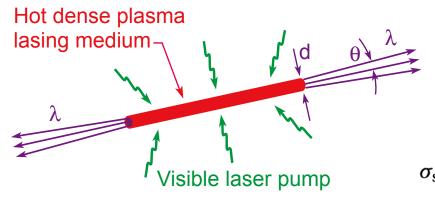


Chapter 7

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS



$$\frac{I}{I_0} = e^{GL} \tag{7.2}$$

$$G = n_u \sigma_{\text{stim}} F \tag{7.4}$$

$$\sigma_{\text{stim}} = \frac{\pi \lambda r_e}{(\Delta \lambda / \lambda)} \left(\frac{g_l}{g_u}\right) f_{lu} \qquad (7.18)$$

$$\frac{P}{A} = \frac{16\pi^2 c^2 \hbar (\Delta \lambda / \lambda) GL}{\lambda^4}$$
 (7.22)

Exponential Gain from Stimulated Emission

$$\frac{I}{I_0} = e^{GL} \tag{7.2}$$

where G is the gain per unit length and L is the propagation distance in the lasing media.

$$G = n_u \sigma_{\text{stim}} - n_l \sigma_{\text{abs}} \tag{7.3}$$

or

$$G \equiv n_u \sigma_{\text{stim}} F \tag{7.4}$$

where the density inversion factor is

$$F \equiv 1 - \frac{n_l \sigma_{\text{abs}}}{n_u \sigma_{\text{stim}}} = 1 - \frac{n_l g_u}{n_u g_l}$$
 (7.5)

where g_u and g_ℓ are degeneracies (same energy, different quantum numbers) associated with the upper and lower states.

Transition Rates: Einstein A and B Coefficients

In equilibrium the number of transitions up equals the number down. On a per unit time and per unit volume basis

$$n_u A_{ul} + n_u B_{ul} U_{\Delta \omega} = n_l B_{lu} U_{\Delta \omega}$$
 (7.6)
spontaneous stimulated absorption
emission emission (up)
(down)

where n_u and n_ℓ are the densities of ions in the upper and lower states, $A_{u\ell}$ is the spontaneous decay rate (inverse of natural life time), $B_{u\ell}$ is the stimulated transition rate from u to ℓ , $B_{\ell u}$ is the absorption transition rate, and $U_{\Delta \omega}$ is the spectral energy density, in units of energy per unit volume per unit frequency interval.

Transition Rates: Einstein A and B Coefficients (continued)

In equilibrium

$$U_{\Delta\omega} = \frac{\hbar\omega^3}{\pi^2 c^3 (e^{\hbar\omega/\kappa T} - 1)} \tag{7.7}$$

with equal density of states $(g_{\ell} = g_u)$

$$\frac{n_l}{n_u} = e^{(E_u - E_l)/\kappa T} = e^{\hbar \omega/\kappa T} \tag{7.8}$$

The (transition) rate equation (7.6) can be written as

$$A_{u\ell} + B_{u\ell}U_{\Delta\omega} = \frac{n_{\ell}}{n_u}B_{u\ell}U_{\Delta\omega}$$

where $B_{u\ell} = B_{\ell u}$.

$$A_{u\ell} = B_{u\ell} \left[\frac{n_\ell}{n_u} - 1 \right] U_{\Delta\omega}$$

Transition Rates: Einstein A and B Coefficients (continued further)

$$\frac{A_{u\ell}}{B_{u\ell}} = \left[\frac{n_{\ell}}{n_{u}} - 1\right] U_{\Delta\omega}$$

Substituting for n_{ℓ}/n_u from eq.(7.8) and $U_{\Delta\omega}$ from eq.(7.7)

$$\frac{A_{ul}}{B_{ul}} = (e^{\hbar\omega/\kappa T} - 1) \left[\frac{\hbar\omega^3}{\pi^2 c^3 (e^{\hbar\omega/\kappa T} - 1)} \right]$$

or

$$\frac{A_{ul}}{B_{ul}} = \frac{\hbar \omega^3}{\pi^2 c^3}$$
 (7.9) (near equilibium)

Radiated Power and Intensity

If stimulated emission dominates spontaneous emission, the radiated power is

$$\frac{\Delta E}{\Delta t} = \begin{bmatrix} n_u B_{ul} U_{\Delta \omega} - n_l B_{lu} U_{\Delta \omega} \end{bmatrix} \hbar \omega \cdot \Delta A \cdot \Delta L \qquad (7.10)$$
Radiated # Transitions # Transitions Photon Unit from u to ℓ , from ℓ to u , energy volume per unit vol., per sec. per time

$$\frac{\Delta E}{\Delta t} = P = \Delta I \cdot \Delta A$$

$$\Delta I = n_u F B_{ul} U_{\Delta \omega} \hbar \omega \cdot \Delta L \qquad (7.11)$$

 $I + \Delta I$

Radiated Power and Intensity (continued)

$$\Delta I = n_u F B_{ul} U_{\Delta \omega} \hbar \omega \cdot \Delta L \qquad (7.11)$$

In terms of the radiation energy density $U_{\Delta\omega}$

$$I = U_{\Delta\omega} \cdot \Delta\omega \cdot c$$

then

$$\frac{\Delta I}{I} = \frac{n_u F B_{ul} \hbar \omega \cdot \Delta L}{(\Delta \omega)c} \tag{7.13}$$

Using the relationship between A and B coefficients

$$\frac{A_{ul}}{B_{ul}} = \frac{\hbar\omega^3}{\pi^2 c^3} \tag{7.9}$$

$$\frac{\Delta I}{I} = \frac{\pi^2 c^2 n_u F A_{ul} \cdot \Delta L}{(\Delta \omega) \omega^2}$$
 (7.14a)

Radiated Power and Intensity (continued further)

$$\frac{\Delta I}{I} = \frac{\pi^2 c^2 n_u F A_{ul} \cdot \Delta L}{(\Delta \omega) \omega^2}$$
 (7.14a)

Noting that $(\Delta\omega)\omega^2 = (\Delta\omega/\omega)\omega^3 = (\Delta\lambda/\lambda)(2\pi)^3c^3/\lambda^3$

$$\frac{\Delta I}{I} = \frac{\lambda^3 n_u F A_{ul} \cdot \Delta L}{8\pi c (\Delta \lambda / \lambda)}$$
 (7.14b)

Integrating from $\Delta L = 0$ to L

$$\frac{I}{I_0} = e^{GL} \quad ; \quad G = \frac{\lambda^3 n_u F A_{ul}}{8\pi c(\Delta \lambda/\lambda)} \tag{7.15}$$

Stimulated Emission Cross-Section

$$\frac{I}{I_0} = e^{GL} \quad ; \quad G = \frac{\lambda^3 n_u F A_{ul}}{8\pi c (\Delta \lambda/\lambda)} \tag{7.15}$$

Recalling our earlier definition that

$$G \equiv n_u \sigma_{\text{stim}} F \tag{7.4}$$

We identify the cross-section as

$$\sigma_{\text{stim}} = \frac{\lambda^3 A_{ul}}{8\pi c(\Delta \lambda/\lambda)} \tag{7.16}$$

The Einstein A coefficient is the inverse lifetime for a transition between two states, $A_{u\ell} = 1/\tau$, and can be calulated using quantum mechanics (Silfvast, Corney), to be

$$A_{ul} = \frac{e^2 \omega^2}{2\pi \epsilon_0 m c^3} \left(\frac{g_l}{g_u}\right) f_{lu} \tag{7.17}$$

So that the cross-section for stimulated emission is

$$\sigma_{\text{stim}} = \frac{\pi \lambda r_e}{\Delta \lambda / \lambda} \left(\frac{g_l}{g_u} \right) f_{lu}$$
 (7.18)

where $f_{\ell u}$ is the oscillator strength of the transition and r_e is the classical radius. Now need $\Delta \lambda / \lambda$.

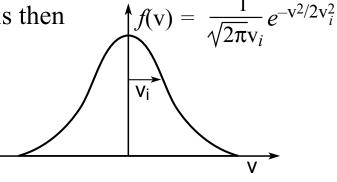
Doppler Broadened Line Width

For EUV and soft x-ray lasing, created in a hot plasma, the line width is typically dominated by Doppler broadening, rather than by natural lifetime. For a Maxwellian velocity distribution the full rms line width is then

$$\frac{(\Delta \lambda)}{\lambda} \bigg|_{\text{rms}} = \frac{2 v_i}{c}$$

or expressed as a FWHM quantity, is

$$\frac{(\Delta \lambda)}{\lambda} \bigg|_{\text{FWHM}} = \frac{2\sqrt{2 \ln 2}}{c} \sqrt{\frac{\kappa T_i}{M}}$$



where $v_i = \sqrt{\kappa T_i/M}$ is the rms ion velocity, κT_i is the ion temperature, and M is the ion mass. Taking $M \simeq 2m_p Z$ and κT_i in eV

$$\frac{(\Delta \lambda)}{\lambda} \bigg|_{\text{FWHM}} = 7.69 \times 10^{-5} \left(\frac{\kappa T_i}{2Z}\right)^{1/2} \tag{7.19b}$$

or about 10^{-4} for argon ions at a temperature of about 60 eV.

Wavelength Scaling of EUV and Soft X-Ray Lasers

To maintain an inverted population density requires delivery of a power

$$P = \frac{\hbar \omega n_u FV}{\tau} \tag{7.21}$$

With $\tau = 1/A_{u\ell}$

$$\frac{P}{V} = \hbar \omega n_u F A_{u\ell}$$

From the gain expression (7.15)

$$G = \frac{\lambda^3 n_u F A_{u\ell}}{8\pi c (\Delta \lambda/\lambda)} \implies n_u F A_{u\ell} = 8\pi c (\Delta \lambda/\lambda) G/\lambda^3$$

the required power per unit volume is

$$\frac{P}{V} = \frac{16\pi^2 c^2 \hbar (\Delta \lambda / \lambda) G}{\lambda^4}$$

With V = AL, the resultant lasing intensity would be

$$I = \frac{P}{A} = \frac{16\pi^2 c^2 \hbar (\Delta \lambda / \lambda) GL}{\lambda^4}$$
 (7.22)

Thus both required power per unit volume and potential lasing intensity scale as $1/\lambda^4$.

Lasing intensity scales as $1/\lambda^4$.

High $\kappa T_e \propto 1/\lambda$

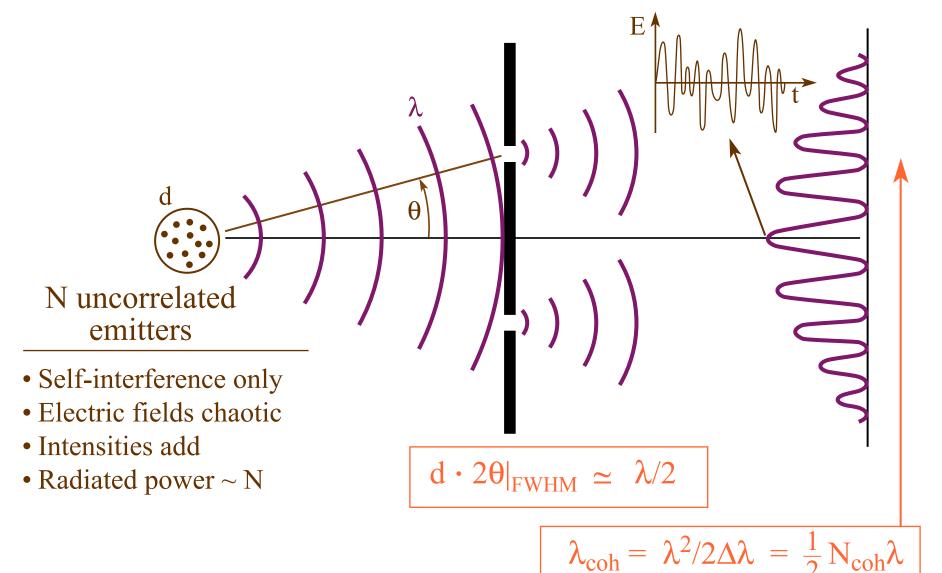
Cross-section $\propto 1/\lambda$

Plasma lifetime $\propto 1/\lambda^2$

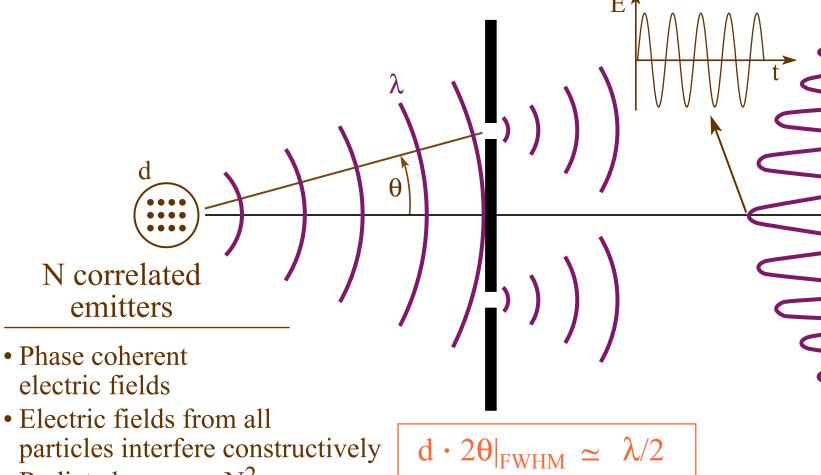
Line width $\propto 1/\lambda^{1/2}$

Seeded EUV Lasers

Young's Double Slit Experiment with Random Emitters: Young did not have a laser



Young's Double Slit Experiment with Phase Coherent Emitters (some lasers, or properly seeded FELs)

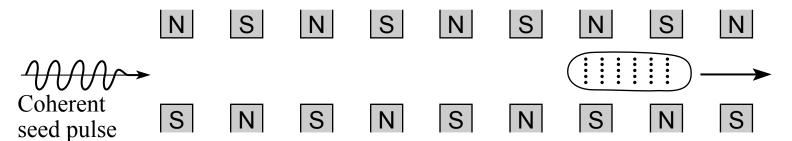


- Radiated power $\sim N^2$
- New phase sensitive probing of matter possible

$$\lambda_{\rm coh} = \lambda^2/2\Delta\lambda = \frac{1}{2} N_{\rm coh}\lambda$$

Undulators and FELs

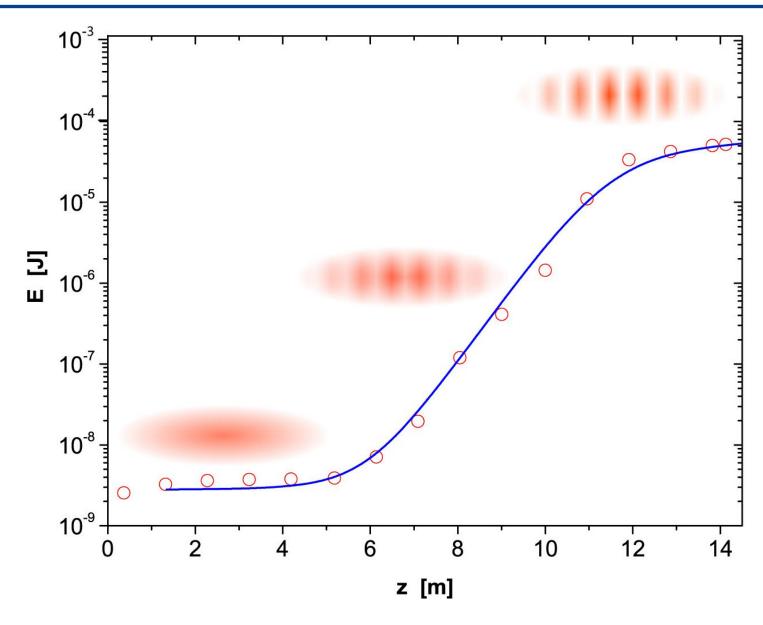
<u>Undulator</u> – uncorrelated electron positions, radiated fields uncorrelated, intensities add, limited coherence, power ~ N.



Free Electron Laser (FEL) – very long undulator, electrons are "microbunched" by their own radiated fields into strongly correlated waves of electrons, all radiated electric fields now add, spatially coherent, power ~ N²

$$\frac{d\mathbf{p}}{dt} = -e(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

Gain and Saturation in an FEL

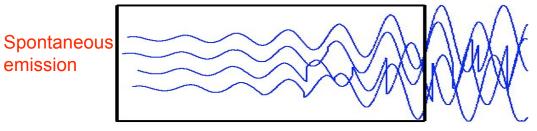


Courtesy of K-J. Kim

Lasers seeded by spontaneous emission have poor temporal coherence

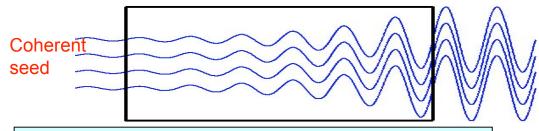
Self-seeded

EUV Amplifier



Injection-seeded

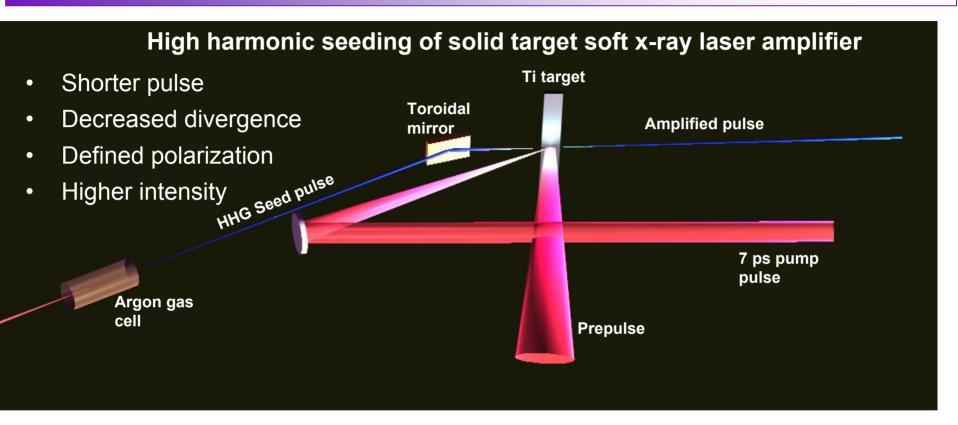
EUV Amplifier



Seed pulses can be greatly amplified preserving or even improving their properties

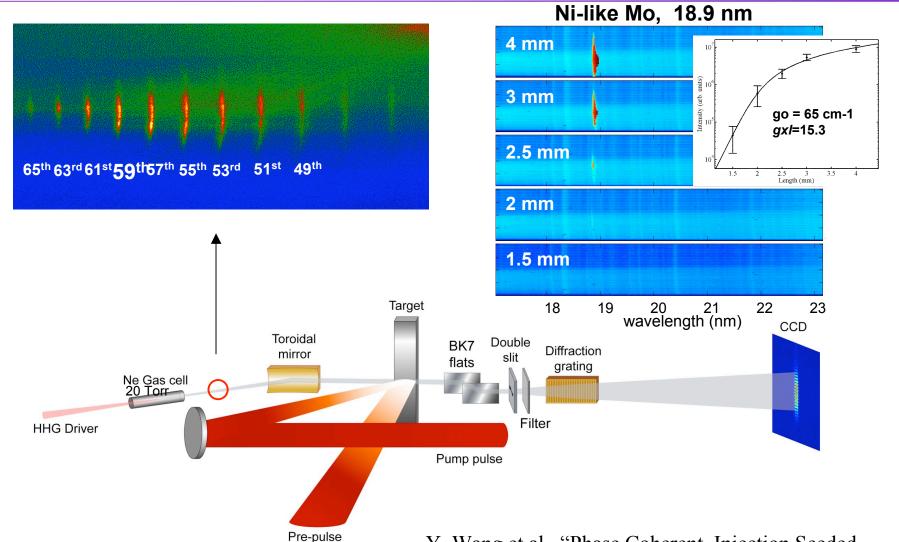
Courtesy of Jorge Rocca, CSU

Seeding with high harmonic pulse can greatly increase spatial coherence and beam brightness



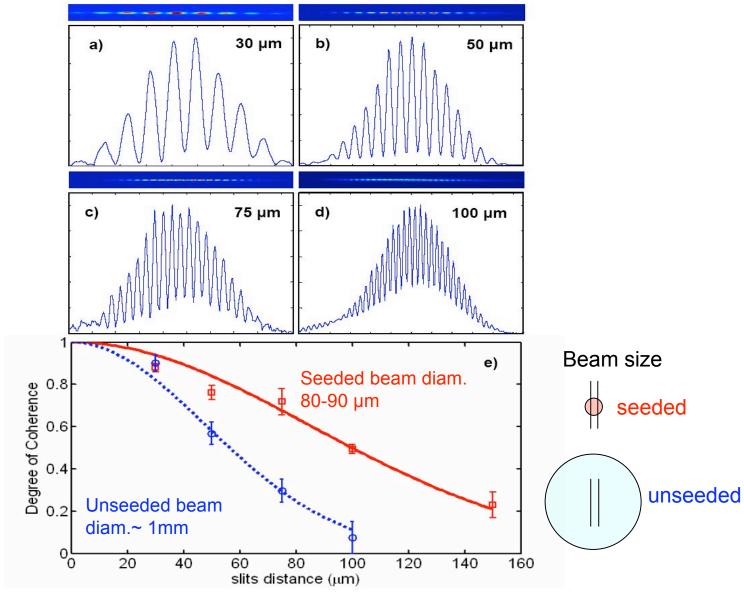
- **Proof of principle experiment**: T. Ditmire et al. Phys. Rev. A. 51, R 4337, (1995): Amplification of HHG by \sim 3 X in the λ = 25.1 nm line of a Gallium laser amplifier
- **HHG seeding of OFI amplifier:** P. Zeitoun, G. Faivre, S. Sebban, T. Mocek *et al*, Nature ,**431**, 426, (2004).

Injection-seeded λ =10-20 nm lasers



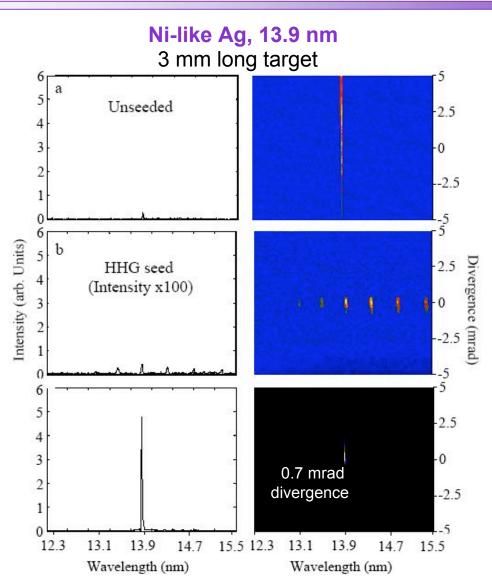
Y. Wang et al., "Phase Coherent, Injection Seeded, Table-top Soft X-ray Lasers at 18.9 nm and 13.9 nm", *Nature Photonics* **2**, 94 (2008).

Essentially fully coherent output Ni-like Mo 18.9 nm



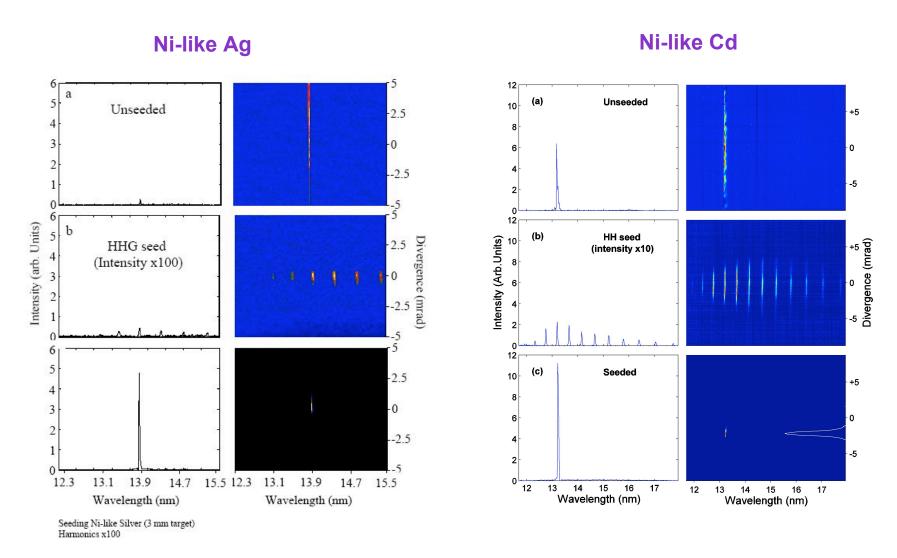
Courtesy of Jorge Rocca, CSU

Injection seeded Ni-like Ag at 13.9 nm



Seeding Ni-like Silver (3 mm target) Harmonics x100

Phase coherent Ni-like Ag and Ni-like Cd lasers at 13.9 nm and 13.2 nm

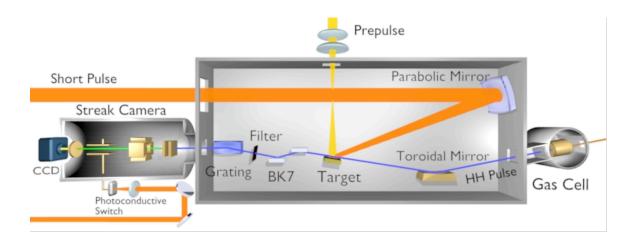


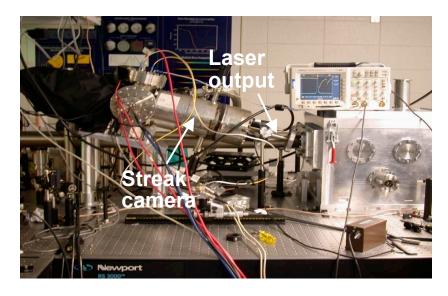
Y. Wang et al. Nature Photonics, 2, 94, (2008)

F. Pedaci et al. Optics Lett., 33, 491, (2008)

Streak camera* measurement of injectionseeded laser pulsewidth

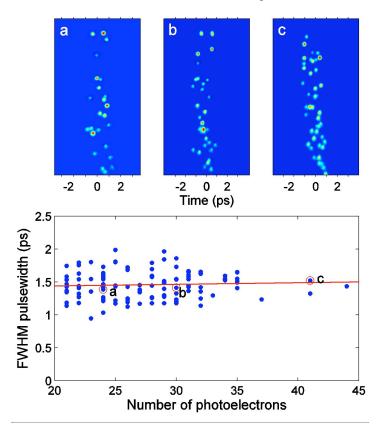
* Collaboration with Zenghu Chang et al. Kansas State University



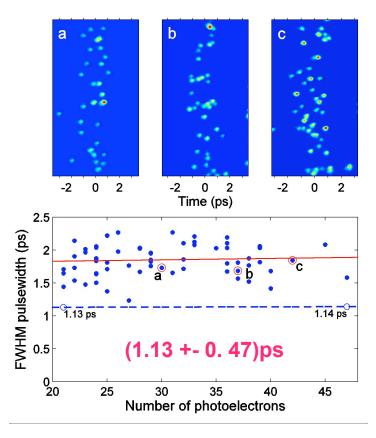


Measurement of 1 ps soft x-ray laser pulses

Determination of Streak camera resolution with HH pulses



Seeded Ne-likeTi laser pulsewidth measurement



Y. Wang et. al. Phys. Rev. A. **79**, 023810, (2009).