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The GraphBLAS Effort

Standards for Graph Algorithm Primitives

Tim Mattson (Intel Corporation), David Bader (Georgia Institute of Technology), Jon Berry (Sandia National
Laboratory), Aydin Buluc (Lawrence Berkeley National Laboratory), Jack Dongarra (University of Tennessee),
Christos Faloutsos (Carnegie Melon University), John Feo (Pacific Northwest National Laboratory), John Gilbert
(University of California at Santa Barbara), Joseph Gonzalez (University of California at Berkeley), Bruce
Hendrickson (Sandia National Laboratory), Jeremy Kepner (Massachusetts Institute of Technology), Charles
Leiserson (Massachusetts Institute of Technology), Andrew Lumsdaine (Indiana University), David Padua (University
of Illinois at Urbana-Champaign), Stephen Poole (Oak Ridge National Laboratory), Steve Reinhardt (Cray
Corporation), Mike Stonebraker (Massachusetts Institute of Technology), Steve Wallach (Convey Corporation),
Andrew Yoo (Lawrence Livermore National Laboratory)

Abstract-- It is our view that the state of the art in constructing a large collection of
graph algorithms in terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive building blocks. This paper is

a position paper defining the problem and announcing our intention to launch an
open effort to define this standard.

 The GraphBLAS Forum: htip://graphblas.org

« |EEE Workshop on Graph Algorithms Building Blocks (at IPDPS):
http://www.graphanalysis.org/workshop2017.html




Fast-forward in history

e The idea is older than this SIAM book:

* Several platforms implemented the ideas in
the paSt, SUCh as Sta F*P Graph :\‘Ivgbf:thms in the

Language of Linear Algebra

* Current list of active implementations (and
version 1.0 of the draft proposal) is
available at http://graphblas.org

A. Buluc, T. Mattson, S. McMillan, J. Moreira, C. Yang.
“Design of the GraphBLAS API for C”, GABB’17

Today, | will talk about a graph ordering algorithm (RCM) in
GraphBLAS and a work-efficient shared-memory algorithm for
sparse matrix-sparse vector (SpMSpV) operation in GraphBLAS



The GraphBLAS Stack

Traversal Based Centrality Graph Clustering Shortest Paths
connectivity, BFS, (PageRank, (Markov cluster, (all-pairs,
independent sets (MIS), betweenness, peer pressure, single-source,

graph matching, ordering closeness) spectral, local) temporal)
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GraphBLAS C API Spec (http://graphblas.org)

* Goal: A crucial piece of the GraphBLAS effort is to translate the mathematical
specification to an actual Application Programming Interface (API) that

i. is faithful to the mathematics as much as possible, and
ii. enables efficient implementations on modern hardware.

e Impact: All graph and machine learning algorithms that can be expressed in the
language of linear algebra
* Innovation: Function signatures (e.g. mxm, vxm, assign, extract), parallelism constructs

(blocking v. non-blocking), fundamental objects (masks, matrices, vectors, descriptors), a
hierarchy of algebras (functions, monoids, and semiring)

GrB _info GrB mxm(GrB Matrix *C, // destination
const GrB Matrix Mask,
const GrB_ BinaryOp accum,
const GrB_Semiring op, — AT T
const GrB Matrix A, C(_IM) o= A @.® B
const GrB Matrix B
[, const Descriptor desc]) ;

A. Bulug, T. Mattson, S. McMillan, J. Moreira, C. Yang. “Proposal for a GraphBLAS
C API” (Working document from the GraphBLAS Signatures Subgroup)




Parallel algorithms for sparse-matrix- sparse matrix
multiplication (SpGEMM)

Goal: More scalable Sp GEMM algorithms in shared and distributed-memory

Applications: Algebraic multigrid (AMG) restriction, graph computations, guantum
chemistry, data mining, interior-point optimization

Algorithmic innovations: (1) Novel shared-memory kernel for in-node parallelism, (2)
Split-3D-SpGEMM: an efficient implementation of communication-avoiding Sp GEMM

Performance: Split-3D-SpGEMM with new shared-memory kernel (red) beats old

nlpkkt160 x nlpkkt160 (on Edison)

state-of-the-art (blue) by 8X at large concurrencies
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A. Azad, G. Ballard, A. Bulug, J. Demmel, L. Grigori, O. Schwartz, S. Toledo, S. Williams. Exploiting multiple levels of
parallelism in sparse matrix-matrix multiplication. SIAM Journal of Scientific Computing (SISC), 2016.




An work-efficient parallel algorithm for
sparse matrix-sparse vector multiplication (SpMSpV)

Goal: A scalable SpMSpV algorithm without doing more work on higher concurrency
Application: Breadth-first search, graph matching, support vector machines, etc.
Algorithmic innovation:

= Attains work-efficiency by arranging necessary columns of the matrix into buckets
where each bucket is processed by a single thread

= Avoids synchronization by row-wise partitioning of the matrix on the fly
Performance:

— First ever work-efficient algorithm for SpMSpV that attains up to 15x speedup on a 24-
core Intel lvy Bridge processor and up to 49x speedup on a 64-core KNL processor

— Up to an order of magnitude faster than its competitors, especially for sparser vector
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A.Azad, A. Bulug. A work-efficient parallel sparse matrix-sparse vector
multiplication algorithm. IPDPS’17




The Reverse Cuthill-McKee Algorithm in Distributed-Memory

* Goal: Find a permutation P of a sparse matrix
A so that the bandwidth of PAPT is small.

* Application: Faster iterative solvers, e.g.,
preconditioned conjugate gradients (PCG).

* Innovation in Parallel RCM Algorithm:

1. Stepl: level-by-level vertex exploration and
ordering. Approach: specialized breadth-first
search using sparse matrix-sparse vector
multiplication (SpMSpV) over a semiring

2. Step2: Ordering of vertices in each level by
(parents’ order, degree) pairs. Approach:
parallel partial sorting.

* Performance:

— First ever distributed-memory RCM algorithm
that scales up to 4096 cores on NERSC/Edison.

— Attains up to 38x speedup on 1028 cores.

A.Azad, M. Jacquelin, A. Bulug, E.Ng. The Reverse Cuthill-McKee
Algorithm in Distributed-Memory. IPDPS’17
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Reordering for reducing bandwidth & profile

Q In this talk, we consider parallel algorithms for
reordering sparse matrices

Q Goal: Find a permutation P so that the
bandwidth/profile of PAPT is small.
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Why reordering a matrix

Q Better cache reuse in SpMV [Karantasis et al. SC ‘14]

Q Faster iterative solvers such as preconditioned
conjugate gradients (PCG).

Example: PCG implementation in PETSc
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The RCM algorithm

Cuthill-McKee 1

Start vertex

order /O\ (a pseudo-peripheral vertex)
2 3

O,

| N\s s
30

7/ \8
d O

Order vertices by
increasing degree

Order vertices by
(parents’ order, degree)

Order vertices by
parents’ order

Reverse the order of vertices to obtain the RCM ordering



RCM: Challenges in parallelization
(in addition to parallelizing BFS)

Q Given a start vertex, the algorithm
2 3 gives a fixed ordering except for tie

Q D breaks. Not parallelization friendly.
e b

," Q Unlike traditional BFS, the parent of
4 5 /'___5 _______ 7 avertexis set to a vertex with the
®‘: “’CD ,,' minimum label. (i.e., bottom-up BFS
: / is not beneficial)

~~~J /'
7 e
~ . . .
: ~~<. O Within a level, vertices are labeled

@ ) by lexicographical order of (parents’

order, degree) pairs, needs sorting




Our approach to address parallelization challenges

Q We use specialized level-synchronous BFS
Q Key differences from traditional BFS (Bulu¢ and Madduri, SC ‘11)

1. A parent with smaller label is preferred over another vertex
with larger label

2. The labels of parents are passed to their children
Lexicographical sorting of vertices in BFS levels

Q The first two of them are addressed by sparse matrix-
sparse vector multiplication (SpMSpV) over a semiring

Q The third challenge is addressed by a lightweight
sorting function



Exploring the next-level vertices via SpMSpV

Overload (multiply,add) with (select2nd, min)
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Adjacency matrix

We propagate the parent label information
to children during BFS (via semiring multiply)
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Ordering vertices via partial sorting

Current
frontier

Next
frontier

Sort degrees of the siblings
many instances of small sortings
(avoids expensive parallel sorting)

abcde fgh

| 2

3

2 | Parent’s label

| 4

2

1| My degree

Rules for ordering vertices

1. cand h are ordered before f
2. his ordered before c



Other aspects of the algorithm

a Finding a pseudo peripheral vertex: Repeated
application of the usual BFS (no ordering of vertices
within a level).

Q This is actually quite expensive
— Choose a vertex u.

— Among all the vertices that are as far from u as possible,
let v be one with minimal degree.

— If viis more eccentric than u, then set u=v and repeat
previous step, else v is a pseudo-peripheral vertex.

Q Our SpMSpV is hybrid OpenMP-MPI implementation

— Multithreaded SpMSpV is also fairly complicated and subject
to the second half of this talk upcoming slides



What did we test on?

Name Dimensions BW (pre-RCM) N
Description Spy Plot Nonzeros BW (post-RCM)| |dielFilterV3real ™ 1LIMx1.1M 1,036,475
Pseudo-diameter| |higher-order \ 89.3M 23,813
finite element \ 84
nd24k 72K x 72K 68,114 N
3D mesh 20M 10,294 Flan_1565 w 1.6Mx 1.6M 20,702
roblem 14 3D model of Eo 114M 20,600
p a steel flange - 199
Ldoor 952K x952K 686,979 Li7Nmax6 5{ 664Kx 664K 663,498
structural prob. 42.49M 9,259 nuclear configuration B 212M 490,000
178 interaction calculations | 7
S
Serena 1.39Mx1.39M 81,578 Nm7 e AM xAM 4.073.382
gas reservoir 64.1M 81,218 nuclear configuration 1‘ 437 3,692,599
simulation 58 interaction calculations 5
audikw_1 943K x 943K 925,946 nlpkkt240 \ 78M x78M 14,169,841
structural prob \ 78M 35,170 Sym. indefinite ‘ 760M 361,755
82 KKT matrix : 243

Structural information on the sparse matrices used in our experiments. All

matrices, except two, are from the University of Florida sparse matrix collection.
Li7ZNmax6 and Nm7 [22] are from nuclear configuration interaction calculations.




Results: Scalability on NERSC/Edison
(6 threads per MPI process)

#vertices: 1.1M H#edges: 89M
Bandwidth before: 1,036,475 after: 23,813
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Scalability on NERSC/Edison
(6 threads per MPI process)

#vertices: 78M H#edges: 760M
Bandwidth before: 14,169,841 after: 361,755
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Why is this significant?

Q We managed to scaling RCM in distributed memory
relatively easily.

A The community should pad themselves on the back

O Research in BFS (e.g. Graph500) and graph primitives
(GraphBLAS) made this possible.

Q Flashback to 1995 [Barnard, Pothen, Simon]:

“The spectral envelope-reduction algorithm has several features
which set it apart from the earlier reordering algorithms such as
the GPS, GK, or RCM algorithms. These algorithms employ local-
search in the adjacency graph of the matrix. All of them try to
find a pseudo-diameter in the graph by generating a long level-
structure by breadth first-search beginning from a suitable
vertex. These types of algorithms generally do not vectorize,
and there is no obvious way to implement them in parallel.”
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A lower bound for SpMSpV

v s :nnz(x)=f
® I o
o o O O
o ®
s o O o X
O o0 O
O
® o|o|e
A (nxn)

Average nnz in each columnof A=d

Considering Erdos-Renyi graph G(n, d/n)
Lower bound of SpMSpV: df (no matrix/vector dimension)



SpMSpV wvia sparse accumulator (SPA)

gather

e CI X
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° ° Can be done in
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L BN |
® attains lower
ojeje bound
A

scatter/
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SPA

We parallelize
this algorithm



Shared-memory parallelization of SpMSpV (row split)

o oo
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o 5 o o °
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t t ¢t (Buluc and Gilbert,
y ©¢ oo IJHPCA 2011)

Explicitly split local submatrices into t (#threads) pieces

Work efficient?

Synchronization needed?

No : O(tf + df ) total work

No




Shared-memory parallelization of SpMSpV (column split)

Thread 11 Thread 2
\ Yi1 Yoo O io O X
o o [o ool ol
O o ol o
merge
— O O
= o |o
O O ole
.I
° o olo|e
Space complexity : i A
O(n) storage per thread |
Work efficient? Synchronization needed?

Yes : O(df ) total work Yes (in merging)




A work-efficient and synchronization-avoiding
SpMSpV algorithm using buckets

Q Multi-step algorithm: keep good features of both row-split
and column-split algorithms (SpMSpV-bucket)

Q Stepl: Arrange columns in buckets. Each bucket stores
consecutive row indices. [similar to the column-split algorithm]
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A work-efficient and synchronization-avoiding
SpMSpV algorithm

Q Step2: Merge each bucket independently by a thread.
[similar to the row-split algorithm]

(0,5'), (0,e’) |B1
(3,f),(2,p') | B2
(S,g'), (4Iq')l (4,t') B3 Step 2
(merging
(6,h") B4 \iasPa)
Buckets
submatrix

Complexity: O(df)
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A work-efficient and synchronization-avoiding
SpMSpV algorithm

Q Step3: concatenate entries to the result vector

Complexity: O(nnz(y))
Smaller than O(df)

S e (1) 0 0 "é (0,s’+e’)
(V]
’ = | (2,p)
""" T T T -
5,4 4,5
g |5 ’ , Step 3 ~ (5.¢')
h |6 (concatenate) g s
7 6 6 £ (6,h")
-
Unique sorted
SPA" indices indices

ofy of y
(optional)



SpMSp V-bucket algorithm

Work efficient? Synchronization needed?

Yes : O(df ) total work No (in each step)
At most 3df work

Q Other tricks for practical performance
— Load balancing: multiple buckets per thread

— Cache efficiency: small thread-private buffers filled up first
before writing to buckets



Relative performance of SpMSpV algorithms

Graph: ljournal-2008 Vertices: 5M, Edges: 78M

(b) 12 threads on Edison
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256 . CombBLAS-heap XGraphMat ......................................... ...... R
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fffff
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An order of magnitude faster for very sparse vectors



Strong scaling of SpMSpV algorithms on Edison

— e ————

SpMSpV when used in BFS: varying sparsity of the input vector
Up to 4x faster than the second best algorithm
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Conclusions

a Algorithmic innovation:
— First-ever work-efficient SpMSpV algorithm

— Attains work-efficiency by arranging necessary columns of
the matrix into buckets

— Avoids synchronization by processing buckets independently

a Impact:

— Up to an order of magnitude faster than state-of-the-art
algorithms when the input vector is very sparse

— Will expedite a large class of graph and machine learning
algorithms



Thanks for your attention




