Beam Parameters, Spectral Brightness, Harmonics and Wiggler Radiation

David Attwood

University of California, Berkeley

(http://www.coe.berkeley.edu/AST/srms)
Finite Electron Beam Size and Divergence Affect Undulator Radiation

Preserving the spectral line shape of undulator radiation requires

\[\sigma'^2 \ll \theta_{cen}^2 \] \hspace{1cm} (5.55b)

Define effective, or total central cone half-angles

\[\theta_{Tx} = \sqrt{\theta_{cen}^2 + \sigma_x'^2} \quad \text{and} \quad \theta_{Ty} = \sqrt{\theta_{cen}^2 + \sigma_y'^2} \] \hspace{1cm} (5.56)
Brightness is defined as radiated power per unit area and per unit solid angle at the source:

$$B = \frac{\Delta P}{\Delta A \cdot \Delta \Omega} \quad (5.57)$$

Brightness is a conserved quantity in perfect optical systems, and thus is useful in designing beamlines and synchrotron radiation experiments which involve focusing to small areas.

Perfect optical system:

$$\Delta A_s \cdot \Delta \Omega_s = \Delta A_i \cdot \Delta \Omega_i; \quad \eta = 100\%$$

Spectral brightness is that portion of the brightness lying within a relative spectral bandwidth $\Delta \omega/\omega$:

$$B_{\Delta \omega/\omega} = \frac{\Delta P}{\Delta A \cdot \Delta \Omega \cdot \Delta \omega/\omega} \quad (5.58)$$
The Synchrotron radiation community prefers to express spectral brightness in units of photons/sec, rather than power, and has standardized on a relative spectral bandwidth of $\Delta \omega / \omega = 10^{-3}$, or 0.1% BW. To obtain a relationship for spectral brightness of undulator radiation we can use our expression for \bar{P}_{cen}, radiated into a solid angle $\Delta \Omega = \pi \theta_{\text{cen}}^2 = \pi \theta_T x \theta_T y$, from an elliptically shaped source area of $\Delta A = \pi \sigma_x \sigma_y$, and within a relative spectral bandwidth $\Delta \omega / \omega = 1/N$. Defining the photon flux in the central radiation cone as

$$\bar{F}_{\text{cen}} = \frac{\bar{P}_{\text{cen}}}{h \omega / \text{photon}}$$

(5.59)

and the spectral brightness

$$\bar{B}_{\Delta \omega / \omega} = \frac{\bar{F}_{\text{cen}}}{\Delta A \cdot \Delta \Omega \cdot N^{-1}} = \frac{\bar{F}_{\text{cen}} \cdot (N/1000)}{\Delta A \cdot \Delta \Omega \cdot (0.1\% \text{ BW})}$$

(5.60)

on-axis

$$\bar{B}_{\Delta \omega / \omega}(0) = \frac{\bar{F}_{\text{cen}} \cdot (N/1000)}{2\pi^2 \sigma_x \sigma_y \theta_T x \theta_T y (0.1\% \text{ BW})}$$

(5.64)

or

$$\bar{B}_{\Delta \omega / \omega}(0) = \frac{7.25 \times 10^6 y^2 N^2 I(A)}{\sigma_x (\text{mm}) \sigma_y (\text{mm}) \left(1 + \frac{\sigma_x'}{\theta_{\text{cen}}^2} \right)^{1/2} \left(1 + \frac{\sigma_y'}{\theta_{\text{cen}}^2} \right)^{1/2}} \cdot \frac{K^2 f(K)}{\left(1 + K^2/2 \right)^2} \frac{\text{photons/s}}{\text{mm}^2 \text{mrad}^2 (0.1\% \text{ BW})}$$

(5.65)

Assumes $\sigma^2 << \theta_{\text{cen}}^2$. Note the N^2 factor.
Spectral Brightness is Useful for Experiments that Involve Spatially Resolved Studies

- Brightness is conserved (in lossless optical systems)

\[d_{\text{source}} \cdot \theta_{\text{source}} = d_{\text{focus}} \cdot \theta_{\text{optic}} \]

- Starting with many photons in a small source area and solid angle, permits high photon flux in an even smaller area
Comments on Undulator Harmonics

First and second harmonic motions

Radiation patterns in the electron and laboratory frames

\[\lambda_n = \frac{\lambda_u}{2\gamma^2 n} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right) \] (5.30)

\[\left(\frac{\Delta \lambda}{\lambda} \right)_n = \frac{1}{nN} \] (5.31)
Recall that the axial velocity has a double frequency component

\[v_z = c \left[1 - \frac{1 + K^2/2}{2\gamma^2} + \frac{K^2}{4\gamma^2} \cos(2k_u z) \right] \]

which in the frame of reference moving with the electrons, gives

\[z'(t') \simeq \frac{K^2}{8k_u'} \sin 2\omega'_u t' \]

(5.70)

where \(k_u' = \gamma^*k_u \) and \(\omega'_u = \gamma^*\omega_u \). The transverse motion in this frame is

\[x'(t') \simeq -\frac{K}{k_u'\gamma^*} \cos \omega_u \gamma^* \left(t' + \frac{z'}{c} \right) \]

To a higher degree of accuracy, we now keep the \(z'/c \) term

\[x'(t') \simeq -\frac{K}{k_u'} \cos \left(\omega'_u t' + \frac{K^2}{8} \sin 2\omega'_u t'\right) \]

(5.71)

for small \(K \)

\[x'(t') \simeq -\frac{1}{k_u'} \left[K \cos \omega'_u t' + \frac{K^3}{16} \cos 3\omega'_u t' \right] \]

(5.72)

Taking second derivatives to find acceleration, and squaring \(|a'(t')|^2 \)

\[\frac{dP'}{d\Omega'} \propto n^4 K^{2n} \]

Thus harmonics grow very rapidly for \(K > 1 \).
The Transition from Undulator Radiation ($K \leq 1$) to Wiggler Radiation ($K >> 1$)

- **Undulator Radiation ($K \leq 1$)**
 - Narrow spectral lines
 - High spectral brightness
 - Partial coherence

 $\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2\right)$

- **Wiggler Radiation ($K >> 1$)**
 - Higher photon energies
 - Spectral continuum
 - Higher photon flux (2N)

 $\hbar\omega_c = \frac{3}{2} \frac{\hbar\gamma^2 eB_o}{m}$

 $n_c = \frac{3K}{4} \left(1 + \frac{K^2}{2}\right)$

(Courtesy of K.-J. Kim)
For Very Large $K \gg 1$, and Large Dq, a Continuum Emerges

\[\frac{dP}{d\Omega} \]

Frequency (f)

\[f_1, f_3, \ldots, f_n, f_n + 2 \]

$\alpha \neq 0$ (finite σ')

finite $\Delta \theta$

Central radiation cone ($1/\gamma \sqrt{N}$)

Even harmonics appear for large k.

Professor David Atwood
Univ. California, Berkeley

Beam Parameters, Spectral Brightness, Harmonics and Wiggler Radiation, EE290F, 20 Feb 2007
At very high $K \gg 1$, the radiated energy appears in very high harmonics, and at rather large horizontal angles $\theta \approx \pm K/\gamma$ (eq. 5.21). Because the emission angles are large, one tends to use larger collection angles, which tends to spectrally merge nearby harmonics. The result is a continuum at very high photon energies, similar to that of bending magnet radiation, but increased by $2N$ (the number of magnet pole pieces).

\[
E_c = \hbar \omega_c = \frac{3e \hbar B \gamma^2}{2m} ; \quad n_c = \frac{3K}{4} \left(1 + \frac{K^2}{2}\right)
\]

(5.7a & 82)

\[
\frac{d^2 F}{d\theta d\psi d\omega/\omega} \bigg|_0 = 2.65 \times 10^{13} N E_e^2(\text{GeV}) I(A) H_2(E/E_c) \frac{\text{photons/s}}{\text{mrad}^2(0.1\%\text{BW})}
\]

(5.86)

\[
\frac{d^2 F}{d\theta d\omega/\omega} = 4.92 \times 10^{13} N E_e(\text{GeV}) I(A) G_1(E/E_c) \frac{\text{photons/s}}{\text{mrad} \cdot (0.1\%\text{BW})}
\]

(5.87)
Stanford Permanent Magnet Wiggler

LBNL/EXXON/SSRL (1982), SSRL Beamline VI
55 pole (N = 27.5), $\lambda_w = 7$ cm
Typical Parameters for Synchrotron Radiation

<table>
<thead>
<tr>
<th>Facility</th>
<th>ALS</th>
<th>ELETTRA</th>
<th>Australian Synchrotron</th>
<th>APS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron energy</td>
<td>1.90 GeV</td>
<td>2.0 GeV</td>
<td>3.0 GeV</td>
<td>7.00 GeV</td>
</tr>
<tr>
<td>γ</td>
<td>3720</td>
<td>3910</td>
<td>5871</td>
<td>13,700</td>
</tr>
<tr>
<td>Current (mA)</td>
<td>400</td>
<td>300</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>Circumference (m)</td>
<td>197</td>
<td>259</td>
<td>216</td>
<td>1100</td>
</tr>
<tr>
<td>RF frequency (MHz)</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>352</td>
</tr>
<tr>
<td>Pulse duration (FWHM) (ps)</td>
<td>35-70</td>
<td>37</td>
<td>~100</td>
<td>100</td>
</tr>
</tbody>
</table>

Bending Magnet Radiation:

<table>
<thead>
<tr>
<th></th>
<th>ALS</th>
<th>ELETTRA</th>
<th>Australian Synchrotron</th>
<th>APS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bending magnet field (T)</td>
<td>1.27</td>
<td>1.2</td>
<td>1.31</td>
<td>0.599</td>
</tr>
<tr>
<td>Critical photon energy (keV)</td>
<td>3.05</td>
<td>3.2</td>
<td>7.84</td>
<td>19.5</td>
</tr>
<tr>
<td>Critical photon wavelength</td>
<td>0.407 nm</td>
<td>0.39 nm</td>
<td>1.58 Å</td>
<td>0.636 Å</td>
</tr>
<tr>
<td>Bending magnet sources</td>
<td>24</td>
<td>12</td>
<td>28</td>
<td>35</td>
</tr>
</tbody>
</table>

Undulator Radiation:

<table>
<thead>
<tr>
<th></th>
<th>ALS</th>
<th>ELETTRA</th>
<th>Australian Synchrotron</th>
<th>APS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of straight sections</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>40</td>
</tr>
<tr>
<td>Undulator period (typical) (cm)</td>
<td>5.00</td>
<td>5.6</td>
<td>22.0</td>
<td>3.30</td>
</tr>
<tr>
<td>Number of periods</td>
<td>89</td>
<td>81</td>
<td>80</td>
<td>72</td>
</tr>
<tr>
<td>Photon energy ($K = 1, n = 1$)</td>
<td>457 eV</td>
<td>452 eV</td>
<td>2.59 keV</td>
<td>9.40 keV</td>
</tr>
<tr>
<td>Photon wavelength ($K = 1, n = 1$)</td>
<td>2.71 nm</td>
<td>2.74 nm</td>
<td>0.478 nm</td>
<td>1.32 Å</td>
</tr>
<tr>
<td>Tuning range ($n = 1$)</td>
<td>230-620 eV</td>
<td>2.0-6.7 nm</td>
<td>0.319-0.835 nm</td>
<td>3.5-12 keV</td>
</tr>
<tr>
<td>Tuning range ($n = 3$)</td>
<td>690-1800 eV</td>
<td>0.68-2.2 nm</td>
<td>0.106-0.278 nm</td>
<td>10-38 keV</td>
</tr>
<tr>
<td>Central cone half-angle ($K = 1$)</td>
<td>35 μrad</td>
<td>35 μrad</td>
<td>23 μrad</td>
<td>11 μrad</td>
</tr>
<tr>
<td>Power in central cone ($K = 1, n = 1$) (W)</td>
<td>2.3</td>
<td>1.7</td>
<td>6.6</td>
<td>12</td>
</tr>
<tr>
<td>Flux in central cone (photons/s)</td>
<td>3.1×10^{16}</td>
<td>2.3×10^{16}</td>
<td>1.6×10^{16}</td>
<td>7.9×10^{15}</td>
</tr>
<tr>
<td>$\sigma_x, \sigma_y (\mu m)$</td>
<td>260, 16</td>
<td>255, 23</td>
<td>320, 16</td>
<td>320, 50</td>
</tr>
<tr>
<td>$\sigma'_x, \sigma'_y (\mu rad)$</td>
<td>23, 3.9</td>
<td>31, 9</td>
<td>34, 6</td>
<td>23, 7</td>
</tr>
<tr>
<td>Brightness ($K = 1, n = 1$) a</td>
<td>2.3×10^{19}</td>
<td>9.9×10^{18}</td>
<td>1.3×10^{19}</td>
<td>5.9×10^{18}</td>
</tr>
<tr>
<td>Total power ($K = 1, all n, all \theta$) (W)</td>
<td>83</td>
<td>126</td>
<td>476</td>
<td>350</td>
</tr>
<tr>
<td>Other undulator periods (cm)</td>
<td>3.65, 8.00, 10.0</td>
<td>8.0, 12.5</td>
<td>6.8, 18.3</td>
<td>2.70, 5.50, 12.8</td>
</tr>
</tbody>
</table>

Wiggler Radiation:

<table>
<thead>
<tr>
<th></th>
<th>ALS</th>
<th>ELETTRA</th>
<th>Australian Synchrotron</th>
<th>APS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiggler period (typical) (cm)</td>
<td>16.0</td>
<td>14.0</td>
<td>6.1</td>
<td>8.5</td>
</tr>
<tr>
<td>Number of periods</td>
<td>19</td>
<td>30</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>Magnetic field (maximum) (T)</td>
<td>2.1</td>
<td>1.5</td>
<td>1.9</td>
<td>1.0</td>
</tr>
<tr>
<td>K (maximum)</td>
<td>32</td>
<td>19.6</td>
<td>12</td>
<td>7.9</td>
</tr>
<tr>
<td>Critical photon energy (keV)</td>
<td>5.1</td>
<td>4.0</td>
<td>11.4 keV</td>
<td>33</td>
</tr>
<tr>
<td>Critical photon wavelength</td>
<td>0.24 nm</td>
<td>0.31 nm</td>
<td>0.11 nm</td>
<td>0.38 Å</td>
</tr>
<tr>
<td>Total power (max. K) (kW)</td>
<td>13</td>
<td>7.2</td>
<td>9.3</td>
<td>7.4</td>
</tr>
</tbody>
</table>

aUsing Eq. (5.65). See comments following Eq. (5.64) for the case where $\sigma'_x, y = \theta_{cen}$.

Professor David Attwood
Univ. California, Berkeley
Beam Parameters, Spectral Brightness, Harmonics & Wiggler Radiation, EE290F, 20 Feb 2007
Ch05_T1c_AustralSynch_Nov05.ai
Typical Parameters for Synchrotron Radiation

<table>
<thead>
<tr>
<th>Facility</th>
<th>ALS</th>
<th>MAX II</th>
<th>BESSY II</th>
<th>APS</th>
<th>ESRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron energy</td>
<td>1.90 GeV</td>
<td>1.50 GeV</td>
<td>1.70 GeV</td>
<td>7.00 GeV</td>
<td>6.04 GeV</td>
</tr>
<tr>
<td>γ</td>
<td>3720</td>
<td>2940</td>
<td>3330</td>
<td>13,700</td>
<td>11,800</td>
</tr>
<tr>
<td>Current (mA)</td>
<td>400</td>
<td>250</td>
<td>200</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Circumference (m)</td>
<td>197</td>
<td>90</td>
<td>240</td>
<td>1100</td>
<td>884</td>
</tr>
<tr>
<td>RF frequency (MHz)</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>352</td>
<td>352</td>
</tr>
<tr>
<td>Pulse duration (FWHM) (ps)</td>
<td>35-70</td>
<td>200</td>
<td>20-50</td>
<td>100</td>
<td>70</td>
</tr>
</tbody>
</table>

Bending Magnet Radiation:

- **Bending magnet field (T)**
 - ALS: 1.27, MAX II: 1.48, BESSY II: 1.30, APS: 0.599, ESRF: 0.806
- **Critical photon energy (keV)**
 - ALS: 3.05, MAX II: 2.21, BESSY II: 2.50, APS: 19.5, ESRF: 19.6
- **Critical photon wavelength**
 - ALS: 0.407 nm, MAX II: 0.560 nm, BESSY II: 0.50 nm, APS: 0.636 Å, ESRF: 0.634 Å
- **Bending magnet sources**
 - ALS: 24, MAX II: 20, BESSY II: 32, APS: 35, ESRF: 32

Undulator Radiation:

- **Number of straight sections**
 - ALS: 12, MAX II: 10, BESSY II: 16, APS: 40, ESRF: 32
- **Undulator period (typical) (cm)**
 - ALS: 5.00, MAX II: 5.20, BESSY II: 4.90, APS: 3.30, ESRF: 4.20
- **Number of periods**
 - ALS: 89, MAX II: 49, BESSY II: 84, APS: 72, ESRF: 38
- **Photon energy ($K = 1, n = 1$)**
 - ALS: 457 eV, MAX II: 274 eV, BESSY II: 373 eV, APS: 9.40 keV, ESRF: 5.50 keV
- **Photon wavelength ($K = 1, n = 1$)**
 - ALS: 2.71 nm, MAX II: 4.53 nm, BESSY II: 3.32 nm, APS: 1.32 Å, ESRF: 0.225 nm
- **Tuning range ($n = 1$)**
 - ALS: 230-620 eV, MAX II: 130-410 eV, BESSY II: 140-500 eV, APS: 3.5-12 keV, ESRF: 2.6-7.3 keV
- **Tuning range ($n = 3$)**
- **Central cone half-angle ($K = 1$)**
 - ALS: 35 µrad, MAX II: 59 µrad, BESSY II: 33 µrad, APS: 11 µrad, ESRF: 17 µrad
- **Power in central cone ($K = 1, n = 1$) (W)**
 - ALS: 2.3, MAX II: 0.88, BESSY II: 0.95, APS: 12, ESRF: 14
- **Flux in central cone ($K = 1, n = 1$) (photons/s)**
 - ALS: 3.1×10^{16}, MAX II: 2.0×10^{16}, BESSY II: 1.6×10^{16}, APS: 7.9×10^{15}, ESRF: 1.6×10^{16}
- **σ_x, σ_y (µm)**
 - ALS: 260, 16, MAX II: 300, 45, BESSY II: 314, 24, APS: 320, 50, ESRF: 395, 9.9
- **σ_x^*, σ_y^* (µrad)**
 - ALS: 23, 3.9, MAX II: 26, 20, BESSY II: 18, 12, APS: 23, 7, ESRF: 11, 3.9
- **Brightness ($K = 1, n = 1$)**
 - ALS: 2.3×10^{19}, MAX II: 7.8×10^{17}, BESSY II: 4.6×10^{18}, APS: 5.9×10^{18}, ESRF: 5.1×10^{18}
- **Total power ($K = 1, n = 1$) (W)**
- **Other undulator periods (cm)**
 - ALS: 3.65, MAX II: 8.00, BESSY II: 10.0, APS: 5.88, 6.60, 12.5, 2.70, 5.50, 12.8

Wiggler Radiation:

- **Wiggler period (typical) (cm)**
 - ALS: 16.0, MAX II: 17.4, BESSY II: 12.5, APS: 8.5, ESRF: 8.0
- **Number of periods**
 - ALS: 19, MAX II: 13, BESSY II: 32, APS: 28, ESRF: 20
- **Magnetic field (maximum) (T)**
 - ALS: 2.1, MAX II: 1.80, BESSY II: 1.15, APS: 1.0, ESRF: 0.81
- **K (maximum)**
 - ALS: 32, MAX II: 29.3, BESSY II: 12.8, APS: 7.9, ESRF: 6.0
- **Critical photon energy (keV)**
 - ALS: 5.1, MAX II: 2.69, BESSY II: 2.11, APS: 33, ESRF: 20
- **Critical photon wavelength**
 - ALS: 0.24 nm, MAX II: 0.46 nm, BESSY II: 0.59 nm, APS: 0.38 Å, ESRF: 0.62 Å
- **Total power (max. K) (kW)**
 - ALS: 13, MAX II: 5.9, BESSY II: 1.8, APS: 7.4, ESRF: 4.8

aUsing Eq. (5.65). See comments following Eq. (5.64) for the case where $\sigma_x^, \sigma_y^* \approx \theta_{cen}$.

Professor David Attwood
Univ. California, Berkeley
Beam Parameters, Spectral Brightness, Harmonics and Wiggler Radiation, EE290F, 20 Feb 2007
Ch05_T1_Nov05.ai
Typical Parameters for Synchrotron Radiation

<table>
<thead>
<tr>
<th>Facility</th>
<th>ALS</th>
<th>New Subaru</th>
<th>APS</th>
<th>SP-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron energy</td>
<td>1.90 GeV</td>
<td>1.00 GeV</td>
<td>7.00 GeV</td>
<td>8.00 GeV</td>
</tr>
<tr>
<td>γ</td>
<td>3720</td>
<td>1957</td>
<td>13,700</td>
<td>15,700</td>
</tr>
<tr>
<td>Current (mA)</td>
<td>400</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Circumference (m)</td>
<td>197</td>
<td>119</td>
<td>1100</td>
<td>1440</td>
</tr>
<tr>
<td>RF frequency (MHz)</td>
<td>500</td>
<td>500</td>
<td>352</td>
<td>509</td>
</tr>
<tr>
<td>Pulse duration (FWHM) (ps)</td>
<td>35-70</td>
<td>26</td>
<td>100</td>
<td>120</td>
</tr>
</tbody>
</table>

Bending Magnet Radiation:
- Bending magnet field (T): 1.27, 1.03, 0.599, 0.679
- Critical photon energy (keV): 3.05, 0.685, 19.5, 28.9
- Critical photon wavelength: 0.407 nm, 1.81 nm, 0.636 Å, 0.429 Å
- Bending magnet sources: 24, 4, 35, 23

Undulator Radiation:
- Number of straight sections: 12, 4, 40, 48
- Undulator period (typical) (cm): 5.00, 5.40, 3.30, 3.20
- Number of periods: 89, 200, 72, 140
- Photon energy ($K = 1, n = 1$): 457 eV, 117 eV, 9.40 keV, 12.7 keV
- Photon wavelength ($K = 1, n = 1$): 2.71 nm, 10.6 nm, 1.32 Å, 0.979 Å
- Tuning range ($n = 1$): 230-620 eV, 43-170 eV, 3.5-12 keV, 4.7-19 keV
- Tuning range ($n = 3$): 690-1800 eV, 130-500 eV, 10-38 keV, 16-51 keV
- Central cone half-angle ($K = 1$): 35 µrad, 44 µrad, 11 µrad, 6.6 µrad
- Power in central cone ($K = 1, n = 1$) (W): 2.3, 0.15, 12, 16
- Flux in central cone (photons/s): 3.1×10^{16}, 7.9×10^{15}, 7.9×10^{15}, 7.9×10^{15}
- σ_x, σ_y (µm): 260, 16, 450, 220, 320, 50, 380, 6.8
- σ_x, σ_y (µrad): 23, 3.9, 89, 18, 23, 7, 16, 1.8
- Brightness ($K = 1, n = 1$): $[$(photons/s)/mm²·mrad²·(0.1%BW)$]$ 2.3×10^{19}, 1.7×10^{17}, 5.9×10^{18}, 1.8×10^{20}
- Total power ($K = 1, all n, all \theta$) (W): 83, 27, 350, 2,000
- Other undulator periods (cm): 3.65, 8.00, 10.0, 7.60, 2.70, 5.50, 12.8, 2.4, 10.0, 3.7, 12.0

Wiggler Radiation:
- Wiggler period (typical) (cm): 16.0, 8.5, 12.0
- Number of periods: 19, 28, 37
- Magnetic field (maximum) (T): 2.1, 1.0, 1.0
- K (maximum): 32, 7.9, 11
- Critical photon energy (keV): 5.1, 33, 43
- Critical photon wavelength: 0.24 nm, 0.38 Å, 0.29 Å
- Total power (max. K) (kW): 13, 7.4, 18

*Using Eq. (5.65). See comments following Eq. (5.64) for the case where $\sigma_x, \sigma_y = \theta_{cen}$.

Professor David Attwood

Univ. California, Berkeley
Beam Parameters, Spectral Brightness, Harmonics and Wiggler Radiation, EE290F, 20 Feb 2007
Ch05_T1b_VG_Nov05.ai
Beamlines are Used to Transport Photons to the Sample, and Take a Desired Spectral Slice

Observation at sample:
- Absorption spectra
- Photoelectron spectra
- Diffraction
- ...

Monochromator

Focusing lens (pair of curved mirrors, zone plate lens, etc.)

Sample
A Typical Beamline: Monochromator Plus Focusing Optics to Deliver Radiation to the Sample

Courtesy of James Underwood (EUV Technology Inc.)
High Spectral Resolution (meV) Beamline

Sample → Vertical focusing mirror → Horizontal deflection/focusing mirror → Translating exit slit → Spherical grating → Translating entrance slit → Vertical focusing mirror → Horizontal focusing mirror → Elliptically Polarizing Undulator
Time Structure of Synchrotron Radiation

The axial electric field within the RF cavity, used to replenish lost (radiated) energy, forms a potential well “bucket” system that forces electrons into axial electron “bunches”. This leads to a time structure in the emitted radiation.

- E = 1.90 GeV
- C = 197 m
- I = 400 mA

328 buckets available, nominally operated with some fraction unfilled. \(\Gamma_{\text{FWHM}} \approx 35 \text{ ps (nominal)} \)

Gaussian pulse

\(\Gamma_{\text{FWHM}} = 2.35 \sigma \tau \)

500 MHz RF

V_{RF}

\(2 \text{ ns} \)

35 ps

35 ps
Variable Polarization Undulator Radiation

Crossed planar undulators

Variable phase delay (electron path length modulator)

Aperture and monochromator

0°

π/2

π

−π/2

(Courtesy of Kwang-Je Kim)

(Following S. Sasaki)
What are the Relative Merits?

<table>
<thead>
<tr>
<th>Bending magnet radiation</th>
<th>Wiggler radiation</th>
<th>Undulator radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Broad spectrum</td>
<td>• Higher photon energies</td>
<td>• Brighter radiation</td>
</tr>
<tr>
<td>• Good photon flux</td>
<td>• More photon flux</td>
<td>• Smaller spot size</td>
</tr>
<tr>
<td>• No heat load</td>
<td>• Expensive magnet structure</td>
<td>• Partial coherence</td>
</tr>
<tr>
<td>• Less expensive</td>
<td>• Expensive cooled optics</td>
<td>• Expensive</td>
</tr>
<tr>
<td>• Easier access</td>
<td>• Less access</td>
<td>• Less access</td>
</tr>
</tbody>
</table>
References

