

Intro to Synchrotron Radiation, Bending Magnet Radiation

Bending Magnet:

$$\hbar\omega_c = \frac{3e\hbar B\gamma^2}{2m} \tag{5.7}$$

Wiggler:

$$\hbar\omega_c = \frac{3e\hbar B\gamma^2}{2m} \tag{5.80}$$

$$n_c = \frac{3K}{4} \left(1 + \frac{K^2}{2} \right)$$
 (5.82)

$$P_T = \frac{\pi e K^2 \gamma^2 I N}{3\epsilon_0 \lambda_u} \tag{5.85}$$

Undulator:

$$\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right) \quad (5.28)$$

$$K = \frac{eB_0\lambda_u}{2\pi mc} \tag{5.18}$$

$$\theta_{\rm cen} = \frac{1}{\gamma^* \sqrt{N}} \tag{5.15}$$

$$\left. \frac{\Delta \lambda}{\lambda} \right|_{\text{cen}} = \frac{1}{N} \tag{5.14}$$

$$\bar{P}_{cen} = \frac{\pi e \gamma^2 I}{\epsilon_0 \lambda_u} \frac{K^2}{\left(1 + \frac{K^2}{2}\right)^2} f(K) \quad (5.41)$$

Broadly Tunable Radiation is Needed to Probe the Primary Resonances of the Elements

Neptunium

Plutoniun

Americium

Curium

Protactinium

Uranium

Group

Professor David Attwood Univ. California, Berkeley Berkelium

Californium

Einsteiniun

Fermium

Mendeleviun

Nobelium

Lawrencium

Synchrotron Radiation from Relativistic Electrons

V ≤ C

Note: Angle-dependent doppler shift

. .

$$\lambda = \lambda' \left(1 - \frac{v}{c} \cos\theta\right)$$

$$\lambda = \lambda' \gamma \left(1 - \frac{v}{c} \cos\theta\right)$$
$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Frame moving with electron

Laboratory frame of reference

$$\tan \theta = \frac{\sin \theta'}{\gamma(\beta + \cos \theta')} \tag{5.1}$$

$$\theta \simeq \frac{1}{2\gamma}$$
 (5.2)

Dipole radiation

Frame of reference moving with electrons

Laboratory frame of reference

Some Useful Formulas for Synchrotron Radiation

$$\begin{split} \gamma &= \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{1}{\sqrt{1 - \beta^2}}; \quad \beta = \frac{v}{c} \\ E_e &= \gamma m c^2, \quad p = \gamma m v \\ \gamma &= \frac{E_e}{mc^2} = 1957 \, E_e (\text{GeV}) \\ \hbar \omega \cdot \lambda &= 1239.842 \, \text{eV} \cdot \text{nm} \\ 1 \text{ watt} \Rightarrow 5.034 \times 10^{15} \lambda [\text{nm}] \, \frac{\text{photons}}{\text{s}} \\ \text{Bending Magnet:} \quad E_c &= \frac{3e \hbar B \gamma^2}{2m} , \quad E_c (\text{keV}) = 0.6650 E_e^2 (\text{GeV}) B(\text{T}) \\ \text{Undulator:} \quad \lambda &= \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right); \quad E(\text{keV}) = \frac{0.9496 E_e^2 (\text{GeV})}{\lambda_u (\text{cm}) \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right)} \\ \text{where} \quad K &\equiv \frac{e B_0 \lambda_u}{2\pi m c} = 0.9337 B_0(\text{T}) \lambda_u (\text{cm}) \end{split}$$

Modern Synchrotron Radiation Facility

Professor David Attwood

The ALS with San Francisco in the Background

France's ESRF is Well Situated

6 GeV; γ = 11, 800; 884m circumference

Bounded by two rivers

Professor David Attwood Univ. California, Berkeley

SXR & EUV Radiation, Spring 2009 / EE213 & AST210 / Intro to Synchrotron Radiation, Bendng Magnet Radiation / Lec 9

SPring-8 in Hyogo Prefecture, Japan

8 GeV; γ = 15,700; 1.44 km circumference

A Single Storage Ring Serves Many Scientific User Groups

Ch05_F05VG.ai

Bending Magnet Radius

The Lorentz force for a relativistic electron in a constant magnetic field is

$$\mathbf{F} = \frac{d\mathbf{p}}{dt} = -e\mathbf{v} \times \mathbf{B}$$

where $\mathbf{p} = \gamma \mathbf{m} \mathbf{v}$. In a fixed magnetic field the rate of change of electron energy is

$$\frac{dE_e}{dt} = \mathbf{v} \cdot \mathbf{F} = \underbrace{-e\mathbf{v} \cdot (\mathbf{v} \times \mathbf{B})}_{=0}$$

thus with $E_e = \gamma mc^2$

$$\frac{dE_e}{dt} = \frac{d}{dt}(\gamma mc^2) = 0$$

 $\therefore \gamma = \text{constant}$

and the force equation becomes

$$\frac{d\mathbf{p}}{dt} = \gamma m \frac{d\mathbf{v}}{dt} = -e\mathbf{v} \times \mathbf{E}$$
$$\gamma m \left(-\frac{\mathbf{v}^2}{R}\right) = -e\mathbf{v}B$$
$$\therefore \quad R = \frac{\gamma m \mathbf{v}}{eB} \simeq \frac{\gamma m c}{eB}$$

Professor David Attwood

B

 $v = \beta c$

Bending Magnet Radiation

$$2 \Delta \tau \simeq \frac{R}{\gamma \beta c} (1 - \beta)$$
 but $(1 - \beta) \simeq \frac{1}{2\gamma^2}$ and $R \simeq \frac{\gamma mc}{eB}$

$$\therefore 2\Delta \tau = \frac{m}{2eB\gamma^2}$$

From Heisenberg's Uncertainty Principle for rms pulse duration and photon energy

$$\Delta E \cdot \Delta \tau \ge \hbar/2$$

$$\Delta E \ge \frac{\hbar}{2\Delta \tau}$$

$$\Delta E \ge \frac{\hbar}{m/2eB\gamma^2}$$
(5.4b)

thus

Thus the single-sided rms photon energy width (uncertainty) is

$$\Delta E \ge \frac{2e\hbar B\gamma^2}{m} \tag{5.4c}$$

A more detailed description of bending magnet radius finds the critical photon energy

$$E_c = \hbar\omega_c = \frac{3e\hbar B\gamma^2}{2m} \tag{5.7a}$$

In practical units the critical photon energy is

$$E_c(\text{keV}) = 0.6650 E_e^2(\text{GeV})B(\text{T})$$
 (5.7b)

Bending Magnet Radiation

Professor David Attwood Univ. California, Berkeley

Ch05_F07_T2.ai

Bending Magnet Radiation Covers a Broad Region of the Spectrum, Including the Primary Absorption Edges of Most Elements

Narrow Cone Undulator Radiation, Generated by Relativistic Electrons Traversing a Periodic Magnet Structure

An Undulator Up Close

ALS U5 undulator, beamline 7.0, N = 89, λ_u = 50 mm SXR & EUV Radiation, Spring 2009 / EE213 & AST210 / Intro to Synchrotron Radiation, Bending Magnet Radiation / Lec 9

Installing an Undulator at Berkeley's Advanced Light Source

ALS Beamline 9.0 (May 1994), N = 55, λ_u = 80 mm

Undulator Radiation

where K = $eB_0\lambda_u/2\pi mc$

Physically, where does the $\lambda = \lambda_u/2\gamma^2$ come from?

The electron "sees" a Lorentz contracted period

$$\lambda' = \frac{\lambda_u}{\gamma} \tag{5.9}$$

and emits radiation in its frame of reference at frequency

$$f' = \frac{c}{\lambda'} = \frac{c\gamma}{\lambda_u}$$

Observed in the laboratory frame of reference, this radiation is Doppler shifted to a frequency

$$f = \frac{f'}{\gamma(1 - \beta \cos \theta)} = \frac{c}{\lambda_u (1 - \beta \cos \theta)}$$
(5.10)

On-axis ($\theta = 0$) the observed frequency is

$$f = \frac{c}{\lambda_u(1-\beta)}$$

Physically, where does the $\lambda = \lambda_u/2\gamma^2$ come from?

$$f = \frac{c}{\lambda_u (1 - \beta)}$$

By definition
$$\gamma = \frac{1}{\sqrt{1-\beta^2}}$$
; $\gamma^2 = \frac{1}{(1-\beta)(1+\beta)} \simeq \frac{1}{2(1-\beta)}$

thus

$$f = \frac{2\gamma^2 c}{\lambda_u}$$

and the observed wavelength is

$$\lambda = \frac{c}{f} = \frac{\lambda_u}{2\gamma^2} \tag{5.11}$$

Give examples.

What about the off-axis $\theta \neq 0$ radiation?

For
$$\theta \neq 0$$
, take $\cos \theta = 1 - \frac{\theta^2}{2} + \dots$, then

$$f = \frac{c}{\lambda_u (1 - \beta \cos \theta)} \tag{5.10}$$

$$f = \frac{c/\lambda_u}{1-\beta(1-\theta^2/2+\dots)} = \frac{c/\lambda_u}{1-\beta+\beta\theta^2/2-\dots} = \frac{c/(1-\beta)\lambda_u}{1+\beta\theta^2/2(1-\beta)\dots}$$

$$f = \frac{2\gamma^2 c / \lambda_u}{1 + \gamma^2 \theta^2} = \frac{2\gamma^2 c}{\lambda_u (1 + \gamma^2 \theta^2)}$$

The observed wavelength is then

$$\lambda = \frac{\lambda_u}{2\gamma^2} (1 + \gamma^2 \theta^2) \tag{5.12}$$

exhibiting a reduced Doppler shift off-axis, i.e., longer wavelengths. This is a simplified version of the "Undulator Equation". With electrons executing N oscillations as they traverse the periodic magnet structure, and thus radiating a wavetrain of N cycles, it is of interest to know what angular cone contains radiation of relative spectral bandwidth

The Undulator's "Central Radiation Cone"

$$\frac{\Delta\lambda}{\lambda} = \frac{1}{N} \tag{5.14}$$

Write the undulator equation twice, once for on-axis radiation ($\theta = 0$) and once for wavelengthshifted radiation off-axis at angle θ : $\lambda_{\alpha} + \Delta \lambda = \frac{\lambda_{u}}{(1 + \gamma^{2} \Theta^{2})}$

$$\lambda_0 = \frac{\lambda_u}{2\gamma^2}$$

$$\frac{\Delta\lambda}{\lambda} \simeq \gamma^2 \theta^2$$
(5.13)

divide and simplify to

Combining the two equations (5.13 and 5.14)

defines
$$\theta_{\text{cen}}$$
: $\gamma^2 \theta_{\text{cen}}^2 \equiv \frac{1}{N}$, which gives $\theta_{\text{cen}} \simeq \frac{1}{\gamma \sqrt{N}}$ (5.15)

This is the half-angle of the "central radiation cone", defined as containing radiation of $\Delta\lambda/\lambda = 1/N$.

plify to

The Undulator Radiation Spectrum in Two Frames of Reference

Execution of N electron oscillations produces a transform-limited spectral bandwidth, $\Delta\omega'/\omega' = 1/N$.

The Doppler frequency shift has a strong angle dependence, leading to lower photon energies off-axis.

The Narrow (1/N) Spectral Bandwidth of Undulator Radiation Can be Recovered in Two Ways With a pinhole aperture

dP

 $d\Omega$

Δλ

ω

dP

 $\overline{\mathsf{d}\Omega}$

ω

Lorentz Space-Time Transformations (Appendix F)

$$z = \gamma(z' + \beta ct')$$
(F.1a)
$$t = \gamma\left(t' + \frac{\beta z'}{c}\right)$$
(F.1b)
$$y = y' \text{ and } x = x'$$
(F.1c)

$$x'$$

 x'
 s'
 b'
 b'

$$z' = \gamma (z - \beta ct)$$
 (F.2a)
 $t' = \gamma \left(t - \frac{\beta z}{c}\right)$ (F.2a)
 $y' = y$ and $x' = x$ (F.2a)

$$\beta \equiv \frac{v}{c}$$
(F.3)

$$\gamma \equiv \frac{1}{\sqrt{1 - \beta^2}} \qquad (F.4)$$

Lorentz Transformations: Frequency, Angles, Length and Time

Doppler frequency shifts

$$\omega = \omega' \gamma (1 + \beta \cos \theta')$$
 (F.8a)
 $\omega' = \omega \gamma (1 - \beta \cos \theta)$ (F.8b)

Lorentz contraction of length

$$L' = L/\gamma \tag{F.12}$$

Time dilation

$$\Delta t' = \Delta t / \gamma \qquad (F.13)$$

Angular transformations

$$\cos \theta = \frac{\cos \theta' + \beta}{1 + \beta \cos \theta'} \qquad (F.9a)$$
$$\cos \theta' = \frac{\cos \theta - \beta}{1 - \beta \cos \theta} \qquad (F.9b)$$

$$\sin \theta = \frac{\sin \theta'}{\gamma (1 + \beta \cos \theta')} \quad (F.10b)$$
$$\sin \theta' = \frac{\sin \theta}{\gamma (1 - \beta \cos \theta)} \quad (F.10a)$$

$$\tan \theta = \frac{\sin \theta'}{\gamma(\cos \theta' + \beta)} \qquad (F.11a)$$
$$\tan \theta' = \frac{\sin \theta}{\gamma(\cos \theta - \beta)} \qquad (F.11b)$$