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The	GraphBLAS Effort

• The GraphBLAS Forum: http://graphblas.org
• IEEE Workshop on Graph Algorithms Building Blocks (at IPDPS): 

http://www.graphanalysis.org/workshop2017.html

Abstract-- It is our view that the state of the art in constructing a large collection of 
graph algorithms in terms of linear algebraic operations is mature enough to 
support the emergence of a standard set of primitive building blocks. This paper is 
a position paper defining the problem and announcing our intention to launch an 
open effort to define this standard.



Fast-forward	in	history

• The	idea	is	older	than	this	SIAM	book:

• Several	platforms	implemented	the	ideas	in	
the	past,	such	as	Star*P

• Current	list	of	active	implementations	(and	
version	1.0	of	the	draft	proposal)	is	
available	at	http://graphblas.org

Today,	I	will	talk	about	a	graph	ordering	algorithm	(RCM)	in	
GraphBLAS and	a	work-efficient	shared-memory	algorithm	for	
sparse	matrix-sparse	vector	(SpMSpV)	operation	in	GraphBLAS

A.	Buluc,	T.	Mattson,	S.	McMillan,	J.	Moreira,	C.	Yang.	
“Design	of	the	GraphBLAS API	for	C”,	GABB’17



The	GraphBLAS Stack
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GraphBLAS C	API	Spec	(http://graphblas.org)

• Goal:	A	crucial	piece	of	the	GraphBLAS effort	is	to	translate	the	mathematical	
specification	to	an	actual	Application	Programming	Interface	(API)	that	
i. is	faithful	to	the	mathematics	as	much	as	possible,	and
ii. enables	efficient	implementations	on	modern	hardware.	

• Impact:	All	graph	and	machine	learning	algorithms	that	can	be	expressed	in	the	
language	of	linear	algebra

• Innovation:	Function	signatures	(e.g.	mxm,	vxm,	assign,	extract), parallelism	constructs	
(blocking	v.	non-blocking),	fundamental	objects	(masks,	matrices,	vectors,	descriptors),	a	
hierarchy	of	algebras	(functions,	monoids,	and	semiring)

A.	Buluç,	T.	Mattson,	S.	McMillan,	J.	Moreira,	C.	Yang.	“Proposal	for	a	GraphBLAS
C	API”	(Working	document	from	the	GraphBLAS Signatures	Subgroup)

GrB_info GrB_mxm(GrB_Matrix               *C,      // destination

const GrB_Matrix Mask,

const GrB_BinaryOp accum,

const GrB_Semiring        op,

const GrB_Matrix          A,

const GrB_Matrix          B

[, const Descriptor          desc]);

C(¬M)	⊕=	AT ⊕.⊗ BT



Parallel	algorithms	for	sparse-matrix- sparse	matrix	
multiplication	(SpGEMM)

• Goal:	More	scalable	SpGEMM	algorithms	in	shared	and	distributed-memory
• Applications:	Algebraic	multigrid	(AMG)	restriction,	graph	computations,	quantum	

chemistry,	data	mining,	interior-point	optimization
• Algorithmic	innovations: (1)	Novel	shared-memory	kernel	for	in-node	parallelism,	(2)	

Split-3D-SpGEMM:	an	efficient	implementation	of	communication-avoiding	SpGEMM
• Performance:	Split-3D-SpGEMM	with	new	shared-memory	kernel	(red)	beats	old	

state-of-the-art	(blue)	by	8X	at	large	concurrencies
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An	work-efficient	parallel	algorithm	for	
sparse	matrix-sparse	vector	multiplication	(SpMSpV)	

• Goal:	A	scalable	SpMSpV algorithm	without	doing	more	work	on	higher	concurrency
• Application:	Breadth-first	search,	graph	matching,	support	vector	machines,	etc.	
• Algorithmic	innovation:

§ Attains	work-efficiency	by	arranging	necessary	columns	of	the	matrix	into	buckets	
where	each	bucket	is	processed	by	a	single	thread

§ Avoids	synchronization	by	row-wise	partitioning	of	the	matrix	on	the	fly
• Performance:	

– First	ever	work-efficient	algorithm	for	SpMSpV that	attains	up	to	15x	speedup	on	a	24-
core	Intel	Ivy	Bridge	processor	and	up	to	49x	speedup	on	a	64-core	KNL	processor

– Up	to	an	order	of	magnitude	faster	than	its	competitors,	especially	for	sparser	vector1 2 4 8 16 32
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The	Reverse	Cuthill-McKee	Algorithm	in	Distributed-Memory

• Goal: Find	a	permutation P	of	a	sparse	matrix
A	so	that	the	bandwidth	of	PAPT		is	small.

• Application: Faster	iterative	solvers,	e.g.,		
preconditioned	conjugate	gradients	(PCG).	

• Innovation	in	Parallel	RCM	Algorithm:
1. Step1: level-by-level	vertex	exploration	and	

ordering.	Approach:	specialized	breadth-first	
search	using	sparse	matrix-sparse	vector	
multiplication	(SpMSpV)	over	a	semiring

2. Step2:	Ordering	of	vertices	in	each	level		by	
(parents’	order,	degree)	pairs.	Approach:	
parallel	partial	sorting.

• Performance:	
– First	ever	distributed-memory	RCM	algorithm	

that	scales	up	to	4096	cores	on NERSC/Edison.	
– Attains	up	to	38x	speedup	on	1028	cores.
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Many	ways	of	ordering	a	matrix

Lim,	Kang,	and	Faloutsos,	TKDE’14	
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q In	this	talk,	we	consider	parallel	algorithms	for	
reordering sparse	matrices	

q Goal: Find	a	permutation	P	so	that	the	
bandwidth/profile	of	PAPT is	small.

Reordering	for	reducing	bandwidth	&	profile

Before	permutation	 After	permutation	



q Better	cache	reuse	in	SpMV [Karantasis et	al.	SC	‘14]
q Faster	iterative	solvers	such	as	preconditioned	
conjugate	gradients	(PCG).	

Why	reordering	a	matrix
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The	RCM	algorithm	

Start	vertex
(a	pseudo-peripheral vertex)

Cuthill-McKee	
order

1

Order	vertices	by	
increasing	degree

2 3

Order	vertices	by	
parents’	order

5 6

7 8

Order	vertices	by	
(parents’	order,	degree)

Reverse	the	order	of	vertices	to	obtain	the	RCM	ordering	

4



RCM:	Challenges	in	parallelization
(in	addition	to	parallelizing	BFS)

q Given	a	start	vertex,	the	algorithm	
gives	a	fixed	ordering	except	for	tie	
breaks. Not	parallelization	friendly.

q Unlike	traditional	BFS,	the	parent	of	
a	vertex	is	set	to	a	vertex	with	the	
minimum	label.	(i.e.,	bottom-up	BFS	
is	not	beneficial)

q Within	a	level,	vertices	are	labeled	
by	lexicographical	order	of	(parents’	
order,	degree)	pairs,	needs	sorting

a

e b

c f

gd

1

2 3

h
5 64

7 8



q We	use	specialized level-synchronous	BFS
q Key	differences	from	traditional	BFS	(Buluç and	Madduri,	SC	‘11)	

1. A	parent	with	smaller	label	is	preferred		over	another	vertex	
with	larger	label	

2. The	labels	of	parents	are	passed	to	their	children
3. Lexicographical	sorting	of	vertices	in	BFS	levels

q The	first	two	of	them	are	addressed	by	sparse	matrix-
sparse	vector	multiplication	(SpMSpV)	over	a	semiring

q The	third	challenge	is	addressed	by	a	lightweight	
sorting	function

Our	approach	to	address	parallelization	challenges



Exploring	the	next-level	vertices	via	SpMSpV
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Ordering	vertices	via	partial	sorting
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q Finding	a	pseudo	peripheral	vertex:	Repeated	
application	of	the	usual	BFS	(no	ordering	of	vertices	
within	a	level).

q This	is	actually	quite	expensive
– Choose	a	vertex u.
– Among	all	the	vertices	that	are	as	far	from u as	possible,	
let v be	one	with	minimal degree.

– If v	is	more	eccentric	than	u,	then	set u=v and	repeat	
previous	step,	else v is	a	pseudo-peripheral	vertex.

q Our	SpMSpV is	hybrid	OpenMP-MPI	implementation
– Multithreaded	SpMSpV is	also	fairly	complicated	and	subject	
to	the	second	half	of	this	talk	upcoming	slides

Other	aspects	of	the	algorithm



What	did	we	test	on?

Name
Spy Plot

Dimensions BW (pre-RCM)
Description Nonzeros BW (post-RCM)

Pseudo-diameter

nd24k 72K⇥72K 68,114
3D mesh 29M 10,294
problem 14

Ldoor 952K⇥952K 686,979
structural prob. 42.49M 9,259

178

Serena 1.39M⇥1.39M 81,578
gas reservoir 64.1M 81,218
simulation 58

audikw 1 943K⇥943K 925,946
structural prob 78M 35,170

82

dielFilterV3real 1.1M⇥1.1M 1,036,475
higher-order 89.3M 23,813
finite element 84

Flan 1565 1.6M⇥1.6M 20,702
3D model of 114M 20,600
a steel flange 199

Li7Nmax6 664K⇥664K 663,498
nuclear configuration 212M 490,000
interaction calculations 7

Nm7 4M⇥4M 4,073,382
nuclear configuration 437M 3,692,599
interaction calculations 5

nlpkkt240 78M⇥78M 14,169,841
Sym. indefinite 760M 361,755
KKT matrix 243

Fig. 3: Structural information on the sparse matrices used in our
experiments. All matrices, except two, are from the University of
Florida sparse matrix collection [21]. Li7Nmax6 and Nm7 [22]
are from nuclear configuration interaction calculations.

nodes are interconnected with the Cray Aries network using
a Dragonfly topology. Each compute node is equipped with
64 GB RAM and two 12-core 2.4 GHz Intel Ivy Bridge
processors, each with 30 MB L3 cache. We used Cray’s
MPI implementation, which is based on MPICH2. We used
OpenMP for intra-node multithreading and compiled the code
with gcc 5.2.0 with -O2 -fopenmp flags. In our experiments,
we only used square process grids because rectangular grids
are not supported in CombBLAS [17]. The skewness of the
processor grid in SpMSpV has been subject to previous work
in the context of breadth-first search [23] where the authors
found that square grids are close to optimal in practice (within
10% of the best configuration in most cases).

When p cores were allocated for an experiment, we created ap
p/t⇥

p
p/t process grid, where t was the number of threads

per process. In our hybrid OpenMP-MPI implementation,

TABLE II: The bandwidth and runtime of the shared-memory
RCM implementation in SpMP. SpMP did not finish in 30
minutes for Nm7. On Nm7 and nlpkkt240 matrices, our
distributed-memory implementation ran out of memory on a
single node of Edison.

Graphs SpMP Distributed RCM
BW Runtime (sec) Runtime (sec)

1t 6t 24t 1t 6t 24t

nd24k 10,608 0.26 0.06 0.03 1.45 0.38 0.12
ldoor 9,099 3.25 0.52 0.28 4.63 1.52 0.74
Serena 85,229 1.64 0.49 0.66 7.75 2.26 1.08
audikw 1 34,202 1.31 0.34 0.16 7.31 1.99 0.81
dielFilterV3real 25,436 1.99 0.73 0.46 8.63 2.37 0.95
Flan 1565 20,849 1.86 0.44 0.17 12.11 3.88 1.35
Li7Nmax6 443,991 4.62 1.48 0.87 20.28 4.91 2.85
Nm7 - - - - - - -
nlpkkt240 346,556 57.21 25.17 9.92 - - -

all MPI processes performed local computation followed by
synchronized communication rounds. Local computation in
every matrix-algebraic kernel was fully multithreaded using
OpenMP. Only one thread in every process made MPI calls in
the communication rounds.

B. Matrix Suite
The sparse matrix test suite used in our experiments are

shown in Figure 3. These matrices came from a set of real
applications, where either a sparse system Ax = b is solved
or an eigenvalue problem Ax = �x is solved. The matrices
were chosen to represent a variety of different structures and
nonzero densities. Since RCM is only well defined on sym-
metric matrices, all matrices are symmetric. In the last column
of Figure 3, the original (pre-RCM) as well as final (post-
RCM) bandwidth of the matrix are shown. In the majority of
the cases, RCM effectively reduces the bandwidth. Serena
and Flan_1565 seem to be the only two matrices where
RCM was ineffective in that regard. For Nm7 and nlpkkt240
matrices, our distributed-memory implementation ran out of
memory when executed on a single node of Edison because
of MPI buffers and other overheads. However, the amount of
memory available on that node is sufficient to hold the matrix
itself.

C. Shared-memory performance
Our implementation is fully multithreaded to take advantage

of the shared-memory parallelism available within a node of
modern supercomputers. Here, we compare the quality and
runtime of our algorithm with the RCM implementation in
SpMP (Sparse Matrix Pre-processing) by Park et al. [24],
which is based on optimization from [25] and on the algo-
rithm presented in [8]. The results from SpMP is shown in
Table II. For four out of eight matrices where SpMP was able
to compute RCM, the RCM ordering from our distributed-
memory algorithm (shown in Figure 3) yields smaller band-
widths than SpMP. SpMP is faster than our implementation
in shared-memory due to our distributed-memory paralleliza-
tion overheads. However, SpMP sometimes loses efficiency
across NUMA domains. For example, SpMP slows down for
Serena on 24 cores compared to 6 cores.
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are from nuclear configuration interaction calculations.

nodes are interconnected with the Cray Aries network using
a Dragonfly topology. Each compute node is equipped with
64 GB RAM and two 12-core 2.4 GHz Intel Ivy Bridge
processors, each with 30 MB L3 cache. We used Cray’s
MPI implementation, which is based on MPICH2. We used
OpenMP for intra-node multithreading and compiled the code
with gcc 5.2.0 with -O2 -fopenmp flags. In our experiments,
we only used square process grids because rectangular grids
are not supported in CombBLAS [17]. The skewness of the
processor grid in SpMSpV has been subject to previous work
in the context of breadth-first search [23] where the authors
found that square grids are close to optimal in practice (within
10% of the best configuration in most cases).

When p cores were allocated for an experiment, we created ap
p/t⇥

p
p/t process grid, where t was the number of threads

per process. In our hybrid OpenMP-MPI implementation,

TABLE II: The bandwidth and runtime of the shared-memory
RCM implementation in SpMP. SpMP did not finish in 30
minutes for Nm7. On Nm7 and nlpkkt240 matrices, our
distributed-memory implementation ran out of memory on a
single node of Edison.
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all MPI processes performed local computation followed by
synchronized communication rounds. Local computation in
every matrix-algebraic kernel was fully multithreaded using
OpenMP. Only one thread in every process made MPI calls in
the communication rounds.

B. Matrix Suite
The sparse matrix test suite used in our experiments are

shown in Figure 3. These matrices came from a set of real
applications, where either a sparse system Ax = b is solved
or an eigenvalue problem Ax = �x is solved. The matrices
were chosen to represent a variety of different structures and
nonzero densities. Since RCM is only well defined on sym-
metric matrices, all matrices are symmetric. In the last column
of Figure 3, the original (pre-RCM) as well as final (post-
RCM) bandwidth of the matrix are shown. In the majority of
the cases, RCM effectively reduces the bandwidth. Serena
and Flan_1565 seem to be the only two matrices where
RCM was ineffective in that regard. For Nm7 and nlpkkt240
matrices, our distributed-memory implementation ran out of
memory when executed on a single node of Edison because
of MPI buffers and other overheads. However, the amount of
memory available on that node is sufficient to hold the matrix
itself.

C. Shared-memory performance
Our implementation is fully multithreaded to take advantage

of the shared-memory parallelism available within a node of
modern supercomputers. Here, we compare the quality and
runtime of our algorithm with the RCM implementation in
SpMP (Sparse Matrix Pre-processing) by Park et al. [24],
which is based on optimization from [25] and on the algo-
rithm presented in [8]. The results from SpMP is shown in
Table II. For four out of eight matrices where SpMP was able
to compute RCM, the RCM ordering from our distributed-
memory algorithm (shown in Figure 3) yields smaller band-
widths than SpMP. SpMP is faster than our implementation
in shared-memory due to our distributed-memory paralleliza-
tion overheads. However, SpMP sometimes loses efficiency
across NUMA domains. For example, SpMP slows down for
Serena on 24 cores compared to 6 cores.

Structural	information	on	the	sparse	matrices	used	in	our	experiments.	All	
matrices,	except	two,	are	from	the	University	of	Florida	sparse	matrix	collection.	
Li7Nmax6	and	Nm7	[22]	are	from	nuclear	configuration	interaction	calculations.	



Results:	Scalability	on	NERSC/Edison
(6	threads	per	MPI	process)
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q We	managed	to	scaling	RCM	in	distributed	memory	
relatively	easily.

q The	community	should	pad	themselves	on	the	back
q Research	in	BFS	(e.g.	Graph500)	and	graph	primitives	

(GraphBLAS)	made	this	possible.
q Flashback	to	1995	[Barnard,	Pothen,	Simon]:

“The	spectral	envelope-reduction	algorithm	has	several	features	
which	set	it	apart	from	the	earlier	reordering	algorithms	such	as	
the	GPS,	GK,	or	RCM	algorithms.	These	algorithms	employ	local-
search	in	the	adjacency	graph	of	the	matrix.	All	of	them	try	to	
find	a	pseudo-diameter	in	the	graph	by	generating	a	long	level-
structure	by	breadth	first-search	beginning	from	a	suitable	
vertex.	These	types	of	algorithms	generally	do	not	vectorize,	
and	there	is	no	obvious	way	to	implement	them	in	parallel.”

Why	is	this	significant?
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Outline	of	the	talk

Part	1:	GraphBLAS and	Talk	Overview

Part	2:	Reverse	Cuthill-McKee	(RCM)	Graph	Ordering		
in	Distributed-Memory	using	GraphBLAS

Part	3:	Work-Efficient	Parallel	Sparse	Matrix-Sparse	
Vector	Multiplication	(SpMSpV)	in	Shared-Memory



A lower bound for SpMSpV
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SpMSpV via sparse accumulator (SPA)
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Shared-memory parallelization of SpMSpV (row split)

y

x
n / 2

Th
re
ad
	1

Th
re
ad
	2

Explicitly	split	local	submatrices into	t	(#threads)	pieces

Work	efficient? Synchronization	needed?
No : O(tf +	df )	total	work No

Used	in	
CombBLAS
(Buluc and	Gilbert,	
IJHPCA	2011)

n / 2



Shared-memory parallelization of SpMSpV (column split)
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q Multi-step	algorithm:	keep	good	features	of	both	row-split	
and	column-split	algorithms	(SpMSpV-bucket)

q Step1: Arrange	columns	in	buckets.	Each	bucket	stores	
consecutive	row	indices.	[similar	to	the	column-split	algorithm]	

A work-efficient and synchronization-avoiding 
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q Step2: Merge	each	bucket	independently	by	a	thread.	
[similar	to	the	row-split	algorithm]	

A work-efficient and synchronization-avoiding 
SpMSpV algorithm
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q Step3: concatenate	entries	to	the	result	vector

A work-efficient and synchronization-avoiding 
SpMSpV algorithm
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q Other	tricks	for	practical	performance
– Load	balancing:	multiple	buckets	per	thread
– Cache	efficiency:	small	thread-private	buffers	filled	up	first	
before	writing	to	buckets

SpMSpV-bucket algorithm

Work	efficient? Synchronization	needed?
Yes : O(df )	total	work
At	most	3df work	

No	(in each	step)
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SpMSpV when	used	in	BFS:	varying	sparsity of	the	input	vector
Up	to	4x	faster	than	the	second	best	algorithm	
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q Algorithmic	innovation:
– First-ever	work-efficient	SpMSpV algorithm
– Attains	work-efficiency	by	arranging	necessary	columns	of	
the	matrix	into	buckets

– Avoids	synchronization	by	processing	buckets	independently

q Impact:
– Up	to	an	order	of	magnitude	faster	than	state-of-the-art	
algorithms	when	the	input	vector	is	very	sparse

– Will	expedite	a	large	class	of	graph	and	machine	learning	
algorithms

Conclusions



Thanks	for	your	attention


