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Undulator Radiated Power in the Central Cone
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The Equation of Motion in an Undulator

Ch05_F15_Eq16_19.top.ai

(5.16)

 Magnetic fields in the periodic undulator cause the electrons to oscillate and thus 
radiate. These magnetic fields also slow the electrons axial (z) velocity somewhat, 
reducing both the Lorentz contraction and the Doppler shift, so that the observed 
radiation wavelength is not quite so short. The force equation for an electron is

where p = γmv is the momentum. The 
radiated fields are relatively weak so that

Taking to first order v  vz, motion in the x-direction is

By = Bo cos 2πz
λu

y

z

x

v
e–

= –e(E + v × B)
dp
dt

 –e(v × B)
dp
dt
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The Equation of Motion in an Undulator (cont.)

Ch05_F15_Eq16_19.bot.ai

(5.17)

(5.19)

(5.18)

integrating both sides

is the non-dimensional “magnetic deflection parameter.”
The “deflection angle”, θ, is

θ = = sinkuz
vx
vz

vx
c

K
γ
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The Axial Velocity Depends on K

Ch05_Eq22_23VG.ai

(5.22)

(5.23a)

In a magnetic field γ is a constant; to first order the electron neither gains nor looses energy. 

thus

Taking the square root, to first order in the small parameter K/γ

Using the double angle formula sin 2kuz =  (1 – cos 2kuz)/2, where ku = 2π/λu, 

The first two terms show the reduced axial velocity due to the finite magnetic field (K). The last 
term indicates the presence of harmonic motion, and thus harmonic frequencies of radiation.

Reduced
axial velocity

A double frequency
component of the motion
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K-Dependent Axial Velocity
Affects the Undulator Equation

Ch05_Eq25_29VG.ai 

(5.25)

(5.26)

(5.29a)

Averaging the z-component of velocity over a full cycle (or N full cycles) gives

We can use this to define an effective Lorentz factor γ* in the axial direction

As a consequence, the observed wavelength in the laboratory frame of reference is modified from
Eq. (5.12), taking the form

that is, the Lorentz contraction and relativistic Doppler shift now involve γ* rather than γ

where K  e Bo λu/2πmc. This is the undulator equation, which describes the generation of short 
(x-ray) wavelength radiation by relativistic electrons traversing a periodic magnet structure, 
accounting for magnetic tuning (K) and off-axis (γθ) radiation. In practical units

(5.28)
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Calculating Power in the Central Radiation Cone: Using 
the well known “dipole radiation” formula by transforming 
to the frame of reference moving with the electrons

Ch05_T4_topVG.ai
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Calculating Power in the Central Radiation Cone: Using 
the well known “dipole radiation” formula by transforming 
to the frame of reference moving with the electrons (cont.)

Ch05_T4_bot.VG.ai
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Power Radiated in the Central Radiation Cone

Ch05_Eq32_34.top.ai
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K
kuγ

 z′
c

e2 a′2 sin2 Θ′
16π20c3

To use the “dipole radiation” formula

Take z  ct    ,   and ωu = kuc

Integrating once

We can use the Lorentz transformation to the primed frame of reference

Thus in the primed frame of reference

, ku = 2π/λu

we need the acceleration a′(t′) in the frame of reference moving with the electron.
We already know the velocity in the laboratory frame of reference

x = x′

x′ = –        cos ωuγ*(t′ +     )

ωu′ small: z′ is the small axial
motion about the mean
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Power Radiated in the Central Radiation Cone (cont.)

Ch05_Eq32_34.bot.ai

K
kuγ

 z′
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(5.33)

(5.34)

Taking the second derivative

since

Then

x′ = –        cos ωuγ*(t′ +     )

ωu′ small: z′ is the small axial
motion about the mean
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Power in the Central Radiation Cone (continued)

Ch05_Eq37_41b.top.ai

(5.37)

(5.38)

The central radiation cone,  , corresponds to only a small part of 

the sin2 Θ′ radiation pattern, near Θ′  π/2 , where

Within this small angular cone, a Lorentz transformation back to the laboratory
frame of reference gives

so that

For the central radiation cone (1/N relative spectral bandwidth)

So that for a single electron, the power radiated into the central cone is

∆Ωcen = πθ2      = π/(γ*  N )2
cen
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Power in the Central Radiation Cone (continued)

Ch05_Eq37_41b.bot_Oct05.ai

(5.38)

For Ne electrons radiating independently within the undulator

The power radiated into the central cone is then

or

Ne = IL/ec, where L = Nλu 

(K ≤ 1) (5.39)

(5.41b)
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Corrections to Pcen for Finite K

Ch05_Eq39_41a_T5_Oct05.ai

(5.39)

(5.41a)

(5.40a)

(5.40b)

Our formula for calculated power in the central radiation cone (θcen = 1/γ*  N , ∆λ/λ = 1/N)

where

* K.-J. Kim, “Characteristics of Synchrotron Radiation”, pp. 565-632 in Physics of Particle Accelerators (AIP, New York, 1989), 
 M. Month and M. Dienes, Editors.
Also see: P.J. Duke, Synchrotron Radiation (Oxford Univ. Press, UK, 2000).
  A. Hofmann, “The Physics of Synchrotron Radiation” (Cambridge Univ. Press, 2004).

and

is strictly valid for K << 1. This restriction is due to our neglect of K2 terms in the axial velocity vz.
The Pcen formula, however, indicates a peak power at K =    2 , suggesting that we explore extension 
of this very useful analytic result to somewhat higher K values. Kim* has studied undulator radiation 
for arbitrary K and finds an additional multiplicative factor, f(K), which accounts for energy transfer 
to higher harmonics:

x = K2/4(1 + K2/2)
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Pcen in Terms of Photon Energy

Ch05_Eq41c_eVG.ai

(5.41c)

(5.41e)

(5.41d)

From the undulator equation

On axis, θ = 0, and with f λ = c

In terms of photon energy (on-axis)

We can now replace K 2/(1 + K2/2)2 in Pcen by an expression involving ω. Introducing the 
limiting photon energy ωo, corresponding to K = 0,

then

or

where

For λu = 5.00 cm and γ = 3720, ωo = 686 eV.  For λu = 3.30 cm and γ = 13,700, ωo = 14.1 keV

λ =        (1 +      + γ 2θ2)λu
2γ2

K 2

2

ω =  4πγ2c /λu (1 +      )

ωo =  4πγ 2c /λu

K 2

2

f = 2γ2c /λu(1 +       )K 2

2
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Power in the Central Radiation Cone
For Three Soft X-Ray Undulators
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Power in the Central Radiation Cone
For Three Soft X-Ray Undulators
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Power in the Central Radiation Cone
For Three X-Ray Undulators
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Spectral Bandwidth of Undulator
Radiation from a Single Electron

(On-axis radiation, θ = 0)
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