability and Resource Usage

In this section, we try to identify the bottlenecks in our implementation in

terms of resource usage and scalability. By using the NVIDIA Coolbits utility,

we tweaked the frequencies of both the GPU core clock and the memory clock.

The results reveal that our recursive implementation is not limited by the mem-

ory bandwidth to global GPU DRAM. For this implementation, the timings and

GFlops/s rates with different clock rates are given in Table 7.6. When the mem-

ory clock is fixed, the slowdown of the computation closely tracks the slowdown

of the GPU core clock (0-50% with increments of 12.5%). On the other hand,

when the GPU core clock is fixed, little slowdown is observed when we underclock

the memory clock. Coolbits reported the default clock speeds of 8800 Ultra as

648 Mhz for cores, and 1152 Mhz for memory, which are slightly different than the

values reported in NVIDIA factsheets.
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Table 7.6: Scalability of our optimized recursive GPU implementation. We

tweaked core and memory clock rates using Coolbits.

|V | = 4096 GPU Clock Memory Clock Time (ms) GFlops/s Slowdown (%)
Default values 648 1152 1028.3 124.4 -

Memory
clock fixed
at 1152
Mhz

567 1152 1190.8 107.5 13.6
486 1152 1362.9 93.9 24.5
405 1152 1673.1 76.5 38.5
324 1152 2093.7 61.1 50.8

GPU core
clock fixed
at 648
Mhz

648 1008 1036.2 123.5 0.7
648 864 1047.3 122.2 1.8
648 720 1096 116.8 6.1
648 576 1124.9 113.8 8.5

Table 7.7: Scalability of our iterative GPU implementation. We tweaked core and

memory clock rates using Coolbits.

|V | = 4096 GPU Clock Memory Clock Time (ms) Slowdown (%)
Default values 648 1152 417611.4 -

Core clock halved 324 1152 418845.7 0.3
Memory clock halved 648 576 856689.7 51.2

The peak rate observed was 130 GFlops/s for |V | = 8192, compared to the

theoretical peak of 384 GFlops. However, the theoretical peak counts 2 Flops for

each fused multiply-add operation, which is not available on the tropical semiring

our algorithm operates on. Therefore, the actual theoretical peak in the absence

of fused multiply-add operations is 192 GFlops. Our implementation achieves

more than 67% of that arithmetic peak rate for APSP.
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The iterative implementation, on the other hand, is observed to be completely

bandwidth bound. Even when the GPU cores are underclocked to half, no slow-

down was observed. Underclocking the memory to half, however, slowed down the

computation by exactly a factor of two. Exact timings can be seen in Figure 7.7.

We conclude that the iterative formulation is putting too much stress on GPU

memory bandwidth, consequently not harnessing the available computation power

of the GPU. This is indeed expected, because the iterative formulation accesses

O(n2) data and does O(n2) work in every iteration. The recursive algorithm, on

the other hand, does almost all of its work in matrix multiplications, which ac-

cess O(n2) data for doing O(n3) work. Therefore, it clearly has better locality of

reference.

As it was not possible to disable a subset of GPU cores in the NVIDIA 8800,

we do not report any scalability results with increasing number of processors.

7.4.6 Power and Economic Efficiency

Power efficiency is becoming an important consideration when comparing dif-

ferent architectures [90]. The Green500 list ranks supercomputers according to

their Flops/Watts×sec (or Flops/Joule) ratio. In this section, we compare the

power efficiency of different architectures for the APSP problem, using power

specs of the manufacturer’s equipment (in Thermal Watts)

246



Chapter 7. Solving Path Problems on the GPU

Nvidia reports a peak power consumption of 175 Watts for its GeForce 8800

Ultra video card. Our dual-core Opteron (model number 8214) is reported to

consume a peak power of 95 Watts, but we are using only a single core of it during

serial computation. The machines used in the reported timings of automatically

tuned CPU implementations are Pentium 4 (model number 560) and Athlon 64

(model 4000+). They consume 115 and 89 Watts, respectively. The Intel Core

Duo T2400, the most power efficient CPU in this comparison, has a maximum

power consumption of only 31 Watts even when both cores are active.

This comparative study should be considered very preliminary, because we are

not running the same code in every architecture. The GPU code is assumed to

use 175 + 95/2 = 222.5 Watts as it also uses one of the CPU cores to assist the

computation. This is also a rough estimate as it is likely that when one core is

idle, the whole processor’s power consumption is more than half of its maximum.

However, our rationale is that it is possible to use the other core to perform the

same computation on a different input.

The results, outlined in Table 7.8, show that the Nvidia Cuda implementa-

tion is not only powerful, but also efficient. The closest competitor is the auto

generated Spiral [115] code that runs on Pentium 4. Note that Pentium 4 is not

a particularly power efficient processor. Therefore, it is plausible that an auto

generated code on more power efficient hardware would get closer to the efficiency
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Table 7.8: Efficiency comparison of different architectures (running various codes),

values in MFlops/Watts×sec (or equivalently MFlops/Joule)

|V | Nvidia GPU Athlon Pentium 4 Core 2 Duo Neumann (Opteron)

Best Cuda code Spiral Code Reference FW Cilk++ (p=16)

512 173 35.6 44.1 19.1 2.9
1024 368 31.1 43.7 17.4 3.7
2048 510 30.6 41.5 17.3 4.1
4096 569 33.2 38.8 17.2 4.2

of the GPU. A couple of factors contribute to the inefficiency of Neumann. The

most important one being that the Opterons we use are not high-efficiency (HE)

versions, but rather high-performance Opterons. A single Opteron core in Neu-

mann consumes more than three times the power that is consumed by Core 2

Duo, while still giving worse performance in this particular problem.

Looking at the timings are listed in Table 7.4, the economic efficiency of the

GPU is also clear. At the time of writing, the processors of our 8-way Opteron

server is priced about 7x the price of Nvidia GPUs we have been using. Given

that the GPU implementation runs about 17-45x faster, we see Flops/Dollar ratio

of the GPU is up to 119-315x better than an 8-way server. These statements are

by no means conclusive as they are based on APSP performance only.
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7.5 Conclusions and Future Work

We have considered the efficient implementation of Gaussian elimination based

algorithms on the GPU. Choosing the right algorithm that efficiently maps to the

underlying hardware has always been important in high-performance computing.

Our work shows that it is even more important when the hardware in question

is a GPU. Our proof-of-concept implementation runs more than two orders of

magnitude faster than a simple porting of the most popular algorithm to the

GPU. The key to performance was to choose an algorithm that has good locality

of reference and makes the most use of optimized kernels.

We made extensive comparisons with our reference implementations on single

processor and shared memory multiprocessor systems, as well as with previously

reported results obtained on various CPUs and GPUs. Future work includes

identifying and implementing crucial kernels that are likely to speed up a large

class of applications. Specifically, we are working on implementing an efficient

sparse matrix-matrix multiplication algorithm on the GPU, which is to be used

as a building block for many graph algorithms [48, 49].
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Conclusions and Future
Directions

Our Sultan told us to come, here we came.

Mercan Dede

This thesis aims to provide a solution to the problem of graph analysis and data

mining, especially for tightly-coupled computations. It proposes a scalable high-

performance library along with a clear direction on the discovery and refinement

of novel algorithms on this subject.

Graph computations are pervasive in sciences and it is our view that they will

become more so in the future. We showed that carefully chosen and implemented

primitive operations are key to high performance. This thesis specifically focused

on linear algebraic primitives. This is not to claim that linear algebraic primi-

tives are the only primitives needed to perform graph analysis and data mining;

they are, however, general enough to be widely useful and compact enough to be

implemented in a reasonable time frame.
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This work will hopefully become a significant addition to the diversity of com-

binatorial scientific computing, with its unique emphasis on solving combinatorial

problems using matrix methods. The contents of this thesis fall into the areas of

graph algorithms, network science, parallel computing, sparse matrix algorithms,

software engineering, and performance evaluation. Its main goal is, however, en-

abling scientific applications by facilitating large scale parallel graph analysis.

The primary applications of this thesis are in computational domain sciences such

as biology, ecology, chemistry, and cosmology. I hope this work will modestly

contribute to the increasing interaction between domain sciences and computer

sciences. As tool builders for domain sciences, computer scientists face a challeng-

ing task imposed by increasingly complex computer architectures.

This work can be extended in four main directions:

(1) Support for higher dimensional data in the combinatorial BLAS.

The first class citizens of the combinatorial BLAS are (sparse) matrices. Some

emerging applications need a higher dimensional representation of data, where

matrices are often replaced by tensors. Similarly, a more expressive way of mod-

eling the data is to use hypergraphs, which are generalizations of graphs where

the interactions among vertices is not restricted to be pairwise. Although a rect-

angular sparse matrix is a natural representation of an hypergraph, the right set
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of primitives for computations on hypergraphs is not clear at the moment. I will

be exploring these two extensions to provide a more complete library.

(2) Hybrid MPI and shared-memory support in the combinatorial BLAS.

Looking at the recently deployed systems targeting text and data mining,

such as the Petascale Data Analysis Facility of SDSC’s Triton resource, we see

that a small number of shared memory nodes having large numbers of cores are

connected to provide the fastest exploration of large data sets. Therefore, intra-

node performance is at least as important as inter-node communication. Even

though the current design of the algorithms in the combinatorial BLAS is moti-

vated by distributed-memory systems, it would perform well in shared memory

too, as it avoids hot spots and load imbalances by ensuring proper work distribu-

tion among processors. Still, algorithms specifically designed for shared-memory

systems and CMPs often outperform distributed-memory algorithms running on

shared memory. I plan to extend our work on compressed sparse blocks beyond

sparse matrix-vector products and incorporate it into the combinatorial BLAS

to achieve better performance on those hybrid architectures that require both

inter-node and intra-node parallelism.

(3) Novel algorithm development for graph and data mining.
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Many popular algorithms for graph analysis and data mining are either inexact

or they have not been proven optimal. For example, it is debatable if betweenness

centrality is really the right measure of importance in social networks or if the

higher-order SVD and related decompositions are the right methods for revealing

the hidden properties of higher order data sets. Furthermore, even well-defined

applications frequently need alternative algorithms due to scaling problems that

occur with ever growing data. For example, Chen and Saad [57] found that the

Lanczos algorithm can be a more efficient alternative to the truncated SVD for

dimensionality reduction. Since this algorithm requires only sparse matrix-vector

and matrix-transpose vector products, a highly-parallel version is readily available

by extending our work on compressed sparse blocks.

(4) Usage of different metrics, such as energy and cost efficiency.

So far, high performance computing has solely focused on the performance

aspect. This work, except for the preliminary cost and energy analysis for the all-

pairs shortest-paths problem in Chapter 7, is no exception. Our primary metric of

success was time to solution. However, recent trends suggest that power and mon-

etary costs of systems are exceeding what we will be able to afford [24]. Almost

all aspects of computing, including software, architectures, and algorithms, need

to be rethought with energy and cost efficiency in mind. Comparisons of different
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graph libraries should be performed with these metrics in mind. These compar-

isons will also guide the healthy evolution of architectures for graph problems,

since different libraries run on different architectures.
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Appendix A

Alternative One-Sided
Communication Strategies for
implementing Sparse GEMM

Truely one-sided operations are the key for hiding communication as much as
possible by overlapping it with computation. In our first attempt, we used GAS-
Net, which is a language-independent, low-level networking layer [39]. GASNet is
primarily designed as a compilation target for PGAS languages, not as a separate
library. We were able to get it running and we observed that our preliminary
results were outperforming MPI on clusters with interconnects supporting remote
direct memory access (RDMA), such as Infiniband and Myrinet. Due to difficulties
we faced while installing the library and starting jobs on major supercomputers,
this branch of the Combinatorial BLAS is currently dormant.

The widespread support for MPI has forced us to implement our asynchronous
SpGEMM algorithm using MPI’s one-sided communication primitives, even though
its limitations were well-known to the HPC community [38]. Note that in partic-
ular, MPI library does not support asynchronous progress directly. The con-
trol should somehow be passed back to the MPI library in order to achieve
progress. Several MPI implementation use a progress thread to achieve asyn-
chronous progress at the cost of degrading the performance [183].

Passive target is truely one-sided because it does not require involvement of
the target processor. The standard [152] allows implementers to restrict passive-
target remote memory access to memory that is allocated with MPI Alloc mem

only. During our tests on OpenMPI 1.3b and MVAPICH2 1.2, we have not en-
countered any problems with exposing memory allocated with regular malloc.
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For portability, we also provide a simple memory pool implementation to manage
memory allocated with MPI Alloc mem although we have not used it in our tests.

While evaluating different MPI implementation strategies for our parallel Sparse
GEMM, we also experimented with general active target synchronization (post/wait-
/start/complete) method of MPI in addition to the synchronous broadcast based
and the asynchronous passive target implementations reported in Chapter 3.

We were not able to run our active target implementation on larger than 121
processors because the MPI implementations started to hang inside WIN::COMPLETE
while waiting for implicit sychronization messages. Our algorithm achieves asyn-
chronous process in the following way:

1. In the beginning of multiplication, each processor creates windows for the
input matrices A and B and start exposure epochs for them by calling
WIN::POST.

2. During the block outer-product multiplication loop, each processor issues a
remote fetch to the submatrix it needs without synchronizing with all the
other processors. It starts an access epoch by calling WIN::START with only
one target processor (the processor that owns the required submatrix) and
calls WIN::COMPLETE to ensure the completing of the remote GET operation.

This methodology is slightly different than the examples given in the MPI-2
standard, which included the cases where there are no multiple WIN::START and
WIN::COMPLETE calls issued by a processors. However, our interpretation of the
standard and our communication with William Gropp [109] convinces us that our
approach is legal. The MPI-2 standard says that for each call to WIN::POST(Group
group), each process in group must issue a matching call to WIN::START. It does
not, however, enforce that all outstanding WIN::POST calls should be matched by
a single call WIN::START. Think about the case where processors 2 and 3 both
expose their windows to processor 1 by calling WIN::POST(1). Processor 1 has to
match these calls, and it has two options:

We think both should be valid according to the standard [152] as it contains
an explicit text in the advice to users, which says “A call is a noop, and can
be skipped, if the group argument is empty” in the context of WIN::POST and
WIN::START functions.
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Start(2)

Get(2)

Complete()

Start(3)

Get(3)

Complete()

Figure A.1: Strategy 1

Start(2,3)

Get(2)

Get(3)

Complete()

Figure A.2: Strategy 2

Figure A.3: Strategies for matching the Post calls issued by multiple processors
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Appendix B

Additional Timing Results on the
APSP Problem

Table B.1 shows the timings obtained on Intel Core 2 Duo, using MS Vi-
sual Studio 2003’s C++ compiler. For small inputs (|V | ≤ 1024), the recursive
implementation performs better due to its cache friendliness. For larger inputs,
however, the overhead of recursion starts to dominate the running time. We have
also experimented with the Boost Graph Library’s Floyd-Warshall implementa-
tion [184] but found it to be consistently slower than our implementations. This
might be due to the overheads coming from the genericity of Boost. Therefore,
we excluded its running times from our plots in the main text.

Table B.1: Serial timings on Intel Core 2 Duo (in milliseconds)

Num. of Vertices Iterative Recursive Boost
512 8.43× 102 7.81× 102 1.37× 103

1024 7.40× 103 7.35× 103 1.16× 104

2048 5.94× 104 7.98× 104 9.19× 104

4096 4.79× 105 7.20× 105 7.27× 105

8192 3.77× 106 5.82× 106 N.A.

In Table B.2, we list the performance of our reference implementations, com-
piled both with GCC and Intel C/C++ compiler version 9.1 (ICC). Although
Intel’s compiler consistently outperformed GCC, its performance still lags behind
the performance achieved by MS Visual Studio on Intel.
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Table B.2: Serial timings on Opteron (in milliseconds)

Num. of Vertices
Iterative Recursive

GCC ICC GCC ICC

512 1.30× 103 9.90× 102 1.60× 103 1.14× 103

1024 1.07× 104 8.31× 103 1.34× 104 9.74× 103

2048 8.41× 104 6.41× 104 1.32× 105 1.03× 105

4096 6.66× 105 5.03× 105 1.24× 106 1.00× 106

8192 N.A. 3.94× 106 N.A. 1.58× 107
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