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Preface

Existing computational tools for control synthesis and verification do not scale
well to today’s large scale, networked systems. Recent advances, such as sum of
squares relaxations for polynomial nonnegativity, have made it possible to numeri-
cally search for Lyapunov functions and to certify measures of performance; how-
ever, these procedures are applicable only to problems of modest size.

In this book we address networks where the subsystems are amenable to standard
analytical and computational methods but the interconnection, taken as a whole, is
beyond the reach of these methods. To break up the task of certifying network prop-
erties into subproblems of manageable size, we make use of dissipativity properties
which serve as abstractions of the detailed dynamical models of the subsystems. We
combine these abstractions to derive network level stability, performance, and safety
guarantees in a compositional fashion.

Dissipativity theory, which is fundamental to our approach, is reviewed in Chap-
ter 1 and enriched with sum of squares and semidefinite programming techniques,
detailed in Appendices A and B respectively.

Chapter 2 derives a stability test for interconnected systems from the dissipativity
characteristics of the subsystems. This approach is particularly powerful when one
exploits the structure of the interconnection and identifies subsystem dissipativity
properties favored by the type of interconnection. We exhibit several such intercon-
nections that are of practical importance, as subsequently demonstrated in Chapter
4 with case studies from biological networks, multiagent systems, and Internet con-
gestion control.

Before proceeding to the case studies, however, in Chapter 3 we point out an ob-
stacle to analyzing subsystems independently of each other: the dissipativity proper-
ties must be referenced to the network equilibrium point which depends on all other
subsystems. To remove this obstacle we introduce the stronger notion of equilibrium
independent dissipativity which requires dissipativity with respect to any point that
has the potential to become an equilibrium in an interconnection.

In Chapter 5 we extend the compositional stability analysis tools to performance
and safety certification. Performance is defined as a desired dissipativity property
for the interconnection, such as a prescribed gain from a disturbance input to a
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performance output. The goal in safety certification is to guarantee that trajectories
do not intersect a prescribed set that is deemed unsafe.

Unlike the earlier chapters that use a fixed dissipativity property for each sub-
system, in Chapter 6 we combine the stability and performance tests with a simul-
taneous search over compatible subsystem dissipativity properties. We employ the
Alternating Direction Method of Multipliers (ADMM) algorithm, a powerful dis-
tributed optimization technique, to decompose and solve this problem. In Chapter
7 we exploit the symmetries in the interconnection structure to reduce the number
of decision variables, thereby achieving significant computational savings for inter-
connections that are rich with symmetries.

In Chapter 8 we define a generalized notion of dissipativity that incorporates
more information about a dynamical system than the standard form in Chapter 1.
This is achieved by augmenting the system model with a linear system that serves
as a virtual filter for the inputs and outputs. This dynamic extension is subsequently
related to the frequency domain notion of integral quadratic constraints in Chap-
ter 9. We conclude by pointing to further results that are complementary to those
presented in the book.
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Chapter 1
Brief Review of Dissipativity Theory

1.1 Dissipative Systems

Consider the dynamical system

d
dt

x(t) = f (x(t),u(t)) f (0,0) = 0 (1.1)

y(t) = h(x(t),u(t)) h(0,0) = 0 (1.2)

with x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, and continuously differentiable mappings
f : Rn×Rm 7→ Rn and h : Rn×Rm 7→ Rp. Given the input signal u(·) and initial
condition x(0), the solution x(t) of (1.1) generates the output y(t) according to (1.2).

The notion of dissipativity introduced by Willems [66] characterizes dynamical
systems broadly by how their inputs and outputs correlate. The correlation is de-
scribed by a scalar valued supply rate s(u,y) the choice of which distinguishes the
type of dissipativity.

Definition 1.1. The system (1.1)-(1.2) is dissipative with respect to a supply
rate s(u,y) if there exists V : Rn 7→ R such that V (0) = 0, V (x)≥ 0 ∀x, and

V (x(τ))−V (x(0))≤
∫

τ

0
s(u(t),y(t))dt (1.3)

for every input signal u(·) and every τ ≥ 0 in the interval of existence of the
solution x(t). V (·) is called a storage function.

This definition implies that the integral of the supply rate s(u(t),y(t)) along the
trajectories is nonnegative when x(0) = 0 and lower bounded by the offset−V (x(0))
otherwise. Thus, the system favors a positive sign for s(u(t),y(t)) when averaged
over time.

Important types of dissipativity are discussed below.
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2 1 Brief Review of Dissipativity Theory

Fig. 1.1 Dissipativity char-
acterizes a dynamical system
with a supply rate s(u,y) that
describes how the inputs and
outputs correlate, and an ac-
companying storage function
V (·).

u (s(u,y),V (x)) y

Finite L2 gain: s(u,y) = γ2|u|2−|y|2 γ > 0

We denote by Lm
2 the space of functions u : [0,∞)→ Rm with finite energy

‖u‖2
2 =

∫
∞

0
|u(t)|2dt (1.4)

where | · | is the Euclidean norm in Rm and ‖·‖2 is the L2 norm. Note from (1.3) that

−V (x(0))≤V (x(τ))−V (x(0))≤ γ
2
∫

τ

0
|u(t)|2dt−

∫
τ

0
|y(t)|2dt

⇒
∫

τ

0
|y(t)|2dt ≤ γ

2
∫

τ

0
|u(t)|2dt +V (x(0)).

Taking square roots of both sides and applying the inequality
√

a2 +b2 ≤ |a|+ |b|
to the right-hand side, we get√∫

τ

0
|y(t)|2dt ≤ γ

√∫
τ

0
|u(t)|2dt +

√
V (x(0)).

This means that the L2 norm ‖y‖2 is bounded by γ‖u‖2, plus an offset term due to
the initial condition. Thus γ serves as an L2 gain for the system.

Passivity: s(u,y) = uT y

With this choice of supply rate, (1.3) implies∫
τ

0
u(t)T y(t)dt ≥−V (x(0)) (1.5)

which favors a positive sign for the inner product of u(t) and y(t). Periods of time
when u(t)T y(t)< 0 must be outweighed by those when u(t)T y(t)> 0.
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Output strict passivity: s(u,y) = uT y− ε|y|2 ε > 0

This supply rate tightens the passivity condition (1.5) as:∫
τ

0
u(t)T y(t)dt ≥−V (x(0))+ ε

∫
τ

0
|y(t)|2dt︸ ︷︷ ︸
≥0

.

In addition, output strict passivity implies an L2 gain of γ = 1/ε because a comple-
tion of squares argument gives

uT y− 1
γ

yT y≤ γ

2
uT u− 1

2γ
yT y =

1
2γ

(γ2|u|2−|y|2). (1.6)

Then the storage function 2γV (·) yields the L2 gain supply rate γ2|u|2−|y|2.

1.2 Graphical Interpretation

For a memoryless system
y(t) = h(u(t))

we take the storage function in (1.3) to be zero and interpret dissipativity as the
static inequality

s(u,h(u))≥ 0 ∀u ∈ Rm (1.7)

which characterizes the maps h(·) that are dissipative with supply rate s(·, ·).
For example, a scalar function h(·) is passive if uh(u)≥ 0 for all u, which means

that the graph of h(·) lies in the first and third quadrants as in Figure 1.2 (left).
Likewise, the sector in the middle represents the output strict passivity supply rate
s(u,y) = uy−εy2, ε > 0, and the sector on the right represents the finite gain supply
rate s(u,y) = γ2u2− y2.

1
ε
=γ

u u u

y = h(u)

Fig. 1.2 The graph of a passive static nonlinearity h(·) lies in the first and third quadrants (left).
Output strict passivity confines h(·) to the narrower sector (middle) and a gain bound γ corresponds
to the sector upper and lower bounded by the lines ±γu (right).
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1.3 Differential Characterization of Dissipativity

When the storage function V (·) is continuously differentiable, the dissipation in-
equality (1.3) is equivalent to

∇V (x)T f (x,u)≤ s(u,h(x,u)) ∀x ∈ Rn,∀u ∈ Rm. (1.8)

Thus, to verify dissipativity we search for a V (·) satisfying V (0) = 0, V (x)≥ 0, and
(1.8) for all x and u.

As an illustration, suppose we wish to prove passivity of the system

d
dt

x(t) = f0(x(t))+g(x(t))u(t)

y(t) = h(x(t))

which is a special case of (1.1)-(1.2) with f (x,u) = f0(x)+ g(x)u affine in u, and
h(x,u) = h(x) independent of u. Then (1.8) becomes

∇V (x)T f0(x)+∇V (x)T g(x)u≤ h(x)T u ∀x ∈ Rn,∀u ∈ Rm (1.9)

which is equivalent to

∇V (x)T f0(x)≤ 0 ∇V (x)T g(x) = hT (x) ∀x ∈ Rn. (1.10)

The inequality in (1.10) follows from (1.9) when u = 0. To see how the equality
follows suppose, to the contrary, there exists an x for which ∇V (x)T g(x)−hT (x) 6=
0. Then we can select a u such that (∇V (x)T g(x)− hT (x))u is positive and large
enough to contradict (1.9).

Similar arguments show that output strict passivity is equivalent to

∇V (x)T f0(x)≤−εh(x)T h(x) ∇V (x)T g(x) = hT (x) ∀x ∈ Rn. (1.11)

Example 1.1. Consider the scalar system

dx(t)
dt

= f0(x(t))+u(t), y(t) = h(x(t)), u(t),x(t),y(t) ∈ R (1.12)

where h(·) satisfies xh(x) ≥ 0 for all x, as in Figure 1.2 (left). For this system the
equality in (1.11) is

dV (x)
dx

= h(x)

whose solution subject to V (0) = 0 is

V (x) =
∫ x

0
h(z)dz. (1.13)



1.3 Differential Characterization of Dissipativity 5

Furthermore V (x)≥ 0 because h(z) and dz have equal signs (positive when the limit
of integration is x > 0 and negative when x < 0).

The inequality condition in (1.11) is then

h(x)( f0(x)+ εh(x))≤ 0

which is equivalent to
x( f0(x)+ εh(x))≤ 0 (1.14)

since xh(x) ≥ 0. Thus, we conclude passivity when (1.14) holds with ε = 0 and
output strict passivity when (1.14) holds with ε > 0.

For an integrator, where f0(x)≡ 0 and h(x) = x, (1.14) becomes εx2 ≤ 0 which
holds only with ε = 0. Thus we have passivity but not output feedback passivity.

Example 1.2. Consider the second order model

dx1(t)
dt

= x2(t)

dx2(t)
dt

= −kx2(t)−φ
′(x1(t))+u(t)

y(t) = x2(t)

where φ ′(·) is the derivative of a continuously differentiable and nonnegative func-
tion φ(·) satisfying φ(0) = 0. We interpret x1 as position, x2 as velocity, u as force,
k≥ 0 as damping coefficient, and φ(x1) as potential energy of a mechanical system.

For this system the equality condition ∇V (x)T g(x) = hT (x) becomes:

∂V (x1,x2)

∂x2
= x2.

Thus we restrict the storage function to be of the form:

V (x1,x2) =V1(x1)+
1
2

x2
2

and examine the inequality condition ∇V (x)T f0(x)≤ 0. We have

∇V (x)T f0(x) =
dV1(x1)

dx1
x2 + x2

(
−kx2−φ

′(x1)
)

= −kx2
2 + x2

(
dV1(x1)

dx1
−φ

′(x1)

)
.

The choice V1(x1) = φ(x1) ensures ∇V (x)T f0(x) = −kx2
2 = −kh(x)2 which proves

passivity when k = 0 and output strict passivity when k > 0.
The resulting storage function V (x1,x2) = φ(x1)+

1
2 x2

2 is the sum of potential and
kinetic energy terms, and u(t)y(t) =force×velocity may be interpreted as the power
supplied to the system. The definition of dissipativity (1.3) is thus consistent with
the physical notion of energy storage, and dissipation when damping is present.
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1.4 Linear Systems

A linear system is dissipative with respect to a quadratic supply rate if and only
if (1.8) is satisfied with a quadratic storage function [67]. Thus, given the system

d
dt

x(t) = Ax(t)+Bu(t) (1.15)

y(t) =Cx(t)+Du(t), (1.16)

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and the quadratic supply rate

s(u,y) =
[

u
y

]T

X
[

u
y

]
=

[
u

Cx+Du

]T

X
[

u
Cx+Du

]
(1.17)

where X = XT ∈ R(m+p)×(m+p), we restrict our search to a storage function of the
form V (x) = 1

2 xT Px where P ∈ Rn×n is positive semidefinite. Then (1.8) becomes

1
2
(Ax+Bu)T Px+

1
2

xT P(Ax+Bu)≤
[

u
Cx+Du

]T

X
[

u
Cx+Du

]
(1.18)

∀x ∈ Rn,∀u ∈ Rm, which is equivalent to the matrix inequality

1
2

[
AT P+PA PB

BT P 0

]
≤
[

0 I
C D

]T

X
[

0 I
C D

]
. (1.19)

As a special case, for the passivity supply rate s(u,y) = uT y, where

X =

[
0 1

2 I
1
2 I 0

]
,

(1.19) with D = 0 becomes [
AT P+PA PB−CT

BT P−C 0

]
≤ 0. (1.20)

This inequality can hold only if the off-diagonal block is zero, PB−CT = 0, hence

AT P+PA≤ 0 PB =CT (1.21)

is equivalent to (1.20) and parallels the condition (1.10) above for the nonlinear
case.

Example 1.3. We show that the second order system with

A =

[
0 1
−` −k

]
B =

[
0
γ

]
C =

[
µ 1
]

D = 0, (1.22)
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where ` > 0 and γ > 0, is passive if and only if k ≥ µ ≥ 0.
To see the necessity note that the constraint PB =CT restricts P to the form

P =
1
γ

[
q µ

µ 1

]
(1.23)

and the constraint AT P+PA≤ 0 restricts the diagonal entries of

AT P+PA =−1
γ

[
2µ` µk+ `−q

µk+ `−q 2(k−µ)

]
(1.24)

by µ`≥ 0 and k−µ ≥ 0; hence k ≥ µ ≥ 0.
To see the sufficiency, suppose k ≥ µ ≥ 0 and select q = µk+ ` in (1.23). Then

AT P+PA≤ 0 follows trivially from (1.24) and P > 0 follows because q = µk+`≥
µ2 + ` > µ2 guarantees the determinant of (1.23) is positive.

The arguments above also imply that there exists P = PT > 0 satisfying

AT P+PA < 0 PB =CT , (1.25)

that is (1.21) with strict inequality, if and only if k > µ > 0. In particular, the strict
inequality in (1.25) allows us to find ε > 0 such that AT P+PA+2εCTC ≤ 0 which
implies (1.19) with

X =

[
0 1

2
1
2 −ε

]
. (1.26)

Thus k > µ > 0 guarantees output strict passivity.

Example 1.4. Consider a linear single input single output system of the form

Â =

[
A 0
0 A0

]
, B̂ =

[
B
0

]
, B 6= 0, Ĉ =

[
C C0

]
, D̂ = 0

where the subsystem governed by A0 represents uncontrollable dynamics. If the rest
of the system admits a matrix P = PT > 0 satisfying (1.25) and all eigenvalues of
A0 have negative real parts, then there exists P̂ = P̂T > 0 satisfying

ÂT P̂+ P̂Â < 0 P̂B̂ = ĈT . (1.27)

We leave it to the reader to prove this claim with a matrix of the form

P̂ =

[
P R

RT γP0

]
where P0 = PT

0 > 0 satisfies AT
0 P0 +P0A0 < 0, R must be selected appropriately, and

γ > 0 must be selected large enough to ensure P̂ > 0 and ÂT P̂+ P̂Â < 0.
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1.5 Numerical Certification of Dissipativity

Note that (1.19) is a standard linear matrix inequality (LMI) feasibility problem
in P ≥ 0 and X , and can be solved with convex optimization packages such as
CVX [21] or YALMIP [31]. These packages formulate the problem as a semidef-
inite program (SDP) and then call appropriate solvers. Appendix B reviews recent
advances that improve the computational efficiency of SDP solvers, including in the
case where no strictly feasible solutions exists. An example of this case is passivity
certification where (1.20) above can be at most semidefinite.

When f (x,u) and h(x,u) in (1.1)-(1.2) are polynomials, dissipativity can be cer-
tified using sum of squares (SOS) programming. Let R[x] be the set of polynomials
in x and Σ [x]⊂ R[x] be the subset of all SOS polynomials. A polynomial system is
dissipative with respect to a polynomial supply rate, s(u,h(x,u)) ∈ R[x,u], if there
exists a function V (·) satisfying the SOS feasibility problem

V (x) ∈ Σ [x] (1.28)

−∇V (x)T f (x,u)+ s(u,h(x,u)) ∈ Σ [x,u]. (1.29)

The constraint V (0) = 0 is enforced by excluding constant terms in the choice of the
monomials that constitute V (x).

As shown in Appendix A, SOS feasibility problems such as (1.28)-(1.29) can be
relaxed to SDPs and solved with standard software packages.

Unlike linear systems where there is no loss in restricting the search to quadratic
storage functions, (1.28)-(1.29) is only a sufficient condition for dissipativity since
SOS polynomials form a strict subset of all nonnegative polynomials. Furthermore,
the degree of the storage function V (·) must be limited to prevent the problem from
becoming computationally intractable.

1.6 Using Dissipativity for Reachability and Stability

A common approach to studying input/output properties is to treat dynamical sys-
tems as operators mapping inputs to outputs in appropriate function spaces, as pre-
sented in [18]. Unlike this approach, dissipativity theory allows us to derive in-
put/output properties from a state space model and to establish bounds on the state
trajectories using bounds on the storage function. We illustrate the latter by deriving
reachability bounds and Lyapunov stability properties with appropriate choices of
supply rates.
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x(t)

x(0) x(0)

Vα+β

Vα Vα

Fig. 1.3 Dissipativity with the L2 reachability supply rate s(u,y) = |u|2 and storage function V (·)
ensures that trajectories starting in the sublevel set Vα = {x : V (x) ≤ α} remain in the enlarged
sublevel set Vα+β for all inputs u such that ‖u‖2

2 ≤ β (left). In particular, when u(t)≡ 0, trajectories
starting in Vα remain in Vα thereafter (right).

L2 reachability: s(u,y) = |u|2

This supply rate implies

V (x(τ))≤
∫

τ

0
|u(t)|2dt +V (x(0)).

Hence, if ‖u‖2
2 ≤ β , then V (x(τ)) ≤ β +V (x(0)) for all τ ≥ 0, which means that

trajectories starting in the sublevel set

Vα = {x : V (x)≤ α}

remain in the sublevel set Vα+β , as depicted in Figure 1.3 (left).

Lyapunov stability

When u(t)≡ 0, a dissipative system whose supply rate s(u,y) is such that

s(0,0) = 0, s(0,y)≤ 0 ∀y ∈ Rp, (1.30)

guarantees that trajectories starting in the sublevel set Vα remain in Vα , because

V (x(τ))≤
∫

τ

0
s(0,y(t))︸ ︷︷ ︸
≤0

dt +V (x(0))≤V (x(0)).

The L2 reachability supply rate above as well as those discussed in Section 1.1
satisfy (1.30).
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If, in addition, V (·) is positive definite (V (0) = 0, V (x) > 0 for x 6= 0) then
the storage function serves as a Lyapunov function and certifies stability for the
equilibrium x = 0 of the system (1.1) with u(t)≡ 0:

d
dt

x(t) = f (x(t),0) f (0,0) = 0.

The positive definiteness of V (·) ensures that the sublevel sets Vα are compact for
sufficiently small α; therefore, trajectories starting close to x = 0 remain close as in
Figure 1.3 (right) – the core principle in Lyapunov stability theory [27].

If V (·) is radially unbounded, that is, V (x)→∞ as |x| →∞ along any path in Rn,
then Vα is compact no matter how large α; therefore all trajectories are bounded
and the stability property is global.

Asymptotic stability can be established by further examining the right hand side
of (1.8) with u = 0:

∇V (x)T f (x,0)≤ s(0,h(x,0)) ∀x ∈ Rn. (1.31)

If (1.30) holds with strict inequality for y 6= 0, then the right hand side of (1.31)
vanishes when h(x,0) = 0 and is strictly negative otherwise. Thus, we can appeal
to the Invariance Principle [27] which states that, if the only solution satisfying
h(x(t),0) = 0 for all t is x(t) = 0, then x = 0 is asymptotically stable.

The following chapters compose Lyapunov functions for interconnections using
the dissipativity properties of the subsystems. We deemphasize the type of stability
achieved (local or global, asymptotic or not) as this can be determined with standard
techniques such as the ones alluded to above. Instead, we focus on how a Lyapunov
function can be composed in the first place – a task hindered in large networks by
the state dimension and the need for explicit knowledge of the equilibrium.

Since this first chapter is foundational for the rest of the book, we include
true/false questions in Appendix D for readers who are new to the subject. For fur-
ther details on dissipativity theory we refer the readers to the monographs [11] and
[49].



Chapter 2
Stability of Interconnected Systems

Consider the interconnection in Figure 2.1 where each subsystem Gi, i = 1, · · · ,N,
is described by

d
dt

xi(t) = fi(xi(t),ui(t)) (2.1)

yi(t) = hi(xi(t),ui(t)) (2.2)

with xi(t) ∈ Rni , ui(t) ∈ Rmi , yi(t) ∈ Rpi , fi(0,0) = 0, hi(0,0) = 0.
The static matrix M defines the coupling of these subsystems: the input ui to Gi

depends on the outputs y j of other subsystems by

u = My (2.3)

where u = [uT
1 · · ·uT

N ]
T and y = [yT

1 · · ·yT
N ]

T . We assume that the interconnection is
well-posed; that is, upon the substitution yi = hi(xi,ui) the equation (2.3) admits a
unique solution for u as a function x.

M

G1
. . .

GN

yu

Fig. 2.1 An interconnection of subsystems G1, · · · ,GN . The inputs depend on the outputs of other
subsystems by u = My where M is a static matrix.

11
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2.1 Compositional Stability Certification

Our goal is to derive a bottom-up stability test using dissipativity properties and
the interconnection structure of the subsystems. Dissipativity serves as an abstrac-
tion of the subsystem models (Figure 1.1) and allows us to study interconnections
whose combined dynamical equations are too large to analyze directly. The use of
input/output properties and interconnection matrices for network stability tests dates
back to the early references [37, 64].

We assume each subsystem is dissipative with a positive definite, continuously
differentiable storage function Vi(·) and a quadratic supply rate:

si(ui,yi) =

[
ui
yi

]T

Xi

[
ui
yi

]
=

[
ui
yi

]T [X11
i X12

i
X21

i X22
i

][
ui
yi

]
(2.4)

where X jk
i , j,k ∈ {1,2}, are conformal block partitions of Xi. We then search for a

weighted sum of storage functions

V (x) = p1V1(x1)+ · · ·+ pNVN(xN) pi > 0, i = 1, · · · ,N (2.5)

that serves as a Lyapunov function for the interconnection. To this end we ask that
the right hand side of the inequality

N

∑
i=1

pi∇Vi(xi)
T fi(xi,ui)≤

N

∑
i=1

pi

[
ui
yi

]T

Xi

[
ui
yi

]
(2.6)

be negative semidefinite in y when u is eliminated with the substitution u = My.
Rewriting the right hand side of (2.6) as

u1
...

uN
y1
...

yN



T 

p1X11
1 p1X12

1
. . . . . .

pNX11
N pNX12

N
p1X21

1 p1X22
1

. . . . . .
pNX21

N pNX22
N


︸ ︷︷ ︸

, X(p1X1, · · · , pNXN)



u1
...

uN
y1
...

yN


(2.7)

= yT
[

M
I

]T

X(p1X1, · · · , pNXN)

[
M
I

]
y

we obtain the following stability criterion:

Proposition 2.1. If there exist pi > 0, i = 1, · · · ,N, such that
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[
M
I

]T

X(p1X1, · · · , pNXN)

[
M
I

]
≤ 0 (2.8)

where X(p1X1, · · · , pNXN) is as defined in (2.7), then x = 0 is stable for the
interconnected system (2.1)-(2.3) and (2.5) is a Lyapunov function.

For memoryless subsystems of the form yi(t) = hi(ui(t)) we take the correspond-
ing storage function in (2.5) to be zero.

Asymptotic stability requires additional assumptions, such as strict inequality in
(2.8) accompanied with an argument that x(t) = 0 is the only solution satisfying
hi(xi(t),0) = 0, i = 1, · · · ,N, for all t.

Note that (2.8) is a linear matrix inequality (LMI) and the search for pi > 0
satisfying this inequality can be performed with convex optimization packages [21,
31].

Below we assume each subsystem is single input single output and specialize
the LMI (2.8) to particular types of dissipativity. This allows us to derive analytical
feasibility conditions for special interconnection matrices M. Of particular interest
is

M =

[
0 −1
1 0

]
(2.9)

which describes the negative feedback loop of two subsystems (Figure 2.2), com-
monly studied in control theory.

G1

G2

u1 y1

u2y2

–

Fig. 2.2 When M is as in (2.9), u = My describes a negative feedback interconnection of two
subsystems where u1 =−y2 and u2 = y1.

2.2 Small Gain Criterion

Suppose each subsystem possesses a finite L2 gain; that is, the supply rate in (2.4) is

Xi =

[
γ2

i 0
0 −1

]
.

Defining P, diag(p1, · · · , pN) and Γ , diag(γ1, · · · ,γN) we get
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X(p1X1, · · · , pNXN) =

[
Γ PΓ 0

0 −P

]
and (2.8) becomes

(Γ M)T P(Γ M)−P≤ 0. (2.10)

Thus a diagonal matrix P > 0 satisfying this LMI certifies the stability of the inter-
connection.

When M is as in (2.9), the LMI (2.10) becomes[
p2γ2

2 0
0 p1γ2

1

]
−
[

p1 0
0 p2

]
≤ 0

which consists of two simultaneous inequalities, p2γ2
2 ≤ p1 and p1γ2

1 ≤ p2. We
rewrite them as

γ
2
2 ≤

p1

p2
≤ 1

γ2
1

and note that such p1 > 0 and p2 > 0 exist if and only if γ2
2 ≤

1
γ2

1
, that is

γ1γ2 ≤ 1. (2.11)

This condition restricts the loop gain in Figure 2.2 and is known as a “small gain”
criterion.

Note that the derivation above yields the same condition, (2.11), when adapted
to the positive feedback interconnection where

M =

[
0 1
1 0

]
.

This means that the small gain criterion is oblivious to the feedback sign.

2.3 Passivity Theorem

We now specialize Proposition 2.1 to passivity where

Xi =

[
0 1/2

1/2 −εi

]
εi ≥ 0.

With P, diag(p1, · · · , pN) and E , diag(ε1, · · · ,εN) we get

X(p1X1, · · · , pNXN) =
1
2

[
0 P
P −2PE

]
which means that (2.8) is equivalent to
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P(M−E)+(M−E)T P≤ 0 (2.12)

and a diagonal matrix P > 0 satisfying this LMI certifies the stability of the inter-
connected system.

From matrix Hurwitz stability theory, (2.12) with P > 0 implies that all eigenval-
ues of M−E are within the closed left half-plane. Thus, if M−E has an eigenvalue
with a strictly positive real part, there is no P > 0 satisfying (2.12). However we
cannot confirm the feasibility of (2.12) with a diagonal P > 0 from the eigenvalues
alone.

Below we exhibit practically important classes of interconnection structures for
which (2.12) admits a diagonal solution P > 0.

2.3.1 Skew Symmetric Interconnections

The stability criterion (2.12) holds trivially with P = I when M is skew symmetric:

M+MT = 0.

There is no restriction on the number or the gains of subsystems, which makes pas-
sivity ideally suited to large scale systems with a skew symmetric coupling structure.

In Chapter 4 we show that this structure arises naturally in distributed control of
vehicle platoons and in Internet congestion control. A simpler example of a skew
symmetric interconnection is the negative feedback interconnection of two subsys-
tems (Figure 2.2) where M is as in (2.9). The stability of this interconnection with
passive subsystems is a classical result known as the Passivity Theorem.

2.3.2 Negative Feedback Cyclic Interconnection

To derive another special case of the stability criterion (2.12), we consider a negative
feedback loop of N subsystems where the interconnection matrix is

M =


0 · · · 0 δ1
δ2 0 · · · 0
...

. . . . . .
...

0 · · · δN 0

 with
N

∏
i=1

δi =−1. (2.13)

One such interconnection is shown in Figure 2.3 where δ1 =−1, δ2 = · · ·= δN = 1.
We prove in Section 7.2 that (2.12) admits a diagonal solution P > 0 for the class

of matrices (2.13) if and only if
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G1 G2 · · · GN
u1 yN

–

Fig. 2.3 A negative feedback cyclic interconnection of N subsystems. In this example M is as in
(2.13) with δ1 =−1, δ2 = · · ·= δN = 1.

N

∏
i=1

εi ≥ cosN(π/N). (2.14)

In addition, it was shown in [5] that (2.12) holds with strict inequality if and only if
(2.14) is strict.

For N = 2 the condition (2.14) recovers the classical Passivity Theorem: cos(π/2)=
0 and passivity (εi ≥ 0) guarantees stability. For N ≥ 3, cos(π/N) > 0 and (2.14)
demands output strict passivity (εi > 0).

To compare (2.14) to the small gain criterion, we recall from Section 1.1 that
output strict passivity implies an L2 gain of γi = 1/εi and rewrite (2.14) as

N

∏
i=1

γi ≤ secN(π/N) (2.15)

where sec(·)= 1/cos(·). Unlike the small gain criterion which restricts the feedback
loop gain by one, the “secant condition” (2.15) offers the relaxed bound secN(π/N)
which is equal to 8 when N = 3, and decreases asymptotically to one as N → ∞.
This sharper bound is due to the output strict passivity assumption which restricts
the subsystems further than an L2 gain property.

Example 2.1. Consider the following model for a ring oscillator circuit (Figure 2.4)
that consists of a feedback loop of three inverters:

τ1
dx1(t)

dt
= −x1(t)−h3(x3(t))

τ2
dx2(t)

dt
= −x2(t)−h1(x1(t)) (2.16)

τ3
dx3(t)

dt
= −x3(t)−h2(x2(t))

where τi = RiCi > 0, i= 1,2,3, and xi represent voltages. The functions hi(·) depend
on the inverter characteristics and satisfy

hi(0) = 0, xhi(x)> 0 ∀x 6= 0, (2.17)

as in the commonly used model

hi(x) = αi tanh(βix) αi > 0,βi > 0. (2.18)
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R1 R2 R3

C1 C2 C3

x1 x2 x3

Fig. 2.4 Schematic of a three stage ring oscillator circuit.

We decompose (2.16) into the subsystems

Gi : τi
dxi(t)

dt
=−xi(t)+ui(t) yi(t) = hi(xi(t))

interconnected according to u = My where M ∈R3×3 is as in (2.13) with δ1 = δ2 =
δ3 =−1.

Next, we note from (1.14) with f0(x) =−x that the subsystems are output strictly
passive if

εixhi(x)≤ x2.

This inequality, combined with (2.17), restricts the graph of hi(·) to the sector in
Figure 1.2 (middle) with slope γi = 1/εi. An example of such a function is (2.18)
where γi = αiβi.

Then, an application of (2.15) with N = 3 shows that the equilibrium of the in-
terconnection x = 0 is stable when:

γ1γ2γ3 ≤ 8 (2.19)

and a weighted sum of storage functions, each constructed as in (1.13), serves as a
Lyapunov function:

V (x) =
3

∑
i=1

piτi

∫ xi

0
hi(z)dz.

The weights pi > 0 are obtained from the LMI (2.12) which is guaranteed to have a
diagonal solution P > 0 by (2.19). When the inequality (2.19) is strict we conclude
asymptotic stability because (2.12) is negative definite, which means that (2.7) is a
negative definite function of y and, further, yi = hi(xi) = 0⇒ xi = 0 by (2.17).

When τ1 = τ2 = τ3, the secant condition (2.19) is also necessary for stability [5].
Once the loop gain exceeds 8, the equilibrium loses its stability and a limit cycle
emerges, hence the term “ring oscillator.”
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Fig. 2.5 Examples of cactus graphs.

2.3.3 Extension to Cactus Graphs

To describe a broader interconnection structure that encompasses the cyclic inter-
connection above, we define an incidence graph for M by directing an edge from
vertex j to i if and only of mi j 6= 0. This graph is said to be a cactus graph if any
pair of distinct simple cycles1 have at most one common vertex, as in the examples
of Figure 2.5.

For matrices M with this structure and E , diag(ε1, · · · ,εN) > 0, a procedure
was developed in [4] to determine the range of the entries of M and E for which
a diagonal P > 0 satisfies (2.12) with strict inequality. This procedure assigns the
weight mi j/εi to the edge connecting vertex j to i and calculates the gain Γc for each
cycle c = 1, · · · ,C by multiplying the weights along the cycle. It then restricts the
cycle gains according to the specific topology of the graph.

When applied to the subclass of cactus graphs where all cycles intersect at one
common vertex as in Figure 2.5 (right), this procedure yields the condition

C

∑
c=1

αcΓc < 1 where αc =

{
1 if Γc > 0

−cosnc(π/nc) if Γc < 0 (2.20)

and nc is the number of edges on cycle c. For a single cycle (C = 1) with negative
gain Γ < 0 and N edges, (2.20) becomes

αΓ = |Γ |cosN(π/N)< 1,

thus recovering the strict form of the secant condition.
Although the feasibility of (2.12) with diagonal P > 0 can be checked numeri-

cally, algebraic conditions like (2.20) that explicitly display the range of feasibility
are beneficial when the parameters exhibit wide uncertainty, as in typical biologi-
cal models. Such conditions further give insight into the interplay between network
structure and stability properties.

1 Simple cycles are cycles with no repeated vertices other than the starting and ending vertex.



Chapter 3
Equilibrium Independent Stability Certification

We consider again the interconnected system (2.1)-(2.3) but now remove the as-
sumption fi(0,0) = 0, hi(0,0) = 0 that guaranteed an equilibrium at x = 0. We as-
sume an equilibrium

x∗ = [x∗1
T · · ·x∗N

T ]T

exists, but is not necessarily at the origin. This means that x∗ satisfies

fi(x∗i ,u
∗
i ) = 0 i = 1, · · · ,N where

 u∗1
...

u∗N


︸ ︷︷ ︸
, u∗

= M

 h1(x∗1,u
∗
1)

...
hN(x∗N ,u

∗
N)


︸ ︷︷ ︸

, y∗

. (3.1)

If we can find a storage function Vi(·) for each subsystem such that:

Vi(x∗i ) = 0, Vi(xi)> 0 ∀xi 6= x∗i , and

∇Vi(xi)
T fi(xi,ui)≤

[
ui−u∗i
yi− y∗i

]T

Xi

[
ui−u∗i
yi− y∗i

]
(3.2)

then (2.8) with pi > 0 proves stability of x∗ as in the previous section.
However, this procedure assumes that x∗ is known, which is restrictive. It may be

hard to solve the large set of equations (3.1) and, further, the solution depends on
the interconnection. Thus, adding or removing subsystems alter x∗ and require cum-
bersome iterations that impair the compositional approach pursued here. Below we
define the notion of “equilibrium independent dissipativity” which enables stability
certification without the explicit knowledge of x∗.

19
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3.1 Equilibrium Independent Dissipativity (EID)

Consider the system

d
dt

x(t) = f (x(t),u(t)) (3.3)

y(t) = h(x(t),u(t)) (3.4)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, and suppose there exists a set X ⊂ Rn

where, for every x̄ ∈X , there is a unique ū ∈Rm satisfying f (x̄, ū) = 0. Thus ū and
ȳ, h(x̄, ū) are implicit functions of x̄.

Definition 3.1. We say that the system above is equilibrium independent
dissipative (EID) with supply rate s(·, ·) if there exists a continuously differ-
entiable storage function V : Rn×X 7→ R satisfying, ∀(x, x̄,u) ∈ Rn×X ×
Rm

V (x, x̄)≥ 0, V (x̄, x̄) = 0, ∇xV (x, x̄)T f (x,u)≤ s(u− ū,y− ȳ). (3.5)

Unlike (3.2) which is referenced to the equilibrium point x∗, EID demands dissi-
pativity with respect to any point x̄ that has the potential to become an equilibrium
when the system is interconnected with others. EID was introduced in [23] and re-
fined to the form above in [12]. It was shown in [23] that EID is in general less
restrictive than the incremental dissipativity notion [54].

For a memoryless system y(t) = h(u(t)) we take the storage function to be zero
and interpret EID with supply rate s(·, ·) as the static inequality

s(u− ū,h(u)−h(ū))≥ 0 ∀(u, ū) ∈ Rm×Rm. (3.6)

As an illustration, for a scalar function h(·) the inequality above with the passivity
supply rate s(u,y) = uy is

(u− ū)(h(u)−h(ū))≥ 0 ∀(u, ū) ∈ R×R (3.7)

which means that h(·) is increasing1:

u≥ ū ⇒ h(u)≥ h(ū). (3.8)

When h(·) is differentiable (3.7) is equivalent to h′(u)≥ 0 for all u∈R. Similarly,
(3.6) restricts h′(u) to the interval [0,1/ε] for the output strict passivity supply rate
s(u,y) = uy− εy2, and to [−γ,γ] for the finite gain supply rate s(u,y) = γ2u2− y2.

1 We refer to (3.8) as an “increasing” property despite the fact that it allows h(·) to be flat. We
use the term “strictly increasing” when u > ū ⇒ h(u)> h(ū). We follow a similar convention for
decreasing functions.



3.1 Equilibrium Independent Dissipativity (EID) 21

Example 3.1. We examine the equilibrium-independent passivity of

dx(t)
dt

= f0(x(t))+u(t), y(t) = h(x(t)), u(t),x(t),y(t) ∈ R (3.9)

where h(·) is increasing and f0(·) is decreasing.
Given x̄ ∈ R, f (x̄, ū) = f0(x̄) + ū = 0 admits the unique solution ū = − f0(x̄).

Substituting f0(x)+u = f0(x)− f0(x̄)+u− ū and s(u− ū,y− ȳ) = (u− ū)(y− ȳ)−
ε(y− ȳ)2, we rewrite (3.5) as

∇xV (x, x̄)( f0(x)− f0(x̄))) + ε(h(x)−h(x̄))2 (3.10)
+ [∇xV (x, x̄)− (h(x)−h(x̄))](u− ū)≤ 0.

Thus, we seek a V (·, ·) such that V (x, x̄)≥ 0, V (x̄, x̄) = 0 for all x, x̄, and (3.10) holds
with ε ≥ 0.

Note that (3.10) implies

∇xV (x, x̄) = h(x)−h(x̄) (3.11)

because, if ∇xV (x, x̄)− (h(x)− h(x̄)) 6= 0 for some x, we can select u such that
[∇xV (x, x̄)− (h(x)−h(x̄))](u− ū) is positive and large enough to contradict (3.10).
To satisfy (3.11) as well as V (x̄, x̄) = 0 we let

V (x, x̄) =
∫ x

x̄
[h(z)−h(x̄)]dz (3.12)

which further satisfies V (x, x̄)≥ 0 because h(·) is increasing. Thus (3.10) becomes

(h(x)−h(x̄))[( f0(x)+ εh(x))− ( f0(x̄)+ εh(x̄))] ≤ 0. (3.13)

For ε = 0 this inequality follows from the decreasing property of f0(·), because
the sign of (h(x)− h(x̄)) is the same as (x− x̄) and the sign of ( f0(x)− f0(x̄)) is
opposite to (x− x̄). Thus we conclude equilibrium independent passivity without
further assumptions.

If, in addition, f0(·)+ εh(·) remains decreasing up to some ε > 0, then a simi-
lar sign argument guarantees (3.13), proving equilibrium-independent output strict
passivity.

We next generalize the model (3.9) to

dx(t)
dt

= f0(x(t))+g(x(t))u(t), y(t) = h(x(t)), u(t),x(t),y(t) ∈ R (3.14)

which contains the new function g(·), assumed to satisfy g(x)> 0 for all x. With the
modified storage function

V (x, x̄) =
∫ x

x̄

h(z)−h(x̄)
g(z)

dz (3.15)



22 3 Equilibrium Independent Stability Certification

we get

∇xV (x, x̄)( f0(x)+g(x)u) = (h(x)−h(x̄))
(

f0(x)
g(x)

+u
)

= (h(x)−h(x̄))
(

f0(x)
g(x)

− f0(x̄)
g(x̄)

+u− ū
)
.

Arguments similar to those for g(x)≡ 1 above yield the following conclusion:

The system (3.14) is equilibrium independent passive if g(x)> 0 for all x, h(·)
is increasing, and

θ(·), f0(·)
g(·)

(3.16)

is decreasing. It is equilibrium independent output strictly passive if

θ(·)+ εh(·)

remains decreasing up to some ε > 0.

3.2 Numerical Certification of EID

For linear systems, EID coincides with standard dissipativity. To see this let

f (x,u) = Ax+Bu h(x,u) =Cx+Du

and note that if B is full column rank then there exists unique ū satisfying

Ax̄+Bū = 0

when x̄ is constrained to an appropriate subspace. Substituting f (x,u) = A(x− x̄)+
B(u− ū) and the candidate storage function

V (x, x̄) =
1
2
(x− x̄)T P(x− x̄)

in (3.5) we get the EID condition

(x− x̄)T P[A(x− x̄)+B(u− ū)]≤ s(u− ū,C(x− x̄)+D(u− ū))

which is identical to standard dissipativity, with shifted variables.

For polynomial systems, certifying EID can be cast as a SOS feasibility program.
Recall that we denote the set of all polynomials in x as R[x] and all SOS polynomials
as Σ [x]. A polynomial system is EID with respect to a polynomial supply rate s if
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there exists functions V and r satisfying

V (x, x̄) ∈ Σ [x, x̄]

r(x,u, x̄, ū) ∈ R[x,u, x̄, ū]
−∇xV (x, x̄)T f (x,u)+ s(u− ū,h(x,u)−h(x̄, ū))

+r(x,u, x̄, ū) f (x̄, ū) ∈ Σ [x,u, x̄, ū].

(3.17)

The constraint V (x̄, x̄) = 0 is enforced by letting V (x, x̄) = (x− x̄)T Q(x, x̄)(x− x̄)
where Q(x, x̄) is a symmetric matrix of polynomials.

Note that x̄ and ū are variables and not assumed to satisfy f (x̄, ū) = 0. Instead,
the term r(x,u, x̄, ū) f (x̄, ū) ensures that whenever f (x̄, ū) = 0 then

∇xV (x, x̄)T f (x,u)≤ s(u− ū,h(x,u)−h(x̄, ū))

for all x ∈ Rn, u ∈ Rm as desired.

3.3 The Stability Theorem

We return to the interconnected system (2.1)-(2.3) and assume that an equilibrium x∗

exists as in (3.1). With the notion of EID we no longer rely on the explicit knowledge
of x∗ to certify stability.

Theorem 3.1. Suppose the interconnected system (2.1)-(2.3) admits an equi-
librium x∗ as in (3.1) and each subsystem is EID with a quadratic supply rate
(2.4) and storage function Vi(·, ·) satisfying Vi(x̄, x̄) = 0, and Vi(xi, x̄)> 0 when
xi 6= x̄. If there exist pi > 0, i = 1, · · · ,N, such that (2.8) holds, then x∗ is stable
and a Lyapunov function is

V (x) = p1V1(x1,x∗1)+ · · ·+ pNVN(xN ,x∗N).

This expression defines a family of Lyapunov functions parameterized by the
weights pi and the equilibrium x∗. However, to infer stability we need neither the
weights nor the equilibrium explicitly.





Chapter 4
Case Studies

4.1 A Cyclic Biochemical Reaction Network

Consider the following model of a mitogen-activated protein kinase (MAPK) cas-
cade with inhibitory feedback:

dx1(t)
dt

= − b1x1(t)
c1 + x1(t)

+
d1(1− x1(t))

e1 +(1− x1(t))
µ

1+ kx3(t)
dx2(t)

dt
= − b2x2(t)

c2 + x2(t)
+

d2(1− x2(t))
e2 +(1− x2(t))

x1(t) (4.1)

dx3(t)
dt

= − b3x3(t)
c3 + x3(t)

+
d3(1− x3(t))

e3 +(1− x3(t))
x2(t).

The variable xi ∈ [0,1], i = 1,2,3, denotes the concentration of the phosphorylated
(active) form of the protein Mi in Figure 4.1, and 1− xi is the concentration of the
inactive form (after a suitable scaling that brings the total concentration to one). All
parameters are positive.

The second term in each equation is the rate of activation and the first term is the
rate of inactivation for the respective protein. For i = 2,3 the activation rate is pro-
portional to xi−1, which means that the phosphorylated protein upstream facilitates
downstream activation. In contrast, the activation of M1 is inhibited by the active
form of M3, as represented by the decreasing function µ/(1+ kx3) and depicted
with a dashed line in Figure 4.1.

The inhibition of the first stage of the cascade by the last stage is a feedback
regulation, comparable to an assembly line where the most upstream workstation is
decelerated when the final product starts piling up at the end of the line.

A strong negative feedback of this form may generate oscillations which, for
a MAPK cascade, means a transient response to a stimulus rather than sustained
activation. Temporal patterns of activation are believed to determine cell fate [28]
(e.g., proliferation in response to transient activation vs. differentiation in response
to sustained activation), thus motivating dynamical analysis.
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Kinase	  

M1	  
P	  

Phosphatase	  

M1	  
M2	  

	  	  Phosphatase	  

M2	  
M3	  

	  Phosphatase	  

M3	  P	  
P	  

Fig. 4.1 A mitogen-activated protein kinase (MAPK) cascade with inhibitory feedback. Solid lines
represent activation; the dashed line represents inhibition.

We decompose the system (4.1) as in the negative feedback cyclic interconnec-
tion of Figure 2.3, where the subsystems are

Gi :
dxi(t)

dt
= fi(xi(t))+gi(xi(t))ui(t) yi(t) = hi(xi(t)) (4.2)

i = 1,2,3, and the functions fi(·), gi(·), hi(·) are defined as

fi(xi) =−
bixi

ci + xi
gi(xi) =

di(1− xi)

ei +(1− xi)
i = 1,2,3

hi(xi) = xi i = 1,2, h3(x3) =−
µ

1+ kx3
.

Each subsystem is of the form (3.14) studied in Example 3.1 where hi(·) is in-
creasing and θi(·) defined by

θi(x) =
fi(x)
gi(x)

(4.3)

is decreasing. Thus, we estimate the largest εi > 0 such that θi(·)+ εihi(·) is de-
creasing and apply the stability criterion (2.14) for cyclic interconnections.

To show that a steady state x∗ exists we first note that each θi : [0,1] 7→ (−∞,0]
is strictly decreasing and onto; therefore, θ

−1
i : (−∞,0] 7→ [0,1] is well defined and

decreasing. Next, note that the steady state equations

θi(x∗i )+u∗i = 0 i = 1,2,3, u∗2 = x∗1, u∗3 = x∗2, u∗1 =−h3(x∗3)

imply
θ1(x∗1) = h3(θ

−1
3 (−θ

−1
2 (−x∗1)))

where the left hand side is the strictly decreasing and onto function θ1 : [0,1] 7→
(−∞,0] and the right hand side is an increasing function with negative values. Thus,
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the two functions intersect at a unique point x∗1. This implies that a steady state x∗

exists and is unique.
If εi, i = 1,2,3, satisfy (2.14), then the stability of x∗ is ascertained with a Lya-

punov function that is a weighted sum of storage functions of the form (3.15):

V (x) = p1

∫ x1

x∗1

z− x∗1
g1(z)

dz+ p2

∫ x2

x∗2

z− x∗2
g2(z)

dz+ p3

∫ x3

x∗3

h3(z)−h3(x∗3)
g3(z)

dz.

The weights pi > 0 are obtained from the LMI (2.12) which is guaranteed to have a
diagonal solution P > 0 by (2.14).

Note from the explicit form of the functions gi(·) and h3(·) that V (·) above is
not an apparent choice for a Lyapunov function. It further depends on the implicit
solution for x∗ whose existence and uniqueness were argued only qualitatively.

For the numerical details of estimating the parameters εi, i = 1,2,3, such that
θi(·) + εihi(·) is decreasing, we refer the reader to [6]. Other feedback structures
of MAPK cascades were also studied in [6] with the approach illustrated in this
example.

4.2 A Vehicle Platoon

Consider a platoon where the velocity of each vehicle is governed by

dvi(t)
dt

=−vi(t)+ v0
i +ui(t) i = 1, · · · ,N (4.4)

in which ui(t) is a coordination feedback to be designed, and v0
i is the nominal

velocity of vehicle i in the absence of feedback. The position of vehicle i is then
obtained from

dxi(t)
dt

= vi(t).

We will design feedback laws that depend on relative positions with respect to a
subset of other vehicles, typically nearest neighbors.

x3

3

x2

2

x1

1
2 1

Fig. 4.2 A vehicle platoon. The motion of the vehicles is coordinated with relative position feed-
back.

We introduce an undirected graph where the vertices represent the vehicles and
an edge between vertices i and j means that vehicles i and j have access to the
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relative position measurement xi(t)− x j(t). Next we assign an orientation to each
edge by selecting one end to be the head and the other to be the tail. Then the
incidence matrix

Dil =

1 if vertex i is the head of edge l
−1 if vertex i is the tail of edge l
0 otherwise

(4.5)

generates a vector of relative positions zl for the edges l = 1, · · · ,L by

z = DT x. (4.6)

As an illustration, in Figure 4.2,

D =

 1 0
−1 1
0 −1

 and
[

z1
z2

]
= DT x =

[
x1− x2
x2− x3

]
.

We propose the feedback law

u =−D

 h1(z1)
...

hL(zL)

 (4.7)

where each function hl : R 7→ R is strictly increasing and onto. This means that
vehicle i applies the input

ui =−
L

∑
l=1

Dilhl(zl) (4.8)

which depends on locally available measurements because Dil 6= 0 only when vertex
i is the head or tail of edge l. In the case of Figure 4.2,

u1 =−h1(z1) u2 = h1(z1)−h2(z2) u3 = h2(z2)

where we may interpret h1(z1) and h2(z2) as virtual spring forces between vehicles
1 and 2, and 2 and 3 respectively.

We now analyze the stability of the equilibrium whose existence and uniqueness
will be discussed subsequently. We note from (4.6) that

d
dt

z(t) = DT v(t), w(t) (4.9)

where we interpret w(t) as an input and define the output

y(t),

 h1(z1(t))
...

hL(zL(t))

 . (4.10)
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[
0 −D

DT 0

]
−D DT

u [
u
w

]v [
v
y

]

wy

Fig. 4.3 A block diagram for the platoon dynamics. Left: the feedforward blocks ui 7→ vi represent
the velocity dynamics (4.4) and the feedback blocks wl 7→ yl represent the lth subsystem of the
relative position dynamics (4.9)-(4.10). Right: the diagram on the left brought to the canonical
form of Figure 2.1.

We then represent the closed-loop system with the block diagram of Figure 4.3
(left) where the feedforward blocks ui 7→ vi represent the velocity dynamics (4.4)
and the feedback blocks wl 7→ yl represent the lth subsystem of the relative position
dynamics (4.9)-(4.10). This block diagram is equivalent to the one on the right which
is of the standard form in Figure 2.1 with the interconnection matrix

M =

[
0 −D

DT 0

]
.

Noting that M is skew symmetric as in Section 2.3.1 we proceed to proving that
each subsystem is equilibrium independent passive. To do so we compare each to
(3.9) in Example 3.1 which we found to be equilibrium independent passive when
f0(·) is decreasing and h(·) increasing. This is indeed the case for the wl 7→ yl sub-
systems in (4.9)-(4.10) where f0(zl) = 0. The ui 7→ vi subsystems in (4.4), where
f0(vi) = −vi + v0

i , h(vi) = vi, are equilibrium independent output strictly passive
because f0(·)+ εh(·) remains decreasing up to ε = 1.

We thus conclude that if an equilibrium

zl = z∗l , l = 1, · · · ,L, vi = v∗i , i = 1, · · · ,N,

exists, it is stable from the equilibrium-independent passivity of the subsystems and
the skew-symmetry of their interconnection.

At equilibrium the right hand side of (4.9) must vanish, that is

DT v∗ = 0. (4.11)
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By the definition (4.5) above, the null space of DT includes the vector of ones:
DT 1 = 0. In addition, if the graph is connected then the span of 1 constitutes the
entire null space: there is no solution to (4.11) other than v∗ = ϑ1 where ϑ is a
common platoon velocity.

Setting the right hand side of (4.4) to zero, we see that the equilibrium value of
the inputs ui must compensate for the variations in the nominal velocities v0

i so that
a common velocity ϑ can be maintained:

−ϑ + v0
i +u∗i = 0 i = 1, · · · ,N. (4.12)

Note that ∑
N
i=1 ui = 1T u = 0, which follows from (4.7) and 1T D = 0. Thus, adding

the equations (4.12) from i = 1 to i = N we get

−Nϑ +
N

∑
i=1

v0
i = 0

which shows that the common velocity ϑ must be the average 1
N ∑

N
i=1 v0

i .
Substituting this average for ϑ and (4.8) for u∗i back in (4.12) we obtain the

following equations for z∗l :

v0
i −

1
N

N

∑
i=1

v0
i =

L

∑
l=1

Dilhl(z∗l ) i = 1, · · · ,N.

These equations are particularly transparent for a line graph as in Figure 4.2 where
the head and tail of edge l are vertices l and l +1:

v0
1−

1
N

N

∑
i=1

v0
i = h1(z∗1)

v0
i −

1
N

N

∑
i=1

v0
i = −hi−1(z∗i−1)+hi(z∗i ) i = 2, · · · ,N−1

v0
N−

1
N

N

∑
i=1

v0
i = −hN−1(z∗N−1).

Adding equations i = 1 to l above we get a new equation that depends only on
hl(z∗l ). Then a solution z∗l exists since hl(·) is onto, and is unique since hl(·) is
strictly increasing. A similar argument may be developed for other acyclic graphs.
The proof is more elaborate for graphs with cycles where the variables zl are now
interdependent through algebraic constraints [12].
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S1 D2 D1

S2 S3 D3

Fig. 4.4 A network with N = 3 sources and L = 2 links. The rows of the 2×3 routing matrix are
[1 1 0] and [1 0 1] corresponding, respectively, to the links on the left and right.

4.3 Internet Congestion Control

The congestion control problem is to maximize the network throughput while ensur-
ing an equitable allocation of bandwidth to the users. In a decentralized congestion
control scheme each link increases its packet drop or marking probability, inter-
preted as the “price” of the link, as the transmission rate approaches the capacity
of the link. Sources then adjust their sending rates based on the aggregate price
feedback they receive in the form of dropped or marked packets.

To see the interconnection structure of sources and links, consider a network
where packets from sources i = 1, · · · ,N are routed through links j = 1, · · · ,L ac-
cording to a L×N routing matrix

Rli =

{
1 if source i uses link l
0 otherwise. (4.13)

An example with N = 3 sources and L = 2 links in shown in Figure 4.4.
Because the transmission rate w j of link j is the sum of the sending rates vi of

sources using that link, the vectors of link rates w and source rates v are related by:

w = Rv. (4.14)

Likewise, the total price feedback qi received by source i is the sum of the prices p j
of the links on its path, which implies:

q = RT p. (4.15)

Representing the user algorithms as subsystems Gi :−qi 7→ vi, i = 1, · · · ,N and the
router algorithms as GN+ j : w j 7→ p j, j = 1, · · · ,L, we get an interconnection as in
the standard form of Figure 2.1 with:
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M =

[
0 −RT

R 0

]
. (4.16)

This interconnection is skew-symmetric and has the same structure as Figure
4.3 of the platoon example, with the routing matrix R replacing DT , the feedfor-
ward blocks now representing user algorithms, and the feedback blocks represent-
ing router algorithms. Thus, by imposing passivity as a requirement for these algo-
rithms, we guarantee network stability without further restrictions.

As an illustration, in Kelly’s primal algorithm [26] the user update is

Gi :
d
dt

vi(t) = gi(vi(t))(U ′i (vi(t))−qi(t)) i = 1, · · · ,N (4.17)

where gi(vi)> 0 for all vi≥ 0 and U ′i (·) is the derivative of a concave utility function
Ui : R≥0 7→ R where we further assume

U ′i (vi)→ ∞ as vi→ 0+. (4.18)

The router update is

G j+N : p j(t) = h j(w j(t)) j = 1, · · · ,L (4.19)

where h j : R≥0 7→ R≥0 is an increasing function.
Condition (4.18) enforces the physical constraint vi ≥ 0 for the solutions of

(4.17), and mild additional assumptions1 guarantee a unique equilibrium in RN
≥0.

This equilbrium approximates the Kuhn-Tucker optimality conditions for the prob-
lem

max
vi≥0

∑
i

Ui(vi) subject to w j ≤ c j

when h j(·) is interpreted as a penalty function that increases with a steep slope as
w j approaches the link capacity c j.

To ascertain the stability of this equilibrium without relying on its explicit knowl-
edge, we proceed to analyze the equilibrium independent passivity properties of the
subsystems above.

The router algorithm (4.19) is static and, thus, equilibrium independent passivity
follows from the increasing property of h j(·). The user algorithm (4.17) is of the
form (3.14) in Example 3.1 with input ui = −qi and output vi. The function U ′i (·)
plays the role of θ(·) in (3.16) and is decreasing thanks to the concavity of Ui(·).
Thus, the storage function:

Vi(vi, v̄i) =
∫ vi

v̄i

z− v̄i

gi(z)
dz (4.20)

guarantees equilibrium independent passivity. If, in addition,

1 For example, the strict concavity condition (4.21) is sufficient for the existence of a unique
equilibrium [65].
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U
′′
i (vi)≤−ε < 0 (4.21)

for all vi ≥ 0, then U ′i (vi) + εvi is a decreasing function of vi and we conclude
equilibrium-independent output strict passivity.

Since the interconnection is skew symmetric, the stability criterion (2.12) holds
with P= I and the sum of the storage functions (4.20) serves as a Lyapunov function.
Similar Lyapunov constructions from storage functions were pursued for Kelly’s
dual algorithm in [65] and for a primal-dual algorithm in [53].

4.4 Population Dynamics of Interacting Species

Consider the following model for N interacting species:

d
dt

xi(t) =

(
λi− γixi(t)+∑

j 6=i
mi jx j(t)

)
xi(t) i = 1,2, · · · ,N (4.22)

where xi is the population of species i, and λi and γi are positive coefficients.
When N = 1 we recover the logistic growth model [38] which admits a stable

equilibrium at the carrying capacity xi = λi/γi. When N = 2 , (4.22) encompasses
models of mutualism (m12 > 0, m21 > 0), competition (m12 < 0, m21 < 0), and
predation (m12m21 < 0).

We decompose (4.22) into the subsystems

Gi :
d
dt

xi(t) = (λi− γixi(t))xi(t)+ xi(t)ui(t) yi(t) = xi(t) i = 1,2, · · · ,N,

(4.23)
interconnected as in Figure 2.1, where M = (mi j) ∈ RN×N with diagonal entries mii
interpreted as zero.

Note the each Gi is of the form (3.14) with g(x) = h(x) = x, and θ(x) = λi− γix
as defined in (3.16). Since θ(x)+ εix is a decreasing function of x up to εi = γi, we
conclude equilibrium independent output strict passivity, and the storage function in
(3.15) takes the form

Vi(xi, x̄i) = xi− x̄i− x̄i ln
(

xi

x̄i

)
. (4.24)

Thus, if an equilibrium x∗ exists in the positive orthant and if (2.12) with

E = diag(γ1, · · · ,γN)

admits a diagonal solution P > 0, the stability of x∗ is certified with the Lyapunov
function

V (x) =
N

∑
i=1

pi

{
xi− x∗i − x∗i ln

(
xi

x∗i

)}
. (4.25)
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Asymptotic stability follows when (2.12) holds with strict inequality.

Two species

When N = 2 and m12m21 < 0 (predation) the incidence graph of M consists of a
single cycle with negative gain and length two (Section 2.3.3). This means that α = 0
in (2.20), and (2.12) is strictly feasible with diagonal P > 0. Thus, the equilibrium
x∗ is asymptotically stable.

When m12m21 > 0 (mutualism or competition) the cycle gain is positive and, by
(2.20), feasibility is equivalent to

Γ =
m12m21

ε1ε2
=

m12m21

γ1γ2
< 1.

Antelopes, hyenas, and lions

As another example suppose species 2 and 3 both prey on species 1:

m12 < 0 m13 < 0 m21 > 0 m31 > 0, (4.26)

but are neutral to each other:
m23 = m32 = 0. (4.27)

This means that the incidence graph of M consists of two cycles that intersect at
vertex 1 as in Figure 4.5, thus conforming to the cactus structure described in Sec-
tion 2.3.3. Each cycle has negative gain and length two, therefore α1 = α2 = 0 in
(2.20), and (2.12) is strictly feasible with a diagonal P > 0. Thus, the equilibrium x∗

is asymptotically stable without restrictions on the model parameters other than the
sign conditions (4.26)-(4.27).

+ +

12 3

− −

Fig. 4.5 The incidence graph of matrix M with sign structure (4.26)-(4.27).



Chapter 5
From Stability to Performance and Safety

5.1 Compositional Performance Certification

Consider the interconnection in Figure 5.1, modified from Figure 2.1 to accommo-
date an exogenous disturbance input d ∈ Rm and to define a performance output
e ∈Rp. The matrix M specifies the subsystem inputs and the performance output by[

u
e

]
= M

[
y
d

]
=

[
Muy Mud
Mey Med

][
y
d

]
(5.1)

where the upper left block Muy, mapping y to u, plays the role of M in Figure 2.1.

M

G1
. . .

GN y

d

u

e

Fig. 5.1 Interconnected system with exogenous input d and performance output e.

The goal is now to certify the dissipativity of the interconnected system with
respect to the supply rate [

d
e

]T

W
[

d
e

]
(5.2)

where the choice of W signifies a performance objective, such as a prescribed L2
gain from the disturbance to the performance output. To reach this goal we employ
the candidate storage function

V (x) = p1V1(x1)+ · · ·+ pNVN(xN), (5.3)

35
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pi ≥ 0, i = 1, · · · ,N, and recall that it satisfies (2.6). The right hand side of (2.6),
rewritten as in (2.7), is indeed dominated by the performance supply rate (5.2) if

u
y
d
e


T [

X(p1X1, · · · , pNXN) 0
0 −W

]
u
y
d
e

≤ 0 (5.4)

when the variables u and e are constrained by (5.1). Substituting
u
y
d
e

=


Muy Mud

I 0
0 I

Mey Med

[ y
d

]
(5.5)

in (5.4), we obtain the performance condition (5.6) below.

Proposition 5.1. Suppose each subsystem Gi, defined in (2.1)-(2.2) with
fi(0,0) = 0, hi(0,0) = 0, is dissipative with the quadratic supply rate (2.4)
and storage function Vi(·) such that Vi(0) = 0 and Vi(xi)≥ 0 ∀xi. If there exist
pi ≥ 0, i = 1, · · · ,N, such that

Muy Mud
I 0
0 I

Mey Med


T [

X(p1X1, · · · , pNXN) 0
0 −W

]
Muy Mud

I 0
0 I

Mey Med

≤ 0 (5.6)

where X(p1X1, · · · , pNXN) is as defined in (2.7), then the interconnection is
dissipative with respect to the supply rate (5.2), and (5.3) is a storage function.

Note that the stability condition (2.8) is a special case of (5.6) with W = 0 where
M in (2.8) corresponds to Muy in (5.6). However, when applying the stability con-
dition (2.8) we require positive definiteness of the storage functions Vi(·) and strict
positivity of the weights pi.

We next describe the modifications needed when the assumption fi(0,0) = 0,
hi(0,0) = 0 is removed from the proposition above. Instead, we assume an equi-
librium x∗, whose numerical value is not explicitly known, exists as in (3.1) with
M = Muy. We wish to establish dissipativity with respect to the supply rate[

d
e− e∗

]T

W
[

d
e− e∗

]
(5.7)

which depends on the deviation of the performance output e from its equilibrium
value e∗ = Meyy∗.

If each subsystem is EID as in (3.5) with a quadratic supply rate (2.4), then



5.2 Safety under Finite Energy Inputs 37

V (x) = p1V1(x1,x∗1)+ · · ·+ pNVN(xN ,x∗N), (5.8)

pi ≥ 0, i = 1, · · · ,N, satisfies

N

∑
i=1

pi∇xiVi(xi,x∗i )
T fi(xi,ui)

≤
[

u−u∗

y− y∗

]T

X(p1X1, · · · , pNXN)

[
u−u∗

y− y∗

]
. (5.9)

Since u∗ = Muyy∗ and e∗ = Meyy∗, it follows from (5.1) that[
u−u∗

e− e∗

]
=

[
Muy Mud
Mey Med

][
y− y∗

d

]
. (5.10)

Thus, (5.6) implies
u−u∗

y− y∗

d
e− e∗


T [

X(p1X1, · · · , pNXN) 0
0 −W

]
u−u∗

y− y∗

d
e− e∗

≤ 0 (5.11)

which allows us to upper bound the right hand side of (5.9) with (5.7).
We conclude that Proposition 5.1 above holds with the supply rate (5.7) if we

remove the restriction fi(0,0) = 0, hi(0,0) = 0, instead strengthening the subsystem
dissipativity assumption with its equilibrium independent form.

5.2 Safety under Finite Energy Inputs

In this section we assume the disturbance in Figure 5.1 has finite L2 norm,

‖d‖2
2 =

∫
∞

0
|d(t)|2dt ≤ β , (5.12)

and aim to certify the following safety property for the interconnection:

Trajectories starting from x(0) = 0 cannot intersect a given unsafe set U for
any disturbance d(·) satisfying (5.12).

To achieve this goal, we employ the L2 reachability supply rate s(d,e) = |d|2
from Section 1.6, that is (5.2) with

W =

[
Im 0
0 0

]
. (5.13)
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If (5.6) holds with this W then

V (x) = p1V1(x1)+ · · ·+ pNVN(xN)

satisfies V (x(τ)) ≤ ‖d‖2
2 for all τ ≥ 0. To certify safety for all d(·) with ‖d‖2

2 ≤ β ,
the task is to guarantee that the sublevel set

Vβ , {x : V (x)≤ β}

does not intersect the unsafe set U ; that is, its complement V β contains U :

U ⊂ V β . (5.14)

To apply SOS techniques to this task, assume each Vi is a polynomial and that U
is defined as

U , {x ∈ Rn : q j(x)≥ 0, j = 1, . . . ,M} (5.15)

where q j are real polynomials. Thus Vβ and U are closed semialgebraic sets and the
set containment constraint (5.14) is satisfied if there exists ε > 0, pi≥ 0, i= 1, . . . ,N,
and s j ∈ Σ [x], j = 1, . . . ,M, such that

N

∑
i=1

piVi(xi)−β − ε−
M

∑
j=1

s j(x)q j(x) ∈ Σ [x]. (5.16)

To see that (5.16) guarantees (5.14) note that x ∈U implies ∑
M
j=1 s j(x)q j(x)≥ 0 by

definition of U and the fact that each s j is SOS. Therefore, V (x)−β −ε ≥ 0 which
implies V (x)≥ β + ε , hence x ∈ V β .

Proposition 5.2. Suppose each subsystem Gi, defined in (2.1)-(2.2) with
fi(0,0)= 0, hi(0,0)= 0, is dissipative with the quadratic supply rate (2.4) and
storage function Vi(·). If there exist ε > 0, pi ≥ 0, i = 1, · · · ,N, and s j ∈ Σ [x],
j = 1, . . . ,M, satisfying (5.16) and (5.6) with W as in (5.13), then trajectories
starting from x(0) = 0 cannot intersect the unsafe set U for any d(·) with
‖d‖2

2 ≤ β .

If the assumption fi(0,0) = 0, hi(0,0) = 0 is removed from Proposition 5.2 we
must use the equilibrium independent properties of the subsystems. We assume an
equilibrium x∗ exists as in (3.1) with M = Muy and that each subsystem is EID with
respect to quadratic supply rates given by Xi, i = 1, . . . ,N.

The safety constraint (5.16) must now be modified since the subsystem storage
functions depend on the unknown equilibrium x∗. The unsafe set U may also de-
pend on x∗; for example, we may consider the system safe if all trajectories remain
within a distance of the equilibrium. We accommodate such scenarios with polyno-
mials q j(x,x∗) that depend on x∗ in (5.15).
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The set containment constraint (5.14) is satisfied if there exists ε > 0, pi ≥ 0,
i = 1, . . . ,N, s j ∈ Σ [x, x̄], j = 1, . . . ,M, and rk ∈ R[xk, x̄k,uk, ūk], k = 1, . . . ,N such
that

N

∑
i=1

piVi(xi, x̄i)−β − ε−
M

∑
j=1

s j(x, x̄)q j(x, x̄)

−
N

∑
k=1

rk(xk, x̄k,uk, ūk) fk(x̄k, ūk) ∈ Σ [x, x̄,u, ū]. (5.17)

Note that x̄ and ū in (5.17) are variables and not assumed to satisfy f (x̄, ū) = 0.
Instead, the rk terms ensure that whenever f (x̄, ū) = 0 then

N

∑
i=1

piVi(xi, x̄i)−β − ε−
M

∑
j=1

s j(x, x̄)q j(x, x̄) ∈ Σ [x, x̄]. (5.18)

Therefore, we can remove the restriction fi(0,0) = 0, hi(0,0) = 0 from Proposi-
tion 5.2 by requiring that the subsystems be EID and the safety constraint (5.16) be
replaced with (5.17). Then, trajectories starting from x(0) = x∗ cannot intersect the
unsafe set U for any d(·) with ‖d‖2

2 ≤ β .
It is straightforward to extend the results above to the case where the initial state

belongs to a semialgebraic set rather than being located at the equilibrium. Suppose
the initial state is contained in the set

I , {x ∈ Rn : w`(x)≥ 0, `= 1, . . . ,L} (5.19)

where w` are real polynomials. If (5.6) holds and I ⊂ Vα then x(t) is contained in
the sublevel set Vα+β for all d(·) with ‖d‖2

2 ≤ β , x(0) ∈I , and t ≥ 0. Using SOS
techniques we can certify I ⊂ Vα if there exists pi ≥ 0, i = 1, . . . ,N, t` ∈ Σ [x, x̄],
`= 1, . . . ,L, and rk ∈ R[xk, x̄k,uk, ūk], k = 1, . . . ,N satisfying

− (
N

∑
i=1

piVi(xi)−α)−
L

∑
`=1

t`(x, x̄)w`(x, x̄)

−
N

∑
k=1

rk(xk, x̄k,uk, ūk) fk(x̄k, ūk) ∈ Σ [x, x̄,u, ū]. (5.20)

Therefore, the system is safe if the level set Vα+β does not intersect the unsafe set
U . To guarantee this (5.17) must hold with β replaced by β +α .

A similar safety certification procedure was developed in [14] for disturbances
satisfying a bound on d(t) for all t rather than in the L2 norm sense. A direct appli-
cation of sum of squares techniques to safety verification, without the compositional
approach here, was reported in [45]. An overview of the broader literature on estab-
lishing invariant sets is given in [9].
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5.3 Platoon Example Revisited

We illustrate the safety certification procedure above on the vehicle platoon example
of Section 4.2. Recall that vi, i = 1, . . . ,N, is the velocity of the i-th vehicle and zl ,
l = 1, . . . ,L, is the relative position of the vehicles connected by the l-th link.

We consider an additive disturbance d(t) ∈ RN on the velocity dynamics and
wish to find a L2 norm bound ‖d‖2

2 ≤ β such that the disturbance will not cause a
collision. Thus we select the unsafe set to be

U = ∪l=1,··· ,LUl where Ul = {(v,z) : |zl | ≤ γ} (5.21)

with a prescribed safety margin γ > 0, as depicted in Figure 5.2.

z(t)

z∗

z1

z2

U

Vβ

Fig. 5.2 A cross section of the unsafe set (5.21) and a sublevel set Vβ that certifies safety under
disturbances satisfying ‖d‖2

2 ≤ β .

Let the control law be as in (4.7) with hl(zl) = (zl − z0)
1/3, l = 1, . . . ,L, where

z0 > 0. Since hl is increasing and onto, a unique equilibrium point exists as shown
in Section 4.2.

The subsystems mapping ui 7→ vi are given in (4.4). The storage functions

Si(vi, v̄i) =
1
2
(vi− v̄i)

2, i = 1, . . . ,N (5.22)

certify that each subsystem is equilibrium independent output strictly passive since
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∇viSi(vi, v̄i) fi(vi,ui) = (vi− v̄i)(−vi + v0
i +ui)

= (vi− v̄i)(−vi + v̄i +ui− ūi)

=

[
ui− ūi
vi− v̄i

]T [ 0 1/2
1/2 −1

][
ui− ūi
vi− v̄i

]
, (5.23)

where we have used fi(v̄i, ūi) =−v̄i + v0
i + ūi = 0 in the second equation.

The zl subsystems are integrators with input wl and output hl(zl) = (zl − z0)
1/3.

The storage functions

Rl(zl , z̄l) =
3
4
(zl− z0)

4/3− (zl− z0)(z̄l− z0)
1/3 +

1
4
(z̄l− z0)

4/3, l = 1, . . . ,L
(5.24)

certify equilibrium independent passivity since

∇zl Rl(zl , z̄l)wl = ((zl− z0)
1/3− (z̄l− z0)

1/3)wl (5.25)

=

[
wl− w̄l

hl(zl)−hl(z̄l)

]T [ 0 1/2
1/2 0

][
wl− w̄l

hl(zl)−hl(z̄l)

]
(5.26)

where w̄l = 0.
The composite storage function is

V (v,v∗,z,z∗) =
N

∑
i=1

piSi(vi,v∗i )+
L

∑
l=1

pN+lRl(zl ,z∗l ) (5.27)

and the weights pi must satisfy (5.6) with W as in (5.13) to ensure dissipativity
with the L2 reachability supply rate. In addition, pi must satisfy the set containment
constraint (5.17). Since U is a union of the sets Ul , it is necessary to include a
constraint of the form (5.17) for each l.

To reduce the dimension of the problem we recall that the skew symmetric cou-
pling of the subsystems suggests equal weights pi. Indeed the choice pi = 4 satisfies
(5.6) with W as in (5.13). Thus we fix pi = 4 and treat β as a decision variable in
the set containment constraints.

As a numerical example consider a formation of N = 3 vehicles as in Figure 4.2.
The unsafe set U , {z1 : |z1| ≤ 5}∪{z2 : |z2| ≤ 5} is the union of two sets; therefore,
we include a constraint of the form (5.17) for each set. We let v0

1 = 9, v0
2 = 10,

v0
3 = 11, and z0 = 20. Assuming the system is initialized at the equilibrium and a

disturbance d(·) is applied to the third vehicle, we verified safety for all disturbances
such that ‖d‖2

2 ≤ 52.0.
Note that it is not obvious how to apply the SOS techniques to the functions hl

and Rl since they have fractional powers. To remedy this we replace (zl− z0)
1/3 and

(z̄l−z0)
1/3 with the auxillary variables yl and ȳl , and include the polynomials equal-

ity constraints y3
l = zl − z0 and ȳ3

l = z̄l − z0 in the SOS program. More information
about applying SOS techniques to nonpolynomial systems can be found in [41].





Chapter 6
Searching over Subsystem Dissipativity
Properties

6.1 Conical Combinations of Multiple Supply Rates

The stability and performance tests in earlier chapters used a fixed dissipativity prop-
erty for each subsystem. This approach is effective when the interconnection struc-
ture suggests a compatible dissipativity property as in the case studies. However, in
general, useful structural properties of the interconnection and relevant dissipativity
properties may not be apparent.

A more flexible approach is to employ a combination of several dissipativity
certificates known for each subsystem. Indeed, if a system is dissipative with respect
to the supply rate and storage function pairs

(sq(u,y),Vq(x)) q = 1, · · · ,Q (6.1)

then, by Definition 1.1, it is also dissipative with respect to any conical combination(
Q

∑
q=1

pqsq(u,y),
Q

∑
q=1

pqVq(x)

)
, pq ≥ 0 q = 1, · · · ,Q. (6.2)

Thus, when each subsystem i = 1, · · · ,N in the interconnection of Figure 2.1 is
dissipative with a set of quadratic supply rates given by

Xi,q, q = 1, · · · ,Qi,

we replace X(p1X1, · · · , pNXN) in the stability test (2.8) and performance test (5.6)
with

X

(
Q1

∑
q=1

p1,qX1,q, · · · ,
QN

∑
q=1

pN,qXN,q

)
(6.3)

and leave the weights pi,q as decision variables.
As an illustration consider a negative feedback interconnection of two subsys-

tems, with M as in (2.9). Suppose we have a single dissipativity certificate for the

43
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first subsystem and two for the second subsystem:

X1 =

[
1 1/2

1/2 0

]
X2,1 =

[
−1 1/2
1/2 0

]
X2,2 =

[
1 0
0 −1

]
.

With X(p1X1, p2,1X2,1 + p2,2X2,2), the stability condition (2.8) becomes[
p2,2− p2,1 (p2,1−1)/2
(p2,1−1)/2 1− p2,2

]
≤ 0 (6.4)

where we have fixed p1 = 1 since one of the decision variables can be factored out
of (2.8). Note that (6.4) holds with the combination p2,1 = p2,2 = 1, but cannot hold
when either p2,1 = 0 or p2,2 = 0. Thus, neither X2,1 nor X2,2 alone can prove the
stability of the interconnection and a combination is essential.

6.2 Mediated Search for New Supply Rates

In this section we take a more exhaustive approach and combine the stability and
performance tests with a simultaneous search for feasible subsystem dissipativity
properties. The supply rates X1, · · · ,XN in the LMIs (2.8) and (5.6) are now decision
variables instead of being fixed, and each Xi must satisfy the local constraint:

∇Vi(xi)
T fi(xi,ui)−

[
ui

hi(xi,ui)

]T

Xi

[
ui

hi(xi,ui)

]
≤ 0 (6.5)

for all xi ∈ Rni , ui ∈ Rmi , with an appropriate storage function Vi(·).
Since Xi is now a variable, and scaling both Xi and Vi(·) by pi ≥ 0 does not

change (6.5), we drop the weights pi from (2.8) and (5.6). We thus obtain the global
constraint for performance:

Muy Mud
I 0
0 I

Mey Med


T [

X(X1, · · · ,XN) 0
0 −W

]
Muy Mud

I 0
0 I

Mey Med

≤ 0 (6.6)

where X(X1, · · · ,XN) is as defined in (2.7). The constraint for stability is the special
case W = 0 and is not discussed separately.

Solving the combined feasibility problem (6.5)-(6.6) directly may be intractable
for large networks, especially if the local problems (6.5) require sum of squares pro-
gramming. Note, however, the subproblems (6.5) are coupled in (6.6) only by the
supply rate variables Xi while the storage functions Vi(·) remain private. This sparse
coupling allows us to decompose and solve (6.5)-(6.6) with scalable distributed op-
timization methods.
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A particularly attractive method is the Alternating Direction Method of Multipli-
ers (ADMM) which guarantees convergence under very mild assumptions [10]. For
a general problem of the form:

minimize φ(x)+ψ(z)

subject to Ax+Bz = c,
(6.7)

where x and z are vector decision variables, the ADMM updates are:

xk+1 = argmin
x

φ(x)+‖Ax+Bzk− c+ sk‖2 (6.8)

zk+1 = argmin
z

ψ(z)+‖Axk+1 +Bz− c+ sk‖2 (6.9)

sk+1 = sk +Axk+1 +Bzk+1− c. (6.10)

In particular, the variable s in (6.10) accumulates the deviation from the constraint
Ax+Bz = c as in integral control.

To bring the feasibity problem (6.5)-(6.6) to the canonical optimization form
(6.7), we first define the indicator functions:

Ilocal,i(Xi,Vi) :=

{
0 if Xi,Vi satisfy (6.5)
∞ otherwise

(6.11)

Iglobal(X1,. . .,XN) :=

{
0 if X1, . . . ,XN satisfy (6.6)
∞ otherwise.

(6.12)

Next, we replace X1, · · · ,XN in Iglobal with the auxiliary variables Z1, · · · ,ZN , and
rewrite (6.5)-(6.6) as

minimize
Xi,Vi,Zi, i=1,··· ,N

N

∑
i=1

Ilocal,i(Xi,Vi)+ Iglobal(Z1, . . . ,ZN)

subject to Xi−Zi = 0 for i = 1, . . . ,N.

The auxiliary variables Z1, · · · ,ZN enabled the separation of the objective into N+1
independent functions. Thanks to this separation, the ADMM algorithm (6.8)-(6.10)
takes the parallelized form below.

X-updates: For each i, solve the local problem

Xk+1
i = argminX s.t.(6.5)withV≥0

∥∥X−Zk
i +Sk

i
∥∥2

F

where
∥∥·∥∥F represents the Frobenius norm.

Z-update: If Xk+1
1 , · · · ,Xk+1

N satisfy (6.6), then terminate. Otherwise, solve the
global problem

Zk+1
1:N = argmin(Z1,··· ,ZN)s.t.(6.6)

N

∑
i=1

∥∥∥Xk+1
i −Zi +Sk

i

∥∥∥2

F
.
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S-updates: Update Si by

Sk+1
i = Xk+1

i −Zk+1
i +Sk

i

and return to the X-updates.
For each subsystem, this algorithm solves an optimization problem certifying

dissipativity with a supply rate Xi close to the Zi proposed by the global problem.
The global problem first checks if the constraint (6.6) is satisfied with the updated
supply rates Xi. If not, it solves an optimization problem to propose new supply rates
Zi, close to Xi, that satisfy (6.6). Thus the global problem mediates between the local
searches for supply rates to find a feasible combination.

For equilibrium independent certification of stability and performance, the global
constraint (6.6) remains unchanged if the subsystem dissipativity assumption is re-
placed with its equilibrium independent form. Thus, the only change needed in the
ADMM algorithm above is to adapt the X-updates to local EID constraints.

Other distributed optimization methods are applicable to this formulation. Sub-
gradient methods combined with dual decomposition [39] were employed for stabil-
ity certification from L2 gain properties of the subsystems [60], and later extended
to general dissipativity [36]. Unlike ADMM, this method calls for careful tuning of
the stepsize schedule and regularization parameter. Projection methods [22, 8] are
also applicable; however, the convergence rates may be very slow [36].

A relaxed exit criterion

Before the Z-update the algorithm checks if Xk+1
1 , · · · ,Xk+1

N satisfy the global con-
straint (6.6). If so, performance is certified and the algorithm terminates.

Since the ADMM algorithm generates a sequence of supply rates Xq
i , q =

1, · · · ,k+ 1 whose conical combinations are also valid supply rates (Section 6.1),
we can instead check if (6.6) is satisfied with

X

(
k+1

∑
q=1

p1,qX1,q, · · · ,
k+1

∑
q=1

pN,qXN,q

)
(6.13)

where the weights pi,q ≥ 0 are decision variables. Alternatively one may consider a
subset of recent supply rates rather than the whole sequence q = 1, · · · ,k+1.

This modification does not affect the iterations of the ADMM algorithm, only
the exit criterion. Thus the algorithm is still guaranteed to converge, but the number
of iterations can be greatly reduced. As an example, an interconnection of 100 two-
state nonlinear SISO systems was generated. For each test the subsystem parameters
and interconnection were chosen randomly but constrained so that the system had L2
gain less then or equal to one. On 50 instances of this problem the standard ADMM
algorithm required on average 14.7 iterations. With the modified exit criterion this
average dropped to 4.8.



Chapter 7
Symmetry Reduction

7.1 Reduction for Stability Certification

We revisit the stability certification problem and exploit the symmetries in the inter-
connection of Figure 2.1 to reduce the number of decision variables. To avoid cum-
bersome notation we assume single input single output subsystems, i.e., M ∈RN×N .

To characterize symmetries of M we define a permutation matrix R satisfying

RM = MR (7.1)

to be an automorphism of M. If we permute the indices of the subsystems according
to such R, the interconnection does not change (it morphes into itself) because (7.1)
ensures that the inputs ũ = Ru and outputs ỹ = Ry, relabeled with the new indices,
still satisfy ũ = Mỹ.

As an illustration, consider the cyclic interconnection (2.13) with N = 6, δi =
−1 when i is odd, and δi = +1 when i is even; see the incidence graph in Figure
7.1 (left). A permutation that rotates the indices by two nodes is an automorphism
because the interconnection remains unchanged (right). By contrast, rotating the
indices by one node would change the signs of the edges connecting any two nodes.

- -

-

+

+ +

- -

-

+

+ +

6 43 1

1 52 6

5 34 2

Fig. 7.1 For the interconnection depicted on the left, a permutation that rotates the indices by two
nodes (right) is an automorphism because the edges connecting the nodes are unchanged.

47
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The set of all automorphisms of M forms a group, denoted

Aut(M) = {R such that (7.1) holds}. (7.2)

Given this automorphism group we define the orbit of node i ∈ {1, · · · ,N} to be the
set of all nodes j such that some element R permutes i to j. That is,

Oi = { j ∈ {1, · · · ,N} | Rqi = q j for some R ∈ Aut(M)} (7.3)

where qi = RN is the ith unit vector. The orbits partition the nodes 1, · · · ,N into
equivalence classes, defined by the relation

i∼ j if j ∈ Oi, (7.4)

where nodes in the same class can be reached from one another by an automorphism.
The two distinct orbits in Figure 7.1 are {1,3,5} and {2,4,6}.

The following theorem states that, if the subsystems (nodes) on the same orbit
have identical supply rates, Xi =X j when i∼ j, then taking identical weights pi = p j
for i∼ j does not change the feasibility of (2.8). Thus we need one decision variable
per orbit rather than one for each node.

Theorem 7.1. Given X1, · · · ,XN such that Xi = X j when i ∼ j, if (2.8) holds
with weights pi, i = 1, · · · ,N, then it also holds with

p̄i =
1
|Oi| ∑

j∈Oi

p j i = 1, · · · ,N (7.5)

where |Oi| is the number of elements in (7.3). In particular, p̄i = p̄ j for i∼ j.

Proof. We will prove the implication[
M
I

]T

X(Y1, · · · ,YN)

[
M
I

]
≤ 0 ⇒

[
M
I

]T

X(Ȳ1, · · · ,ȲN)

[
M
I

]
≤ 0 (7.6)

where
Ȳi =

1
|Oi| ∑

j∈Oi

Yj. (7.7)

The theorem follows from this implication by setting Yi = piXi. In particular the
assumption that X j = Xi for all j ∈ Oi reduces (7.7) to p̄iXi.

Let R ∈ Aut(M) and note that the left hand side of (7.6) implies

RT
[

M
I

]T

X(Y1, · · · ,YN)

[
M
I

]
R≤ 0 (7.8)

which, by (7.1), is identical to
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M
I

]T [R 0
0 R

]T

X(Y1, · · · ,YN)

[
R 0
0 R

][
M
I

]
≤ 0. (7.9)

It follows from the definition of X(Y1, · · · ,YN) in (2.7) that[
R 0
0 R

]T

X(Y1, · · · ,YN)

[
R 0
0 R

]
= X(YR(1), · · · ,YR(N)) (7.10)

where R(i) denotes the index to which i gets permuted by the automorphism R. Thus[
M
I

]T

X(YR(1), · · · ,YR(N))

[
M
I

]
≤ 0. (7.11)

Averaging the expression on the left over Aut(M) (that is, adding over R ∈ Aut(M)
and dividing by |Aut(M)|) we obtain the right hand side of (7.6). �

The theorem above holds for any subset of automorphisms that forms a group.
This generality is important for applications where the full automorphism group is
difficult to compute but a subset representing a particular symmetry is apparent.
However, in this case the reduction may not be as extensive.

Enriching Symmetries for Further Reduction

The proposition below shows that transformations of the form

M̂ = D−1MD (7.12)

where D ∈ CN×N is diagonal do not change the feasibility of (2.8). We apply such
transformations to enrich the symmetries in M thereby reducing the number of orbits
and the corresponding decision variables in (2.8).

As an example, for the cyclic interconnection in Figure 7.1 the choice of D spec-
ified in the next section yields identical edge weights (= e jπ/6) which means that all
rotations are now automorphisms and the number of orbits is reduced to one.

Proposition 7.1. Let M̂ be as in (7.12) where D is a diagonal matrix with
entries di ∈ C, di 6= 0, i = 1, · · · ,N. Then the LMI (2.8) is equivalent to[

M̂
I

]∗
X(p̂1X1, · · · , p̂NXN)

[
M̂
I

]
≤ 0 (7.13)

where p̂i = |di|2 pi. Thus, if there exist pi > 0 satisfying (2.8) then there exist
p̂i > 0 satisfying (7.13) and vice versa.
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Proof. Multiplying (2.8) from the left by D∗ and from the right by D we get

D∗
[

M
I

]∗
X(p1X1, · · · , pNXN)

[
M
I

]
D≤ 0 (7.14)

which, by (7.12), identical to[
M̂
I

]∗ [D∗ 0
0 D∗

]
X(p1X1, · · · , pNXN)

[
D 0
0 D

]
︸ ︷︷ ︸

=X(|d1|2 p1X1,··· ,|dN |2 pN XN)

[
M̂
I

]
≤ 0. (7.15)

7.2 Cyclic Interconnections Revisited

We consider again the cyclic interconnection

M =


0 · · · 0 δ1
δ2 0 · · · 0
...

. . . . . .
...

0 · · · δN 0

 (7.16)

of output strictly passive systems with supply rate si(ui,yi) = uiyi− εiy2
i , εi > 0.

To examine the feasibility of the stability criterion (2.8) we first define

ũi , ε
−1
i ui, s̃i(ũi,yi), ε

−1
i si(ui,yi) = ũiyi− y2

i ,

so that each subsystem has identical supply rate given by

X̃i =

[
0 1/2

1/2 −1

]
(7.17)

and the parameters εi are absorbed into the interconnection equation ũ = M̃y where
M̃ is specified in (7.19) below.

Next we note that a transformation of the form (7.12) with diagonal entries

d1 = 1, di = di−1
δi

εi

1
r

i = 2, · · · ,N, r ,
(

δ1 · · ·δN

ε1 · · ·εN

)1/N

(7.18)

endows the interconnection with rotational symmetry:

M̃ =


0 · · · 0 δ1

ε1
δ2
ε2

0 · · · 0
...

. . . . . .
...

0 · · · δN
εN

0

 M̂ = D−1M̃D =


0 · · · 0 r
r 0 · · · 0
...

. . . . . .
...

0 · · · r 0

 . (7.19)
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Thus the entire set {1, · · · ,N} is a single orbit under the automorphism group of M̂.
By Proposition 7.1 the feasibility of the LMI (2.8) is equivalent to that of (7.13),

and by Theorem 7.1 taking equal weights p̂1 = · · · = p̂N , say = 1, does not restrict
feasibility. Substituting

X(X̃1, · · · , X̃N) =

[
0 1

2 I
1
2 I −I

]
(7.20)

in (7.13) we get the following necessary and sufficient feasibility condition for (2.8):

1
2

M̂+
1
2

M̂∗− I ≤ 0. (7.21)

Note that (7.21) defines a circulant matrix whose first row is[
−1

1
2

r∗ 0 · · · 0
1
2

r
]

(7.22)

and the subsequent rows are obtained by shifting the entries to the right with a wrap
around from the Nth entry to the first. The eigenvalues of circulant matrices are the
discrete Fourier transform coefficients of the first row [17] which, for (7.22), are

λk =−1+
1
2

r∗e− j 2π
N k +

1
2

re j 2π
N k k = 1, · · · ,N. (7.23)

Following the definition of r in (7.18) we substitute r = |r|e jπ/N when δ1 · · ·δN < 0,
and r = |r| when δ1 · · ·δN ≥ 0, obtaining

λk =

{
−1+ |r|cos

(
π

N + 2π

N k
)

when δ1 · · ·δN < 0
−1+ |r|cos

( 2π

N k
)

when δ1 · · ·δN ≥ 0.
(7.24)

Since λk ≤ λN , k = 1 · · · ,N−1, (7.21) is equivalent to λN ≤ 0, that is

|r| ≤
{

sec(π/N) when δ1 · · ·δN < 0
1 when δ1 · · ·δN ≥ 0. (7.25)

We summarize the result in the following proposition which recovers (2.14) when
δ1 · · ·δN =−1 as in (2.13).

Proposition 7.2. Consider systems with supply rates si(ui,yi) = uiyi− εiy2
i ,

εi > 0, i = 1, · · · ,N, interconnected according to (7.16). There exist pi > 0,
i = 1, · · · ,N, satisfying the stability criterion (2.8) if and only if

|r|N =
|δ1 · · ·δN |
ε1 · · ·εN

≤
{

secN(π/N) when δ1 · · ·δN < 0
1 when δ1 · · ·δN ≥ 0. (7.26)
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7.3 Reduction for Performance Certification

We now consider the interconnection in Figure 5.1 with disturbance d ∈Rm, perfor-
mance output e ∈ Rp, and input and output vectors u ∈ RN , y ∈ RN for the concate-
nation of N single input single output systems. The interconnection matrix is

M =

[
Muy Mud
Mey Med

]
(7.27)

with blocks Muy ∈ RN×N , Mud ∈ RN×m, Mey ∈ Rp×N , Med ∈ Rp×m.

We generalize the notion of automorphism in Section 7.1 as follows:

Definition 7.1. The triplet (R,Rd ,Re) of permutation matrices R ∈ RN×N ,
Rd ∈ Rm×m, Re ∈ Rp×p is an automorphism of M if

M
[

R 0
0 Rd

]
=

[
R 0
0 Re

]
M. (7.28)

This definition encompasses the one in Section 7.1 because (7.28) implies
RMuy = MuyR where Muy plays the role of M in (7.1). However, we now ask that
the permutation R be matched with a simultaneous permutation Rd of disturbances
and Re of performance variables that together leave the interconnection invariant.
An example is shown in Figure 7.2 (left) where Muy has the form of M̂ in (7.19),

Mey = MT
ud =

[
0 0 0 0 0 1
0 0 1 0 0 0

]
and Med = 0. (7.29)

All permutations R that rotate the nodes 1, · · · ,6 satisfy RMuy = MuyR. However,
only rotation by three nodes, matched with a simultaneous permutation of d1 with
d2 and e1 with e2, leaves the interconnection unchanged (right).

6 33 6

1 42 5

5 24 1

d1 d2e1 e2d2 d1e2 e1

Fig. 7.2 An automorphism (R,Rd ,Re) where R rotates the nodes 1, · · · ,6 by three, Rd permutes d1
with d2, and Re permutes e1 with e2. The interconnection is unchanged as shown on the right.
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The set of all automorphisms defines the automorphism group Aut(M) and the
orbit of node i ∈ {1, · · · ,N} under this group is

Oi = { j ∈ {1, · · · ,N} | Rqi = q j for some (R,Rd ,Re) ∈ Aut(M)}. (7.30)

As before, the orbits partition {1, · · · ,N} into equivalence classes with the relation
i∼ j indicating j ∈ Oi. The orbits in Figure 7.2 are {1,4}, {2,5}, and {3,6}.

We propose a reduction of the decision variables in the performance test (5.6)
that mimics the reduction suggested in Theorem 7.1 for the stability test (2.8). For
this extension we stipulate that the performance supply rate[

d
e

]T

W
[

d
e

]
(7.31)

be invariant under Aut(M), that is

W
[

Rd 0
0 Re

]
=

[
Rd 0
0 Re

]
W for all (R,Rd ,Re) ∈ Aut(M). (7.32)

For the example of Figure 7.2, the L2 gain supply rate γ2
1 d2

1 +γ2
2 d2

2−e2
1−e2

2 satisfies
this condition if γ1 = γ2.

If the performance criterion satisfies this condition and the subsystems on the
same orbit have identical supply rates, then taking identical weights pi = p j for
i ∼ j does not change the feasibility of the performance test (5.6). Thus we can
apply this test with one decision variable per orbit.

Theorem 7.2. Suppose X1, · · · ,XN satisfy Xi = X j when i∼ j and W satisfies
(7.32). If (5.6) holds with weights pi, i = 1, · · · ,N, then it also holds with

p̄i =
1
|Oi| ∑

j∈Oi

p j i = 1, · · · ,N (7.33)

where |Oi| is the number of elements in (7.30). In particular, p̄i = p̄ j for i∼ j.

The proof is provided in [47] and follows closely the proof of Theorem 7.1 above.
Similarly an extension of Proposition 7.1 guarantees that the feasibility of the per-
formance test (5.6) is unchanged under the transformation[

M̂uy M̂ud
M̂ey M̂ed

]
=

[
D−1 0

0 D−1
e

][
Muy Mud
Mey Med

][
D 0
0 Dd

]
Ŵ =

[
Dd 0
0 De

]∗
W
[

Dd 0
0 De

]
where D∈CN×N , De ∈Cp×p, Dd ∈Cm×m are diagonal and invertible. Such transfor-
mations are useful for generating symmetries that can then be used for a reduction
in the number of decision variables. The computational benefits of the symmetry
reduction above are studied in detail in [47].
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Finally we note that incorporating the symmetry reduction in the ADMM algo-
rithm in Section 6.2 is possible with minor modifications. In this case we do not
assume that subsystems on the same orbit have identical supply rates, but rather en-
force this condition. The minimization in the Z update is performed subject to the
constraint Zi = Z j for i∼ j; the X and S updates remain the same. The algorithm is
terminated after the Z update if Z1, · · · ,ZN satisfy the local constraints (6.5).



Chapter 8
Dissipativity with Dynamic Supply Rates

8.1 Generalizing the Notion of Dissipativity

We now define a generalized notion of dissipativity that incorporates more infor-
mation about a dynamical system than the standard form in Chapter 1. For this
generalization we augment the model (1.1)-(1.2) with a stable linear system

d
dt

η(t) = Aη(t)+B
[

u(t)
y(t)

]
η(t) ∈ Rn′ (8.1)

z(t) = Cη(t)+D
[

u(t)
y(t)

]
z(t) ∈ Rp′ (8.2)

that serves as a virtual filter for the inputs and outputs. The dimensions of η and z
as well as the choice of A, B, C, D depend on the dynamical properties of the system
(1.1)-(1.2) one would like to capture.

Definition 8.1. The system (1.1)-(1.2) is dissipative with respect to the dy-
namic supply rate zT Xz where z is the output of the auxiliary system (8.1)-
(8.2) and X is a real symmetric matrix if there exists a storage function
V : Rn×Rn′ 7→ R such that V (0,0) = 0, V (x,η)≥ 0 ∀x,η , and

V (x(τ),η(τ))−V (x(0),η(0))≤
∫

τ

0
z(t)T Xz(t)dt (8.3)

for every input signal u(·) and every τ ≥ 0 in the interval of existence of the
solution x(t).

The standard form of dissipativity with a quadratic supply rate is a special case
with D = I and C = 0, that is

z =
[

u
y

]
.

55
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Fig. 8.1 Definition 8.1 gener-
alizes the notion of dissipativ-
ity in Chapter 1 to allow for
a dynamic supply rate zT Xz
where z is a filtered version
of the vector of inputs and
outputs. This generalization
incorporates more detailed
information from the under-
lying dynamical system. The
earlier definition is the special
case where C = 0, D = I.

u (zT Xz,V (x,η)) y

η̇ = Aη +B
[

u
y

]
z =Cη +D

[
u
y

]

For a continuously differentiable storage function V (·, ·), (8.3) is equivalent to

∇xV (x,η)T f (x,u)+∇ηV (x,η)T
(

Aη +B
[

u
h(x,u)

])
(8.4)

≤
(

Cη +D
[

u
h(x,u)

])T

X
(

Cη +D
[

u
h(x,u)

])
∀x ∈ Rn, η ∈ Rn′ , u ∈ Rm.

Example 8.1. The scalar system

dx(t)
dt

=−αx(t)+u(t) α > 0, y(t) = γx(t) γ > 0, (8.5)

is dissipative with supply rate zT
[

0 1/2
1/2 −ε

]
z for some ε > 0 when z is generated by

dη(t)
dt

= −η(t)+u(t) (8.6)

z(t) =
[
−βη(t)+u(t)

y(t)

]
β < min{α,1}. (8.7)

The proof follows by showing output strict passivity of the (x,η) system with input
û = −βη +u and output y = γx. When α 6= 1 the new variables χ1 =

γ

1−α
(x−η),

χ2 =
γ

1−α
(−αx+η) satisfy

d
dt

[
χ1(t)
χ2(t)

]
=

[
0 1

−α(1−β ) −(1+α−β )

][
χ1(t)
χ2(t)

]
+

[
0
γ

]
û(t) (8.8)

y(t) =
[
1 1
][χ1(t)

χ2(t)

]
(8.9)

which is of the form in Example 1.3 with `= α(1−β ), k = 1+α−β , and µ = 1.
Since β < min{α,1} we have ` > 0 and k > µ > 0; thus, from Example 1.3, the
augmented (x,η) system is output strictly passive. When α = 1, the augmented
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system cannot be brought to the form of Example 1.3 but can again be shown to be
output strictly passive by showing the existence of a P > 0 satisfying (1.25).

Note that the choice β = 0 in (8.7) implies the output strict passivity of (8.5); the
full class of filters with β < min{α,1} provides a more detailed description of the
input/output behavior of (8.5).

Example 8.2. The previous example derived a class of filters that preserve an exist-
ing passivity property. In this example we characterize filters that attain passivity
when combined with a system that lacks this property.

Consider the model

dx1(t)
dt

= x2(t)

dx2(t)
dt

= −x1(t)− kx2(t)+u(t) k ∈ (0,1) (8.10)

y(t) = x1(t)+ x2(t)

which violates the necessary condition for passivity in Example 1.3 because k < 1.
We introduce the filter

dη(t)
dt

= −η(t)+ y(t) (8.11)

ŷ(t) = −βη(t)+ y(t) (8.12)

and combine with the system equations above using the new variable χ3 , η− x1:

dx1(t)
dt

= x2(t)

dx2(t)
dt

= −x1(t)− kx2(t)+u(t) k ∈ (0,1) (8.13)

dχ3(t)
dt

= −χ3(t)

ŷ(t) = (1−β )x1(t)+ x2(t)−β χ3(t).

We then refer to Example 1.4 and examine

A =

[
0 1
−1 −k

]
B =

[
0
1

]
C =

[
(1−β ) 1

]
which excludes the uncontrollable χ3 subsystem.

If we choose β > 1−k, it follows from Example 1.3 that there exists P = PT > 0
satisfying (1.25). Then Example 1.4 implies that there exists P̂ = P̂T > 0 satisfying
(1.27), thus certifying passivity of the augmented system (8.13). We conclude that
system (8.10) is dissipative with supply rate

zT
[

0 1/2
1/2 0

]
z where z =

[
u
ŷ

]
=

[
u

−βη + y

]
, β > 1− k.
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8.2 Stability of Interconnections

We revisit the interconnection in Figure 2.1 and augment the subsystem models
(2.1)-(2.2), fi(0,0) = 0, hi(0,0) = 0, with stable linear systems

d
dt

ηi(t) = Aiη(t)+Bi

[
ui(t)
yi(t)

]
ηi(t) ∈ Rn′i (8.14)

zi(t) = Ciηi(t)+Di

[
ui(t)
yi(t)

]
zi(t) ∈ Rp′i . (8.15)

We then assume each subsystem is dissipative with a positive definite, continuously
differentiable storage function Vi(·, ·) and supply rate zT

i Xizi, that is

∇xiVi(xi,ηi)
T fi(xi,ui)+∇ηiVi(xi,ηi)

T
(

Aiη +Bi

[
ui
yi

])
≤ zT

i Xizi. (8.16)

Defining A, B, C, D to be block diagonal matrices comprised of Ai, Bi, Ci. Di,
i = 1, · · · ,N, we lump (8.14)-(8.15) into a single auxiliary system

d
dt

η(t) = Aη(t)+BS
[

u(t)
y(t)

]
= Aη(t)+BS

[
M
I

]
y(t) (8.17)

z(t) =Cη(t)+DS
[

u(t)
y(t)

]
=Cη(t)+DS

[
M
I

]
y(t) (8.18)

where M is the interconnection matrix and S is a permutation matrix such that

S



u1
...

uN
y1
...

yN


=



u1
y1
...
...

uN
yN


. (8.19)

Next we search for a Lyapunov function of the form

V (x,η) = p1V1(x1,η1)+ · · ·+ pNVN(xN ,ηN)+η
T Qη (8.20)

where pi > 0, i = 1, · · · ,N, and Q = QT ≥ 0 are decision variables. From (8.16) and
(8.17), the derivative of V (x,η) along the system equations is upper bounded byz1

...
zN


Tp1X1

. . .
pNXN


z1

...
zN

+[η

y

]T

 AT Q+QA QBS
[

M
I

]
[

M
I

]T

ST BT Q 0

[η

y

]
(8.21)
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where, upon substitution of (8.18) for z, the first term becomes

[
η

y

]T [
C DS

[
M
I

]]T

p1X1
. . .

pNXN

[C DS
[

M
I

]][
η

y

]
. (8.22)

Thus, to certify stability, we search for Q = QT ≥ 0 and pi > 0 such that AT Q+QA QBS
[

M
I

]
[

M
I

]T

ST BT Q 0

+[C DS
[

M
I

]]T

p1X1
. . .

pNXN

[C DS
[

M
I

]]
≤ 0.

(8.23)

Proposition 8.1. Consider the interconnected system (2.1)-(2.3) with
fi(0,0) = 0, hi(0,0) = 0, and suppose each subsystem is dissipative with
a positive definite, continuously differentiable storage function Vi(·, ·) satis-
fying (8.16) for some auxiliary system (8.14)-(8.15). If there exist pi > 0,
i = 1, · · · ,N, and Q = QT ≥ 0 such that (8.23) holds then x = 0 is stable.

This result encompasses Proposition 2.1 as a special case because, when Q = 0,
C = 0, D = I, (8.23) becomes

[
M
I

]T

ST

p1X1
. . .

pNXN

S
[

M
I

]
=

[
M
I

]T

X(p1X1, · · · , pNXN)

[
M
I

]
≤ 0.

Proposition 8.1 infers the stability of x = 0 indirectly from the stability of (x,η) =
(0,0) for the augmented system where the x subsystem evolves independently and
drives the virtual η subsystem. It may appear circuitous to analyze the augmented
system rather than search directly for a Lyapunov function V (x). However, the ad-
vantage of V (x,η) in (8.20) is its separability in xi which allows for a compositional
construction of this function. Indeed the following example shows that a separable
Lyapunov function V (x) may not exist when a separable V (x,η) as in (8.20) does.

Example 8.3. Suppose system (8.10) in Example 8.2 with k = 0.5 is interconnected
in negative feedback with the system (8.5) in Example 8.1 with α = 0.6 and γ = 6.
Relabeling x in Example 8.1 as x3, we write the composite system as

dx1(t)
dt

= x2(t)

dx2(t)
dt

= −x1(t)−0.5x2(t)−6x3(t) (8.24)

dx3(t)
dt

= x1(t)+ x2(t)−0.6x3(t)



60 8 Dissipativity with Dynamic Supply Rates

which, as we show in Appendix C, does not admit a block separable Lyapunov
function V1(x1,x2)+V2(x3).

In contrast, we here show that a Lyapunov function of the form

V1(x1,x2,η1)+V2(x3,η2)+η
T Qη (8.25)

exists where η1 is the state of (8.11) and η2 is the state of (8.6). Likewise we denote
with u1, y1 and z1 the respective variables in Example 8.2 and by u2, y2 and z2 those
in Example 8.1, and note that the interconnection matrix is

M =

[
0 −1
1 0

]
.

We select β ∈ (0.5,0.6) so that condition β > 1− k in Example 8.2 and β <
min{α,1} in Example 8.1 are satisfied. Thus, there exist quadratic positive definite
storage functions V1(x1,x2,η1) and V2(x3,η2) satisfying (8.16) with, respectively,

X1 =

[
0 1/2

1/2 0

]
and X2 =

[
0 1/2

1/2 −ε

]
, ε > 0.

Next we form the matrices in (8.17)-(8.18):

A =

[
−1 0
0 −1

]
BS
[

M
I

]
=

[
1 0
1 0

]
C =


0 0
−β 0
0 −β

0 0

 DS
[

M
I

]
=


0 −1
1 0
1 0
0 1


and check the condition (8.23). It is not difficult to show that (8.23) holds with
p1 = p2 = 1 and

Q = q
[

1 −1
−1 1

]
q≥ β 2

8ε

thus proving stability with a Lyapunov function of the form (8.25).

8.3 Certification of Performance

Now consider the interconnection in Figure 5.1 with exogenous input d and perfor-
mance output e, and introduce a stable linear system

d
dt

ηN+1(t) = AN+1ηN+1(t)+BN+1

[
d(t)
e(t)

]
ηN+1(t) ∈ Rn′N+1 (8.26)

zN+1(t) = CN+1ηN+1(t)+DN+1

[
d(t)
e(t)

]
zN+1(t) ∈ Rp′N+1 (8.27)

that serves as a virtual filter for d and e.
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The goal is now to certify that the interconnected system is dissipative with re-
spect to the dynamic supply rate

zT
N+1WzN+1 (8.28)

where zN+1 is the output of (8.26)-(8.27) and W is a symmetric matrix. The choice
of W and AN+1,BN+1,CN+1,DN+1 of (8.26)-(8.27) dictate the performance criterion
to be certified for the interconnected system.

We assume each subsystem is dissipative with a positive semidefinite, continu-
ously differentiable storage function Vi(·, ·) and supply rate zT

i Xizi, satisfying (8.16).
We define A, B, C, D to be block diagonal matrices comprised of Ai, Bi, Ci, Di,

i = 1, · · · ,N + 1. Similarly to the stability certification, we lump (8.14)-(8.15) and
(8.26)-(8.27) into a single auxiliary system

d
dt

η(t) = Aη(t)+BS


u(t)
e(t)
y(t)
d(t)

 = Aη(t)+BS
[

M
I

][
y(t)
d(t)

]
(8.29)

z(t) =Cη(t)+DS


u(t)
e(t)
y(t)
d(t)

 =Cη(t)+DS
[

M
I

][
y(t)
d(t)

]
(8.30)

where M is the interconnection matrix (5.1) and S is a permutation matrix such that

S



u1
...

uN
e
y1
...

yN
d


=



u1
y1
...
...

uN
yN
d
e


. (8.31)

Next we search for a storage function of the form (8.20) where pi ≥ 0, i =
1, · · · ,N and Q = QT ≥ 0 are decision variables. The derivative of V (x,η) along
the system equations is upper bounded by the supply rate zT

N+1WzN+1 if AT Q+QA QBS
[

M
I

]
[

M
I

]T

ST BT Q 0

+[C DS
[

M
I

]]T


p1X1

. . .
pNXN

−W


[
C DS

[
M
I

]]
≤0.

(8.32)
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Proposition 8.2. Consider the subsystems (2.1)-(2.2) with fi(0,0) = 0,
hi(0,0) = 0 interconnected by (5.1). Suppose each subsystem is dissipa-
tive with a positive semidefinite, continuously differentiable storage function
Vi(·, ·) satisfying (8.16) for some auxiliary system (8.14)-(8.15). If there exist
pi ≥ 0, i = 1, · · · ,N, and Q = QT ≥ 0 such that (8.32) holds then the system
is dissipative with respect to the dynamic supply rate (8.28).

8.4 Search for Dynamic Supply Rates

In Section 6.2 the ADMM algorithm was used to search for feasible subsystem dis-
sipativity properties certifying stability or performance. We can also use this method
when the subsystem properties are described by dynamic supply rates [35].

For each subsystem the auxiliary system (8.14)-(8.15) is fixed and the matrices
X1, . . . ,XN in (8.23) or (8.32) are decision variables where each Xi must satisfy the
local constraint (8.16). Since each Xi is a decision variable we can drop the scaling
weights pi from (8.23) and (8.32). Thus, for performance certification the global
constraint becomes AT Q+QA QBS

[
M
I

]
[

M
I

]T

ST BT Q 0

+[C DS
[

M
I

]]T


X1

. . .
XN
−W


[
C DS

[
M
I

]]
≤ 0

(8.33)
and the ADMM algorithm takes the following form.

X-updates: For each i, solve the local problem

Xk+1
i = argminX s.t.(8.16)with V≥0

∥∥X−Zk
i +Sk

i
∥∥2

F

where
∥∥·∥∥F represents the Frobenius norm.

Z-update: If Xk+1
1 , · · · ,Xk+1

N satisfy (8.33), then terminate. Otherwise, solve the
global problem

Zk+1
1:N = argmin(Z1,··· ,ZN)s.t.(8.33)

N

∑
i=1

∥∥∥Xk+1
i −Zi +Sk

i

∥∥∥2

F
.

S-updates: Update Si by

Sk+1
i = Xk+1

i −Zk+1
i +Sk

i

and return to the X-updates.
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For stability certification we replace (8.33) by (8.23), again with the weights
pi dropped. An extension of the symmetry reduction techniques in Chapter 7 to
dynamic supply rates is pursued in [47].

8.5 EID with Dynamic Supply Rates

Consider the system (3.3)-(3.4) and suppose there exists a set X ⊂ Rn where, for
every x̄ ∈X , there exists unique ū ∈ Rm satisfying f (x̄, ū) = 0. We append to this
system the stable linear system (8.1)-(8.2) where all eigenvalues of A have negative
real parts. Thus A is invertible and there exists a unique η̄ such that

Aη̄ +B
[

ū
ȳ

]
= 0 (8.34)

where ȳ, h(x̄, ū). Likewise we define

z̄ =Cη̄ +D
[

ū
ȳ

]
, (8.35)

and note that ū, ȳ, η̄ , and z̄ are functions of x̄.

Definition 8.2. We say that the system (3.3)-(3.4) is equilibrium indepen-
dent dissipative (EID) with the dynamic supply rate zT Xz where z is the
output of (8.1)-(8.2) and X is a real symmetric matrix if there exists a
storage function V : Rn ×Rn′ ×X ×Rn′ 7→ R such that V (x̄, η̄ , x̄, η̄) = 0,
V (x,η , x̄, η̄)≥ 0 for all (x,η , x̄, η̄) ∈ Rn×Rn′ ×X ×Rn′ , and

∇xV (x,η , x̄, η̄)T f (x,u)+∇ηV (x,η , x̄, η̄)T
(

Aη +B
[

u
y

])
≤ (z− z̄)T X(z− z̄)

(8.36)
for all (x,η , x̄,u) ∈ Rn×Rn′ ×X ×Rm where η̄ , z̄ are as in (8.34)-(8.35).

Proposition (8.1) and (8.2) can be easily generalized to interconnections of EID
systems with dynamic supply rates. In this case the stability (8.23) and perfor-
mance (8.32) criteria are the same, but guarantee negativity of a quadratic inequality
in the shifted equilibrium points as in (5.11). Furthermore, the ADMM algorithm
can be used by modifying the X-updates to certify EID with respect to a dynamic
supply rate for each subsystem.





Chapter 9
Comparison to Other Input/Output Approaches

Throughout the book we employed a state space approach with the help of the dis-
sipativity concept, generalized in Chapter 8 to dynamic supply rates. In this final
chapter we make connections to other input/output approaches that treat dynamical
systems as operators mapping inputs to outputs in function spaces. We start with
the classical techniques summarized in [18, 64], and next relate the dynamic supply
rates of Chapter 8 to integral quadratic constraints (IQCs) introduced in [34]. We
conclude by pointing to further results that are complementary to those presented in
the book.

9.1 The Classical Input/Output Theory

Consider a dynamical system where inputs u(·), assumed to have the property that∫
τ

0 |u(t)|2dt is finite for all τ ≥ 0, generate outputs y(·) satisfying

∫
τ

0

[
u(t)
y(t)

]T

X
[

u(t)
y(t)

]
dt ≥ 0 ∀τ ≥ 0. (9.1)

Note that this property follows from dissipativity (Definition 1.1) with supply rate

s(u,y) =
[

u
y

]T

X
[

u
y

]
when x(0) = 0. However, in this section we do not make explicit use of a state
model and, thus, do not rely on a storage function. Instead we take (9.1) as a stand-
alone property as in the classical input/output approach [18], extended to large scale
interconnections in [64].

Now consider the interconnection in Figure 5.1 with exogenous input d and per-
formance output e, and suppose each subsystem, i = 1, · · · ,N, satisfies

65
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τ

0

[
ui(t)
yi(t)

]T

Xi

[
ui(t)
yi(t)

]
dt ≥ 0 ∀τ ≥ 0. (9.2)

Assuming that
∫

τ

0 |d(t)|2dt is finite for all τ ≥ 0 and that the interconnection admits
a solution for all t ≥ 0, we derive an analog of Proposition 5.1 for performance
certification without relying on storage functions.

Recall that the main condition of Proposition 5.1 was
Muy Mud

I 0
0 I

Mey Med


T [

X(p1X1, · · · , pNXN) 0
0 −W

]
Muy Mud

I 0
0 I

Mey Med

≤ 0, (9.3)

which guaranteed 
u
y
d
e


T [

X(p1X1, · · · , pNXN) 0
0 −W

]
u
y
d
e

≤ 0. (9.4)

It follows from this inequality that

∫
τ

0

[
d(t)
e(t)

]T

W
[

d(t)
e(t)

]
dt ≥

∫
τ

0

[
u(t)
y(t)

]T

X(p1X1, · · · , pNXN)

[
u(t)
y(t)

]
dt

=
∫

τ

0

{
N

∑
i=1

pi

[
ui(t)
yi(t)

]T

Xi

[
ui(t)
yi(t)

]}
dt. (9.5)

Since pi ≥ 0, we concluded from (9.2) that (9.5) is nonnegative; that is,

∫
τ

0

[
d(t)
e(t)

]T

W
[

d(t)
e(t)

]
dt ≥ 0 ∀τ ≥ 0, (9.6)

establishing the desired performance property of the interconnection.
In the absence of a state model Lyapunov stability concepts are not applicable;

therefore a direct analog of Proposition 2.1 is not possible. However, when condition
(2.8) of this proposition holds with strict inequality, that is[

Muy
I

]T

X(p1X1, · · · , pNXN)

[
Muy

I

]
< 0, (9.7)

an L2 stability property is guaranteed where d(·) being an L2 signal (
∫

∞

0 |d(t)|2dt <
∞) guarantees e(·) to be L2 as well. To see this let

W =

[
γ2I 0
0 −I

]
(9.8)
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and note that the upper left, upper right, and lower right blocks of (9.3) are

Λ11 ,

[
Muy

I

]T

X(p1X1, · · · , pNXN)

[
Muy

I

]
+MT

eyMey (9.9)

Λ12 ,

[
Muy

I

]T

X(p1X1, · · · , pNXN)

[
Mud

0

]
+MT

eyMed (9.10)

Λ22 ,

[
Mud

0

]T

X(p1X1, · · · , pNXN)

[
Mud

0

]
+MT

edMed− γ
2I. (9.11)

If (9.7) holds, we can scale all coefficients pi by a sufficiently large constant to dom-
inate MT

eyMey and ensure Λ11 < 0. Next we select γ > 0 large enough to guarantee
the Schur complement of Λ11, given by Λ22−Λ T

12Λ
−1
11 Λ12, is negative definite. This

means that Λ < 0, that is (9.6) holds with (9.8), proving that a finite L2 gain exists
from d to e.

Note that the L2 stability condition (9.7) does not restrict the matrices Mey, Med ,
Mud . In particular the choice Mey = I, that is e = y, shows that the output of each
subsystem is L2 when d(·) is L2.

Unlike the pure input/output arguments above, in this book we took a state space
approach that allowed us to account for initial conditons, to establish Lyapunov
stability and safety properties using bounds on the storage functions, and to develop
criteria that do not depend on the exact knowledge of the network equilibrium.

9.2 Integral Quadratic Constraints (IQCs)

In this section we relate dynamic supply rates (Chapter 8) to the frequency domain
notion of integral quadratic constraints [34].

Definition 9.1. Let û denote the Fourier transform of u ∈ Lm
2 and let Π :

R→ C(m+p)×(m+p) be a measurable, bounded, Hermitian-valued function. A
bounded, causal operator G mapping Lm

2 to Lp
2 is said to satisfy the integral

quadratic constraint (IQC) defined by Π if for all u ∈ Lm
2 , y = Gu satisfies∫

∞

−∞

[
û(ω)
ŷ(ω)

]∗
Π(ω)

[
û(ω)
ŷ(ω)

]
dω ≥ 0. (9.12)

The time domain constraint (9.1) with τ = ∞ implies the IQC defined by Π = X
because, from Parseval’s Theorem (see e.g. [18, Theorem B.2.4]),

∫
∞

0

[
u(t)
y(t)

]T

X
[

u(t)
y(t)

]
dt =

1
2π

∫
∞

−∞

[
û(ω)
ŷ(ω)

]∗
X
[

û(ω)
ŷ(ω)

]
dω ≥ 0. (9.13)
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Likewise, (8.3) with x(0) = 0, η(0) = 0, and τ = ∞ implies∫
∞

0
z(t)T Xz(t)dt =

1
2π

∫
∞

−∞

ẑ(ω)∗Xẑ(ω)dω ≥ 0. (9.14)

Substituting into (9.14)

ẑ(ω) =Ψ(ω)

[
û(ω)
ŷ(ω)

]
, (9.15)

which follows from (8.1)-(8.2) with Ψ(ω) = D+C( jωI−A)−1B, we obtain∫
∞

−∞

[
û(ω)
ŷ(ω)

]∗
Ψ(ω)∗XΨ(ω)︸ ︷︷ ︸

= Π(ω)

[
û(ω)
ŷ(ω)

]
dω ≥ 0. (9.16)

Thus, the dynamic supply rate in Definition 8.1 leads to an IQC with Π(ω) =
Ψ(ω)∗XΨ(ω) where Ψ(ω) is dictated by the filter (8.1)-(8.2).

Next, consider the concatenation of N subsystems as in Figure 9.1 where each
subsystem Gi with input ui and output yi satisfies an IQC defined by Πi. Then, for
any set of coefficients pi ≥ 0, we have

∫
∞

−∞

[
û(ω)
ŷ(ω)

]∗
ST

p1Π1(ω)
. . .

pNΠN(ω)

S
[

û(ω)
ŷ(ω)

]
dω ≥ 0 (9.17)

where S is the permutation matrix defined in (8.19). Thus the combined system
satisfies the IQC defined by

Π(ω) = ST

p1Π1(ω)
. . .

pNΠN(ω)

S = X(p1Π1(ω), · · · , pNΠN(ω)). (9.18)

G1
. . .

GN

yu

Fig. 9.1 Concatenation of subsystems G1, · · · ,GN where u = [uT
1 · · ·uT

N ]
T and y = [yT

1 · · ·yT
N ]

T . If
each subsystem Gi with input ui and output yi satisfies an IQC defined by Πi, then the combined
system satisfies the IQC defined by (9.18) for any set of coefficients pi ≥ 0.
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9.3 The IQC Stability Theorem

We now return to the interconnection in Figure 2.1 and relate the stability criterion
(8.23) to the frequency domain inequality[

M
I

]T

X(p1Π1(ω), · · · , pNΠN(ω))

[
M
I

]
≤ 0 ∀ω ∈ R (9.19)

Πi(ω) =Ψi(ω)∗XiΨ(ω) Ψi(ω) = Di +Ci( jωI−Ai)
−1Bi.

To this end we use (9.18) and rewrite the matrix in (9.19) as

[
M
I

]T

ST

p1Π1(ω)
. . .

pNΠN(ω)

S
[

M
I

]

=

[
M
I

]T

ST
Ψ(ω)∗

p1X1
. . .

pNXN

Ψ(ω)S
[

M
I

]
(9.20)

where

Ψ(ω) =

Ψ1(ω)
. . .

ΨN(ω)

= D+C( jωI−A)−1B (9.21)

and A, B, C, D are block diagonal matrices comprised of Ai, Bi, Ci. Di, i = 1, · · · ,N.
Defining

B, BS
[

M
I

]
D, DS

[
M
I

]
(9.22)

and substituting

Ψ(ω)S
[

M
I

]
= D+C( jωI−A)−1B (9.23)

in (9.20), we rewrite (9.19) as

[
( jωI−A)−1B

I

]∗ [
C D

]T p1X1
. . .

pNXN

[C D
][( jωI−A)−1B

I

]
≤ 0. (9.24)

When A is Hurwitz and (A,B) is controllable, Theorem C.1 in Appendix C states
that (9.24) is equivalent to the existence of Q = QT such that

[
AT Q+QA QB

BT Q 0

]
+
[
C D

]T p1X1
. . .

pNXN

[C D
]
≤ 0 (9.25)
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which is identical to (8.23). In particular, Q ≥ 0 when the upper left block of the
second term on the left hand side is positive semidefinite.

A similar derivation relates the performance criterion (8.32) for the interconnec-
tion in Figure 5.1 to the frequency domain condition

Muy Mud
I 0
0 I

Mey Med


T [

X(p1Π1(ω), · · · , pNΠN(ω)) 0
0 −ΠW (ω)

]
Muy Mud

I 0
0 I

Mey Med

≤ 0 ∀ω ∈R

(9.26)
where ΠW (ω) is obtained from the performance supply rate (8.26)-(8.28) by

ΠW (ω) =ΨN+1(ω)∗WΨN+1(ω) ΨN+1(ω) = DN+1 +CN+1( jωI−AN+1)
−1BN+1.

For the finite L2 gain supply rate ΠW (ω) = W given in (9.8), arguments similar to
those in Section 9.1 show that (9.26) holds for sufficiently large γ if, for some µ > 0,[

Muy
I

]T

X(p1Π1(ω), · · · , pNΠN(ω))

[
Muy

I

]
≤−µI ∀ω ∈ R. (9.27)

Indeed (9.27) is the main condition of the IQC Stability Theorem [34], when
adapted to the interconnection in Figure 5.1:

Theorem 9.1. Suppose each Gi is a bounded, causal operator mapping Lmi
2 to

Lpi
2 such that, for every κ ∈ [0,1], the interconnection of κGi as in Figure 5.1

is well posed and κGi satisfies the IQC defined by Πi, i = 1, · · · ,N. Under
these conditions, if there exist pi ≥ 0 and µ > 0 satisfying (9.27) then the
interconnection for κ = 1 is L2 stable.

Although the KYP Lemma (Appendix C) relates frequency domain inequalities
such as (9.19), (9.26), (9.27) above to LMIs derived with the dissipativity approach,
several technical discrepancies exist between the IQC and dissipativity approaches.
First, the KYP Lemma does not guarantee a positive semidefinite solution to the
LMI (C.2) whereas semidefiniteness is required in the dissipativity approach. Sec-
ond, from Parseval’s Theorem, the frequency domain IQC definition (9.12) is equiv-
alent to (9.1) with τ = ∞ which is less restrictive than dissipativity which implies
(9.1) for all τ ≥ 0.

On the other hand, the IQC Stability Theorem quoted above relies on the extra
assumption that the scaled operators κGi satisfy the IQC defined by Πi and that
their interconnection remain well posed for κ ∈ [0,1]. Reconciling the IQC and
dissipativity approaches is an active research topic, with partial results reported in
[63, 51] and the references therein.
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9.4 Conclusions and Further Results

In this book we presented a compositional approach to certify desirable properties
of an interconnection from dissipativity characteristics of the subsystems. Despite
its computational benefits, however, this bottom-up approach may introduce conser-
vatism and understanding the extent of such conservatism is an important topic for
further study.

In [35, Theorem 3] we showed that certifying stability and performance of a lin-
ear system from dissipativity of its subsystems is no more conservative than search-
ing for separable Lyapunov and storage functions. In Example 8.3 of this book we
showed that, by augmenting the dynamics of the subsystems with appropriate filters
(i.e. by using dynamic supply rates) we may be able to find separable Lyapunov
functions in situations where no separable Lyapunov function exists without such
filters. Further connections to separable Lyapunov and storage functions would en-
able a unified perspective for compositional system analysis.

In this book we primarily employed quadratic supply rates, such as those for pas-
sivity and finite L2 gain properties. Another commonly used dissipativity property
is input to state stability (ISS) [52] which has been used to derive ISS small gain
theorems in [24, 58], extended to large scale interconnections in [15, 16].

A common concern when stability certificates are derived from dissipativity is
robustness against sampling and time delays. The degradation of dissipativity under
sampling is studied in [30] and the results can be adapted to the interconnections in
this book. For robustness against time delays, [56] employed a variant of the IQC
stability theorem above. This paper first notes that dissipativity with a static sup-
ply rate does not encapsulate time scale information, disallowing stability estimates
where the effect of delay depends on its duration relative to the time scales of the
dynamics. To overcome this problem, it introduces a complementary “roll off” IQC
that is frequency dependent and provides the missing time scale information. It then
derives a stability condition that degrades gracefully with the duration of delay.

The dissipativity approach to networks in this book was partially motivated by
multiagent systems where bidirectional communication yields a skew symmetric
interconnection, as illustrated in Section 4.2. The compatibility of this structure with
passivity properties was fully harnessed in [7] to derive distributed and adaptive
control techniques. Synchronization problems that arise in multiagent systems and
numerous other networks was studied with a related input/output approach in [48].

We restricted our attention to dissipativity properties that are global in the state
and input spaces. Local variants and corresponding computational procedures have
been pursued in [61, 57]. Finally, a stochastic stability test was developed in [19]
that extends the compositional methods in Chapters 2 and 3 to stochastic differential
equations.





Appendix A
Sum of Squares (SOS) Programming

Many of the algebraic conditions derived in this book involve an expression that
must be nonnegative for all values of the independent variables. For example, dissi-
pativity requires s(u,h(x,u))−∇V (x)T f (x,u) ≥ 0 and V (x) ≥ 0 for all values of x
and u. Checking this nonnegativity for given { f ,g,s,V} can be challenging. In the
special case that f and h are linear and V and s quadratic, the nonnegativity condi-
tions are simple matrix semidefinite constraints, where the matrices in question are
affine functions of the quadratic forms that define V and s. When these functions are
more general polynomials, other computational tools are needed.

In its basic form, SOS programming is a computationally viable way to verify
that real multivariable polynomials are nonnegative. Recall that a monomial is a
product of powers of variables with nonnegative integer exponents, for example
m(x) := x2

1x2. The degree of a monomial is the sum of its exponents, so the degree
of m is 3. A polynomial is a finite linear combination of monomials, for example

q(x1,x2), x2
1−2x1x2

2 +2x4
1 +2x3

1x2− x2
1x2

2 +6x4
2. (A.1)

Let R[x] denote the set of all polynomials in variables x ∈ Rn, and let θ denote the
identically zero polynomial. The degree of a polynomial p, denoted ∂ (p), is the
maximum degree of its monomials. In (A.1) above, ∂ (q) = 4.

Definition A.1. A polynomial p is a sum of squares (SOS) if there exists
polynomials g1, . . . ,gN such that p = ∑

N
i=1 g2

i .

Within the set of all polynomials R[x], let Σ [x] denote the set of all SOS polyno-
mials. One trivial, but important fact is if p ∈ Σ , then p is nonnegative everywhere,
since its value is the sum of squares of values of other polynomials.

The polynomial q(x1,x2) in (A.1) is a SOS because it can be expressed as

q(x1,x2) = (x1− x2
2)

2 +
1
2
(
2x2

1−3x2
2 + x1x2

)2
+

1
2
(
x2

2 +3x1x2
)2
.

73



74 A Sum of Squares (SOS) Programming

This equality is easy to verify: simply multiply out and match terms. What is less
clear is how this decomposition was obtained. Semidefinite programming can as-
certain such decompositions, or determine that none is possible.

Let z(x) be the vector of all monomials in n variables, of degree ≤ d,

z(x), [1,x1,x2, . . . ,xn,x2
1,x1x2, . . . ,xd

n ]
T .

Obviously z depends on n and d, but the additional notation is suppressed for clarity.
The length of z is

l[n,d] ,
(

n+d
d

)
.

For any polynomial p with ∂ (p) ≤ d, there is a unique c ∈ Rl[n,d] such that p =
cT z, moreover c depends linearly on p. Clearly c contains the coefficients of the
monomials in the summation that makes up p.

Other representations of p are possible. Taking all products of any two elements
of z gives all (with some repetitions) monomials of degree ≤ 2d. This leads to the
Gram matrix representation.

Definition A.2. For every polynomial p with ∂ (p) ≤ 2d, there is a symmetric ma-
trix Q ∈ Rl[n,d]×l[n,d] such that p(x) = z(x)T Qz(x). This is called a Gram matrix
representation of p.

The Gram matrix representation is not unique. For example, take n = d = 2 so that

z(x), [1,x1,x2,x2
1,x1x2,x2

2]
T .

With p, 4x2
1x2

2, both

Q1 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 4 0
0 0 0 0 0 0

 , Q2 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 2
0 0 0 0 0 0
0 0 0 2 0 0


give p = zT Qiz. Nevertheless, Gram matrix representations of polynomials play a
key role in the sum of squares decomposition [13, 42] .

Theorem A.1. A polynomial p with ∂ (p) ≤ 2d is SOS if and only if there
exists Q = QT � 0 such that p(x) = z(x)T Qz(x) for all x ∈ Rn, where z(x) is
the vector of all monomials of degree up to d.

Proof. It is easy to see that
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p is SOS⇔ ∃ polynomials{gi}N
i=1 such that p = ∑

N
i=1 g2

i
⇔ ∃ vectors {Li}N

i=1 ⊂ Rl[n,d] such that p = ∑
N
i=1 (Liz)

2

⇔ ∃ a matrix L ∈ RN×l[n,d] such that p = zT LT Lz
⇔ ∃ a matrix Q� 0 such that p = zT Qz.

In the example, p = (2x1x2)
2 is a sum of squares and Q1 � 0 (confirming the claim

of Theorem A.1), but Q2 is indefinite (illustrating that not all Q satisfying p = zT Qz
certify SOS).

How can all matrices Q giving p = zT Qz be parameterized?

Let w(x) be the vector of all monomials of degree ≤ 2d. For each Q = QT there
is a unique c such that zT Qz = cT w; moreover c is a linear function of Q. Hence
this association defines a linear mapping L where L (Q) = c. The domain of L
(the space of symmetric matrices) has dimension l[n,d](l[n,d]+1)/2, while the range
(column vectors) has dimension l[n,2d]. Clearly L has full rank, since any vector c
is in the range of L . Therefore, the nullspace of L has dimension

K :=
l[n,d](l[n,d]+1)

2
− l[n,2d]

and there exist symmetric matrices
{

N j
}K

j=1 which form a basis for all N satisfying
zT Nz = θ . Hence if p = zT Q0z, then for all λ j ∈ R, it also follows that

zT (Q0 +
K

∑
j=1

λ jN j)z = p

where the freedom in λ parametrizes all Q with p = zT Qz.
By way of example, for n = d = 2, l[n,d] = 6, l[n,2d] = 15, so K = 6. With z =

[1,x1,x2,x2
1,x1x2,x2

2]
T , the matrices

N1 =


0 0 0 0 0 −1
0 0 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0

 , N2 =


0 0 0 0 −1 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0

0 0 0 0 0 0
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N3 =


0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0

 , N4 =


0 0 0 −1 0 0
0 2 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0



N5 =


0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0

 , N6 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 2 0
0 0 0 −1 0 0


form the basis described above. For q(x1,x2), a suitable choice for Q0 is

Q0 =


0 0 0 0 0 0
0 1 0 0 0 −1
0 0 0 0 0 0
0 0 0 2 1 0
0 0 0 1 −1 0
0 −1 0 0 0 6

 .

Note that Q0 6� 0, but Q0 +6N6 � 0. Moreover,

Q0 +6N6 =

0 1 0 0 0 −1
0 0 0 2 1 −3
0 0 0 0 3 1

T 1 0 0
0 1

2 0
0 0 1

2

0 1 0 0 0 −1
0 0 0 2 1 −3
0 0 0 0 3 1

 ,
which illustrates the SOS decomposition given earlier.

Summarizing, given p ∈ R[x], there exists a matrix Q0 (that depends on p) and
matrices

{
N j
}K

j=1 (these only depend on n and d, and not on p) such that

p is SOS ⇔ ∃λ ∈ RK such that Q0 +
K

∑
j=1

λ jN j � 0

Moreover, if the semidefinite program is infeasible, then the dual variables provide
a proof that p is not SOS.

From “checking SOS” to “synthesizing an SOS”

Synthesizing an SOS is necessary when searching for a storage function and/or ad-
justing parameters in a supply rate to establish dissipativity. Suppose p0, p1, . . . , pm ∈
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R[x], with ∂ (pi) ≤ 2d for all i = 0,1, . . . ,m. Then regardless of a ∈ Rm, it follows
that ∂ (p0 +a1 p1 + · · ·+am pm)≤ 2d. The SOS synthesis question is:

When is there a choice of a ∈ Rm such that p0 +a1 p1 + · · ·+am pm is SOS in x?

Applying the ideas established thus far we conclude that there exist matrices
{Qt}m

t=0 (each individually dependent on pt ) and
{

N j
}K

j=1 (dependent only on n
and d) such that the SOS synthesis is possible if and only if there exist a ∈ Rm and
λ ∈ RK satisfying

Q0 +
m

∑
t=1

atQt +
K

∑
j=1

λ jN j � 0.

An SOS Program is an optimization problem that takes this idea one step further,
allowing for multiple SOS constraints and a linear objective function. Specifically,
a standard form SOS program is given by

minimize
a∈Rm

cT a

subject to f1,0(x)+a1 f1,1(x)+ · · ·+am f1,m(x) ∈ Σ [x]
...

fW,0(x)+a1 fW,1(x)+ · · ·+am fW,m(x) ∈ Σ [x]

where c ∈ Rm and
{

fb,t
}
∈ R[x], 1≤ b≤W , 0≤ t ≤ m.

Software packages that convert SOS programs to SDPs are available [31, 40, 50].
These packages call available SDP solvers, and then convert the results back to
polynomial form.





Appendix B
Semidefinite Programming (SDP)

A semidefinite program (SDP) in inequality form consists of a linear objective sub-
ject to a linear matrix inequality (LMI) constraint:

minimize
z∈Rq

cT z

subject to
q

∑
i=1

ziAi−B≥ 0.
(B.1)

The problem data are the vector c∈Rq and symmetric matrices B∈Rr×r, Ai ∈Rr×r.
An alternate formulation is the conic form which consists of a linear objective,

linear constraints, and a matrix decision variable constrained to be positive semidef-
inite:

minimize
X∈Rn×n

Tr(GX)

subject to Tr(FiX) = ei for i = 1, . . . ,m
X ≥ 0.

(B.2)

The problem data are the vector e ∈ Rm and symmetric matrices G ∈ Rn×n, Fi ∈
Rn×n. The LMI and conic forms are equivalent, in the sense that one can be con-
verted into the other by introducing new variables and constraints. For notational
simplicity we will refer to the conic form SDP for the remainder of this section.

Standard SDP solvers [3, 55, 59] use primal-dual interior point algorithms. These
algorithms have worst-case polynomial complexity [62] but can become computa-
tionally intractable for large problems. The computational complexity depends on
the number of constraints m, the dimension of the semidefinite cone n, and the struc-
ture and sparsity of the problem data.

While most solvers automatically take advantage of the sparsity in the problem
data, additional approaches have been developed to exploit further structure in the
problem. For SDPs with symmetry in the problem data it was shown in [20] that
both the dimension and number of constraints can be reduced. References [29, 33]
consider SDPs that have a chordal sparsity pattern in the problem data. This allows
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the LMI constraint to be reduced to multiple smaller LMIs without adding conser-
vatism.

Another approach to improving the scalability of SDPs, proposed in [1, 32], is
to constrain the decision matrix X to an inner approximation of the cone of positive
semidefinite matrices. Although this introduces conservatism, depending on the ap-
proximation, it can improve the computational efficiency significantly. References
[1, 32] propose two approximations that achieve this goal: the diagonally-dominant
(DD) and scaled diagonally-dominant (SDD) cones of symmetric matrices.

Definition B.1. The cone of real symmetric DD matrices with nonnegative
diagonal entries is

Sn
DD =

{
X = XT ∈ Rn×n : xii ≥∑

j 6=i
|xi j| for all i

}
.

Real symmetric DD matrices with nonnegative diagonal entries are positive semidef-
inite by Gershgorin’s disc criterion:

Theorem B.1. Let X ∈Rn×n and D(xii,Ri) be the closed disc centered at xii with ra-
dius Ri =∑ j 6=i |xi j|. Every eigenvalue of X is contained in at least one disc D(xii,Ri).

The set of DD matrices is characterized by linear constraints. Therefore, replacing
the constraint X � 0 in B.2 with X ∈ Sn

DD gives a linear program (LP).

Definition B.2. The cone of symmetric SDD matrices is

Sn
SDD =

{
X = XT ∈ Rn×n : ∃ a positive diagonal S ∈ Rn×n s.t. SXS ∈ Sn

DD
}
.

Clearly Sn
DD is a subset of Sn

SDD. For a positive diagonal matrix S ∈ Rn×n and
X ∈ Rn×n the eigenvalues of X and SXS are the same, so SDD matrices are also
positive semidefinite.

Let Mi j ∈ Rn×n denote the symmetric matrix where the only nonzero entries are
mii, mi j, m ji, and m j j. In [1] it is shown that the cone of symmetric SDD matrices
of dimension n can be characterized as

Sn
SDD =

{
X = XT ∈ Rn×n : X =

n

∑
i=1

n

∑
j>i

Mi j,

[
mii mi j
m ji m j j

]
≥ 0 for all i, j > i

}
.

Since the matrices constrained to be positive semidefinite are of dimension two,
Mi j ≥ 0 is equivalent to

mii ≥ 0, m j j ≥ 0, miim j j ≥ m2
i j.
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Therefore, replacing X ≥ 0 in B.2 with X ∈ Sn
SDD gives a second order cone program

(SOCP) [2].
The DD or SDD cone of matrices are strict subsets of the cone of semidefinite

matrices. Therefore, restricting the LMI to be DD or SDD introduces conservatism,
but solvers for LP and SOCP problems are much more efficient and scalable than
standard SDP solvers.

SDP Duality

Primal-dual algorithms, used by most SDP solvers, simultaneously attempt to solve
the primal problem, (B.1) or (B.2), and the corresponding dual problem. The dual
problem of the inequality form SDP is

maximize
Z∈Rr×r

Tr(BZ)

subject to Tr(AiZ) = ci for i = 1, . . . ,q
Z ≥ 0

(B.3)

where Ai, B, and c are the same as in (B.1) and Z ∈ Rr×r is the dual variable. For
the conic form SDP the dual problem is

maximize
x∈Rq

eT x

subject to
q

∑
i=1

xiFi−G≤ 0
(B.4)

where Fi, G, and e are the same as in (B.2) and x ∈ Rq is the dual variable.
We denote the optimal value of the primal problem as p= cT z? =Tr(GX?) where

z? and X? are the optimal solutions of (B.1) and (B.2), respectively. Similarly, we
denote the optimal value of the dual problem as d = Tr(BZ?) = eT x? where x? and
Z? are the optimal solutions of (B.3) and (B.4), respectively.

Weak duality (d ≤ p) holds for any SDP. If d = p it is said that strong duality
holds. For LPs strong duality always holds, but this is not the case for general SDPs.
By Slater’s condition, strong duality holds if the primal and dual problem are strictly
feasible. If strong duality does not hold SDP solvers may return inaccurate solutions.
Therefore, it is a good idea to check that the returned solution is reasonable and
satisfies the problem constraints.

When no strictly feasible solution exists

When a strictly feasible solution does not exist SDP solvers require more compu-
tational time and may yield inaccurate solutions. The reasons for this are that the
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problem is larger than necessary (i.e., it can be reformulated as an equivalent, but
lower dimension SDP) and strong duality may not hold. For example certifying the
passivity of a linear system requires finding P≥ 0 such that[

AT P+PA PB−CT

BT P−C 0

]
≤ 0 (B.5)

which holds only if PB =CT . Hence there is no strictly feasible solution to the LMI.
In cases where it is obvious that a strictly feasible solution does not exist it is

possible to reformulate the problem in an equivalent form. A reformulation for (B.5)
is

AT P+PA≤ 0 (B.6)

PB =CT . (B.7)

Although this is mathematically equivalent, it is much easier for SDP solvers to
attain an accurate solution when the equality constraint is explicitly specified and
the LMI constraint is strictly feasible.

However, in general it is not obvious how to manually reformulate the problem.
In [43] an efficient computational method was developed to automatically detect
problems with no strictly feasible solution and to reformulate the problem with a
preprocessing procedure.



Appendix C
The KYP Lemma

The following result, quoted from [46], is a streamlined version of the classical KYP
Lemma due to Kalman [25], Yakubovich [68], and Popov [44].

Theorem C.1. Given F ∈ Rn×n, G ∈ Rn×m, Γ = Γ T ∈ R(n+m)×(n+m) with
det( jωI−F) 6= 0 ∀ω ∈ R and (F,G) controllable, the following statements
are equivalent:
(1) For all ω ∈ R∪{∞},[

( jωI−F)−1G
I

]∗
Γ

[
( jωI−F)−1G

I

]
≤ 0. (C.1)

(2) There exists P = PT ∈ Rn×n such that[
FT P+PF PG

GT P 0

]
+Γ ≤ 0. (C.2)

The corresponding equivalence for strict inequalities holds even if (F,G) is
not controllable. In addition, if F is Hurwitz (all eigenvalues have negative
real parts) and the upper left corner of Γ is positive semidefinite then P≥ 0.

Example C.1. Consider the system (8.24) in Example 8.3. To show that a block sep-
arable Lyapunov function

V1(x1,x2)+V2(x3) =
[
x1 x2

]T P1

[
x1
x2

]
+ p2x2

3

does not exist we suppose, to the contrary, there exist P1 = PT
1 ∈ R2×2 and scalar

p2> 0 such that
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[
P1 0
0 p2

] 0 1 0
−1 −0.5 −6
1 1 −0.6

+
 0 1 0
−1 −0.5−6
1 1 −0.6

T [
P1 0
0 p2

]
≤ 0. (C.3)

Since p2 > 0 can be factored out we set p2 = 1 without loss of generality. We define

F =

[
0 1
−1 −0.5

]
G =

[
0
−6

]
H =

[
1 1
]
,

drop the subscript from P1, and rewrite (C.3) as[
FT P+PF PG

GT P 0

]
+Γ ≤ 0 where Γ =

[
0 HT

H −1.2

]
. (C.4)

Since (F,G) is controllable and det( jωI−F) = (1−ω2)+ j(0.5ω) 6= 0 ∀ω ∈ R,
Theorem C.1 states that (C.4) is equivalent to

H( jωI−F)−1G+(H( jωI−F)−1G)∗−1.2≤ 0 ∀ω ∈ R∪{∞}, (C.5)

which means Re{H( jωI−F)−1G} ≤ 0.6. However, for ω2 ∈ (2.75,4),

Re{H( jωI−F)−1G}=Re
{
−6

1+ jω
(1−ω2)+ j(0.5ω)

}
=−6

1−0.5ω2

ω4−1.75ω2 +1
> 0.6

thus contradicting the hypothesis that there exist P1 = PT
1 ∈ R2×2 and p2> 0 satis-

fying (C.3).



Appendix D
True/False Questions for Chapter 1

1. Suppose the function h : Rn×Rm→ Rp in (1.2) is invertible (with p = m) in the
sense that for all x ∈ Rn,y ∈ Rp, there is a unique u ∈ Rm such that h(x,u) = y.
Denote this u as hI(x,y), where hI : Rn×Rp → Rm. Define the inverse system
(with input v, output w, and state η)

d
dt

η(t) = f (η(t),hI(η(t),v(t))), w(t) = hI(η(t),v(t)) (D.1)

and note that for any ξ ∈ Rn, (u,y) solves (1.1)-(1.2) with x(0) = ξ if and only
if v = y, w = u solves (D.1) with η(0) = ξ .
True/False: The system in (1.1)-(1.2) is dissipative with respect to the supply rate
s(u,y) if and only if the inverse system is dissipative with respect to ŝ(v,w) :=
s(w,v).

2. True/False: If a dynamical system G is dissipative with respect to supply rates
s1 and s2, then it is dissipative with respect to the supply rate s(u,y) := s1(u,y)−
s2(u,y).

3. True/False: If a dynamical system G is dissipative with respect to supply rates s1
and s2, then it is dissipative with respect to the supply rate s(u,y) := αs1(u,y)+
(1−α)s2(u,y) for all 0≤ α ≤ 1.

4. True/False: If a dynamical system G is dissipative with respect to supply rates s1
and s2, then it is dissipative with respect to the supply rate s(u,y) := αs1(u,y)+
β s2(u,y) for all α ≥ 0,β ≥ 0.

5. For a dynamical system G, let −G denote the same system with the sign of the
output reversed.
True/False: G is dissipative with respect to s if and only if−G is dissipative with
respect to −s.

6. The “sum” of two dynamical systems G1 and G2 is a dynamical system defined
by y = G1(u)+G2(u).
True/False: If Gi is dissipative with respect to si(ui,yi), i = 1,2, then the sum
G1 +G2 is dissipative with respect to s(u,y) := s1(u,y)+ s2(u,y).
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7. True/False: If each Gi is dissipative with respect to uT
i yi, then the sum G1 +G2

is dissipative with respect to s(u,y) := uT y.
8. Given a scalar d > 0, define a dynamical system Gd as Gd := d ◦G◦d−1. Let u

and y denote the input and output of G, and v and w denote the input and output
of Gd , so that w = dG(v/d). Note that if G is nonlinear, then in general, Gd 6= G.
True/False: G is dissipative with respect to a quadratic supply rate s(u,y) if and
only if Gd is dissipative with respect to s(v,w).

9. True/False: Let

d
dt

x(t) = f (x(t),u(t)), y(t) = h(x(t),u(t))

describe a nonlinear dynamical system G. For every α > 0, the dynamical system
(with input v, output w, and state η)

d
dt

η(t) = α f (η(t),v(t)), w(t) = h(η(t),v(t))

is dissipative with respect to exactly the same supply rates as G.
10. True/False: Suppose W ∈ R(m+p)×(m+p) has W = W T � 0. Every dynamical

system (with appropriate input and output dimension) is dissipative with respect
to the supply rate

s(u,y) :=
[

u
y

]T

W
[

u
y

]
.

11. True/False: If the dynamical system G is dissipative with respect to the quadratic
supply rate s, then for every α ∈ [0, 1], the dynamical system αG (output scaled
by α) is dissipative with respect to s.

Answers: 1:T, 2:F, 3:T, 4:T, 5:F, 6:F, 7:T, 8:T, 9:T, 10:T, 11:F
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