
EECS 221A Review of Basic Concepts

1 Quantifiers, Sets, Cartesian Products

We will make frequent use of the quantifiers ∃ (“there exists”) and ∀ (“for all”). Statements
containing these quantifiers must be parsed carefully.
For example let C be the set of all cats, and let D be the set of all dogs. The two statements

∃ c ∈ C : ∀ d ∈ D c runs faster than d

∀ c ∈ C ∃ d ∈ D : c runs faster than d

mean entirely different things. The first statement asserts the existence of a super-cat that runs
faster than every dog. The second simply says that given any cat, we can find some poor dog
that runs slower than that cat.

We will often deal with a set of objects x that have some property π.
We will write this set as {x : π} For example, the set of points inside a circle of radius 1 on the
xy plane is written as{

(x, y) : x2 + y2 ≤ 1
}

Let X and Y be two sets. The Cartesian product of X and Y , written X × Y is the set of all
ordered pairs consisting of one element from X and and one element from Y . More succinctly,

X × Y = {(a, b) : a ∈ A, b ∈ B}

2 Functions, 1-1, Onto

Finally, we will deal with functions. Let X and Y be two sets. A function f from X to Y is
written

f : X → Y

For every element x ∈ X, this function assigns some element f(x) ∈ Y .
The set X is called in domain, and the set Y is called the co-domain.
The image of f is the set of elements in Y that are assigned to some element of X. We can
write

Image(f) = {y ∈ Y : ∃ x ∈ X such that f(x) = y}

The function f is called surjective (on-to) if Image(f) = Y , i.e. if

∀ y ∈ Y ∃ x ∈ X : f(x) = y

The function f is called injective or one-to-one if distinct elements in X get assigned distinct
elements in Y , i.e. x1 ̸= x2 =⇒ f(x1) ̸= f(x2), or (equivalently)

f(x1) = f(x2) =⇒ x1 = x2
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3 Vectors and Matrices

Concepts such as vector addition, orthogonality, the angle between vectors, dot products, chang-
ing co-ordinate systems are intimately familiar in three dimensions. As we shall see, Linear
Algebra allows us to generalize these concepts to treat vectors in many dimensions, and to even
more abstract notions of vectors.

The set of all n × 1 column vectors of real numbers is written Rn. The ith entry of a column
vector v is denoted vi. Analogous is the set Cn where the vectors have complex entries. We
add vectors component-wise.

The set of all m×n rectangular matrices of real numbers is written Rm×n. The element in the
ith row and jth column of a matrix M is written as mij . Similarly, we have the set Cm×n. The
n× n matrix whose diagonal elements are 1 and whose other elements are all 0 is the identity
matrix and is written I or In to explicitly exhibit its size.

We will assume familiarity with elementary matrix concepts such as matrix multiplication,
transposes, determinants, and inverses. Matrices do not commute, i.e. in general, for matrices
A and B of compatible dimension AB ̸= BA. So we must be careful to respect the order in
expressions with matrices. Indeed, if v ∈ Rn, vT v is a real number, while vvT is an n × n
matrix.

It is useful to think of matrices in terms of their columns (or rows). For example, the product

Av =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 v1
v2
v3

 = v1

 a11
a21
a31

+ v2

 a12
a22
a32

+ v3

 a13
a23
a33

 =
3∑

i=1

via
[i]

is the weighted sum of the columns of A, the weights coming from the vector v.

4 Block-partitioned Matrices

It is also very useful to deal with block-partitioned matrices. For example, we could write

A =

 a11 a12 a13 b12 b13
a21 a22 a23 a12 a13
a31 a32 a33 a12 a13
a31 a32 a33 a12 a13

 =

[
A11 A12

A21 A22

]

Multiplication of block-partitioned matrices is as one would expect.

AB =

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
This, of course, requires A and B to be partitioned conformably, i.e. so that the various
products make sense. For example, in the equation above we would need A11 to have as many
columns as B11 has rows.

Through these notes, we will make assertions about matrices in various Theorems, Propositions,
and Lemmas. To make the results more transparent, we will not always explicitly state the
dimensions of the matrices involved. The reader should assume that the results hold only when
the matrices have appropriately sensible dimensions. For example suppose we write A−1 in the
statement of some Theorem. It will imply we are assuming that A is square and invertible. Or
if we write the expression I + AB in some lemma, it must imply that A is m × n and B is
n×m. But it does not imply that A and B are square matrices.
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5 Linear Systems of Equations

Matrices can be used to write a collection of linear equations in several unknowns compactly.
For example:

x1 + 2x2 + 7x3 = 4
3x2 − 4x3 = 8
5x1 − 6x2 = 9
x3 = −1

⇐⇒

 1 2 7
0 3 −4
5 −6 0
0 0 1


 x1

x2
x3

 =

 4
8
9
−1

 ⇐⇒ Ax = b

Any collection of linear equations can be written as

Ax = b A ∈ Cm×n

Here x is the vector of n unknowns, and A, b are constructed from the coefficients of the m
equations. There are only three possibilities:

(a) Over-determined. The equation Ax = b has no solution.

(b) Under-determined. The equation Ax = b has several solutions.

(c) The equation Ax = b has only one solution.

6 Transposes and Adjoints

Definition 1. Let A ∈ Cm×n. The transpose of A written AT is an n ×m matrix whose i, jth

entry is aj,i where ai,j is the i, jth entry of A.

The adjoint of A, written A∗ is its complex-conjugate-transpose, i.e. A∗ = (A)T .

Lemma 2. Properties of Adjoints.

(a) (A∗)∗ = A

(b) (A+B)∗ = A∗ +B∗

(c) (AB)∗ = B∗A∗ 2

7 Determinants and Inverses

Definition 3. Let A ∈ Cn×n. The inverse of A is the unique matrix A−1 such that AA−1 = I.

We will assume you are familiar with minors, co-factors, determinants, and computing inverses.

Lemma 4. Properties of Inverses.

(a) AA−1 = A−1A = I

(b) (AB)−1 = B−1A−1

(c) (A∗)−1 = (A−1)∗ 2

Lemma 5. Properties of Determinants.

Let A and B are square matrices of the same size. Then

(a) det (AB) = det (BA) = det(A) det(B)

(b) det
(
AT
)
= det(A)
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(c) det (A∗) = det(A) 2

Proposition 6. Inverses for Block-partitioned Matrices.

(a) If X and Z are square and invertible, then[
X Y
0 Z

]−1

=

[
X−1 −X−1Y Z−1

0 Z−1

]
(b) If A and D are square, and D is invertible, then[

A B
C D

]
=

[
A−BD−1C BD−1

0 I

] [
I 0
C D

]
(c) Suppose A and D are square. If D and ∆ = A−BD−1C are invertible, then[

A B
C D

]−1

=

[
∆−1 −∆−1BD−1

−D−1C∆−1 D−1C∆−1BD−1 +D−1

]
2

Corollary 7. (Determinants for Block-partitioned Matrices.)

(a) If X and Z are square, then

det

[
X Y
0 Z

]
= det(X) det(Z)

(b) If A and D are square, and D is invertible, then

det

[
A B
C D

]
= det

(
A−BD−1C

)
det(D) 2

8 Trace

Definition 8. Let A ∈ Cn×n. The trace of A, written Tr(A) is the sum of its diagonal entries,i.e.

Tr(A) =

n∑
1

aii 2

Trace makes sense only for square matrices.

Lemma 9. Properties of the Trace.

(a) Tr(A+B) = Tr(A) + Tr(B)

(b) Tr(AB) = Tr(BA). Here A ∈ Cm×n and B ∈ Cn×m so both AB and BA are square.

(c) Tr(A∗A) =
∑
i

∑
j

|aij |2 2

Proof:

(a) Tr(A+B) =
∑

i (aii + bii) =
∑

i aii +
∑

i bii = Tr(A) + Tr(B)
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(b) This is a bit harder. Let C = AB. Then, the i, jth element of C can be written as

cij =
∑
k

aikbkj

Now, we can compute

Tr(AB) =
∑
i

cii =
∑
i

∑
k

aikbki

=
∑
k

∑
i

bkiaik = Tr(BA)

(c) First note that the i, jth element of A∗ is aji. Next, we have

Tr(A∗A) =
∑
i

∑
k

akiaki =
∑
i

∑
k

|aik|2
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EECS 221A Transfer Function and State Space Models

A. Transfer Function Models

B. State space Models

C. Nonlinear Models
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A. Transfer Function Models

1 Linear Time-Invariant (LTI) ODEs

LTI input-output ordinary differential equation (ODE) models relate the input u and output y
of a dynamical system through the differential equation

y[n] + an−1y
[n−1] + · · ·+ a1ẏ + a0y = bmu[m] + bm−1u

[m−1] + · · ·+ b1u̇+ bou (1)

subject to the n initial conditions

y(0), ẏ(0), · · · , y[n−1](0)

Here, y[k] means dky/dtk. All the coefficients ak, bk in this model are real constants.

The order of the differential equation model (1) is n, which is the highest derivative of y.

The differential equation model (1) is linear because y[n] is a linear combination of lower deriva-
tives of y and of u. There are no terms like u2 or ẏu or tan ẏ.

This model is time-invariant because the coefficients ak, bk are constants, not changing with time.

2 SISO Transfer Functions

We will first introduce some notation that will greatly simplify dealing with these models. Let
us introduce the short-hand

s =
d

dt
, s2 =

d2

dt2
, s3 =

d3

dt3
, etc.

This lets us compactly write expressions with derivatives. For example, we write[
3s4 + 11s3 − 6s+ 10

]
y to mean 3

d4y

dt4
+ 11

d3y

dt3
− 6

dy

dt
+ 10y

Using this new notation, we can compactly write (1) as

[sn + an−1s
n−1 + · · ·+ a1s+ a0]y = [bmsm + bm−1s

m−1 + · · ·+ b1s+ b0]u

or even more succinctly as

a(s)y = b(s)u or y =

[
b(s)

a(s)

]
u or y = H(s)u, where H(s) =

b(s)

a(s)

Here, H(s) is called the transfer function. It is the ratio of two polynomials, which is called a
rational function in s.

We will work with transfer functions because they are much easier to manipulate, but it is
important to keep in mind that transfer functions are just a convenient short-hand for LTI
differential equations. We will refer interchangeably to a transfer function and its associated
input-output differential equation. If we write

y =

[
3s+ 9

s2 + 4s+ 13

]
u (2)

this means that u and y are related by the differential equation

d2y

dt2
+ 4

dy

dt
+ 13y = 3

du

dt
+ 9u
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3 Proper, Strictly Proper Transfer Functions, and Relative Degree

The denominator polynomial a(s) of a transfer function is called the characteristic polynomial.
It has degree n, where n is the model order. The numerator polynomial b(s) has degree m.

We call δ = n −m the relative degree of the transfer function H(s). If n = m (δ = 0), we say
the transfer function is proper. If m < n (δ > 0), we say the transfer function is strictly proper.

4 Poles and Zeros

The poles of the transfer function H(s) are the roots of the denominator polynomial a(s) = 0.
The zeros of the transfer function H(s) are the roots of the numerator polynomial b(s) = 0.
For example, the transfer function

H(s) =

[
3s+ 9

s2 + 4s+ 13

]
has two complex poles at −2± 3j and one zero at −3.

A transfer function of order n will have n poles, which can be real or complex. When they are
complex, they always occur in conjugate pairs. This is because the coefficients of the denominator
polynomial a(s) are real. A transfer function has m zeros, where m is the degree of the numerator
polynomial b(s). If b(s) is just a constant, the transfer function has no zeros.

5 The Algebra of Transfer Functions

Transfer functions transform differential equations into algebraic ones, which are easier to ma-
nipulate. As an example, consider first the cascade or series connection of LTI systems as shown
in Figure 1. This connection is a block diagram representation of the differential equations

a(s)v = b(s)u, c(s)y = d(s)v

Here v is an intermediate signal that we are not too interested in. Eliminating v gives

y =
d(s)

c(s)
v =

d(s)

c(s)
· b(s)
a(s)

u =
d(s)b(s)

c(s)a(s)
u = G(s) ·H(s)u

Thus the transfer function from u to y is just the product P (s) = G(s)H(s). This only involves
multiplication of polynomials. Of course, we can convert the transfer function P (s) back into a
differential equation.

u H(s) G(s) y

Figure 1: Cascade of two models.

6 MIMO Differential Equation Models

So far, we have mainly looked at single-input single-output systems modeled by linear time-
invariant (LTI) ordinary differential equations. When we have multiple inputs and outputs, we
will still have differential equations but there will be more of them. For example, we might have
a 3 input, 2 output LTI system described by the equations:

ÿ1 + 2ẏ1 + 6y1 = ü1 + u̇2 − 3u3

ẏ2 + 3y2 = 2u2 − u̇3
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7 Transfer Function Matrices

It is easy to convert differential equations to transfer functions in the MIMO case as well. For
example, for the system above, we can write

s2y1 + 2sy1 + 6y1 = s2u1 + su2 − 3u3

sy2 + 3y2 = 2u2 − su3

Re-arranging these equations we get

y1 =
s2

s2 + 2s+ 6
u1 +

s

s2 + 2s+ 6
u2 −

3

s2 + 2s+ 6
u3

y2 =
2

s+ 3
u2 −

s

s+ 3
u3

We can write this in matrix form as[
y1
y2

]
=

[
s2

s2+2s+6
s

s2+2s+6
−3

s2+2s+6

0 2
s+3

−s
s+3

] u1
u2
u3


If we have an m input, p output LTI continuous-time system, we will have a p × m transfer
function matrix relating the inputs u to the outputs y.

8 The Algebra of Transfer Function Matrices

We can manipulate MIMO transfer functions like matrices. Consider the interconnected models
shown in Figure 2.
For the cascade interconnection (top), the transfer function is G(s)H(s).
For the sum interconnections (middle): the transfer function is G(s) +H(s).
For the feedback interconnection (bottom): we calculate the transfer-function matrix:

y = G(u−Hy) =⇒ (I +GH) y = Gu =⇒ y = (I +GH)−1Gu

We have to be careful to respect the order in which these transfer-function matrices appear,
because matrices do not necessarily commute.

u H(s) G(s) y

G(s)

H(s)

u y
+

G(s)

H(s)

u
+

y
−

Figure 2: Interconnected models: (a) cascade, (b) sum, (c) feedback
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B. State Space Models

1 State-space Models

We can rewrite nth order differential equation models as a set of n coupled first-order differential
equations. For example, consider the differential equation model

y[3] + 3ÿ + 4ẏ + 7y = u

or equivalently, the transfer function

y =

[
1

s3 + 2s2 + 4s+ 7

]
u = [H(s)]u

Define the states by

x1 = y, x2 = ẏ, x3 = ÿ

We can then re-write this differential equation model as

ẋ1 = ẏ = x2

ẋ2 = ÿ = x3

ẋ3 = y[3] = −3ÿ − 4ẏ − 7y + u = −7x1 − 4x2 − 3x1 + u

y = x1

These equations can be written is matrix form as ẋ1
ẋ2
ẋ3

 =

 0 1 0
0 0 1
−7 −4 −3

 x1
x2
x3

+

 0
0
1

u

y =
[
1 0 0

]  x1
x2
x3


or more compactly as ẋ1

ẋ2
ẋ3
y

 =

 0 1 0 0
0 0 1 0
−7 −4 −3 1
1 0 0 0


 x1

x2
x3
u


More generally we will obtain n coupled first order differential equations that look like:

Σ

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

Here A,B,C,D are matrices and Σ is called a state-space realization. Σ is said to realize the
differential equation model or transfer function H(s). We shall reserve the letters m,n, p for
the numbers of inputs, states, and outputs respectively. The dimension of a realization Σ is the
number of states n.
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Note the sizes of the various matrices: A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m. The sizes of
these matrices allow us to write Σ above more compactly using the packed-matrix notation as

Σ =

[
A B
C D

]
or in text as Σ(A,B,C,D).

State-space realizations offer a very convenient data structure to handle LTI ODEs.

State-space realizations are not unique. Many realizations yield the same transfer function.

The D-matrix captures the immediate effect of the input u on the output y. It is called the feed-
through term. For most physical systems, the input u does not immediately affect the output y,
so we often assume D = 0. In this case the realization Σ is called strictly proper.

2 The Concept of State

The state x(t) at time t is the information you need at time t that, together with future values
of the input, will let you compute future values of the output y.

For example, suppose we have a point mass subject to a force input. To predict the future motion
of the particle at times t > 0, we need to know the force, and also the initial condition.The initial
condition is the position and velocity of the particle at t = 0.

For an unconstrained rigid body moving in three dimensions, the state consists of the position
and velocity of its center of mass, its orientation (three angles) and three angular velocities. So
the state has 12 dimensions.

State-space realizations offer computational advantages over transfer-function representations.
Transfer functions involve rational functions. Multiplying high-order rational functions and find-
ing roots of high-degree polynomials can be numerically unstable. By contrast, computations with
state-space realizations involve linear algebra: eigenvalue computation, least-squares, singular-
value decomposition, etc. These operations are stable and computationally attractive. Indeed
state-space methods can easily handle multi-input, multi-output, and high-order systems.

3 From State-space to Transfer Functions

It is easy to compute the transfer function from the realization

Σ

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

Using the s-notation, we can rewrite these equations as

sx = Ax+Bu =⇒ (sI −A)x = Bu =⇒ x = (sI −A)−1Bu

Substituting this into the equation for y we get the transfer function from u to y realized by Σ:

H(s) = D + C(sI −A)−1B

We write this as Σ ∼ H(s).

For example, consider the state space realization

Σ =


0 −6 0 −6 0 −3
−2 1 0 −2 1 0
0 0 −1 0 2 3
0 1 0 1 0 0
0 0 1 0 0 −1


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After some algebra, you can check that Σ realizes the 2-output 3-input transfer function matrix

H(s) = C(sI −A)−1B +D =

[
s(s−3)

(s−4)(s+3)
s

(s−4)(s+3)
6

(s−4)(s+3)

0 2
s+1

3
s+1 − 1

]

4 Transfer Function Poles

Consider the realization

Σ =

[
A B
C D

]
We have just seen that the associate transfer function is

Σ ∼ H(s) = C(sI −A)−1B +D =
Cadj(sI −A)B

det(sI −A)
+D

Here adj is the standard adjoint matrix used to calculate matrix inverses. There may be cancel-
lations of terms between the numerator matrix Cadj(sI −A)B and the denominator polynomial
det(sI −A). Also note that the roots of det(sI −A) = 0 are the eigenvalues of A. Thus,

poles of H(s) ⊆ eigenvalue of A

5 Realization Theory

The inverse problem of building internal descriptions from transfer functions is less trivial and is
the subject of realization theory. We begin by offering a closed form realization for SISO transfer
functions. We will then use this to construct realizations of MIMO transfer function matrices.

Example 10. Consider the SISO transfer function with no zeros (numerator = 1):

y =
[
H(s)

]
u =

[
1

s3 + 9s2 + 4s+ 5

]
u

Define the states as: x1 = y, x2 = ẏ, x3 = ÿ. Then we have:

ẋ1 = x2, ẋ2 = x3, ẋ3 = −5x1 − 4x2 − 9x3 + u, y = x1

We get the state-space realization of H(s): ẋ1
ẋ2
ẋ3
y

 =

 0 1 0 0
0 0 1 0
−5 −4 −9 1
1 0 0 0


 x1

x2
x3
u


Example 11. Now let us include a numerator polynomial in H(s):

y =
[
H(s)

]
u =

[
3s2 + 7s+ 2

s3 + 9s+ 4s+ 5

]
u =

[
3s2 + 7s+ 2

]
·
[

1

s3 + 9s+ 4s+ 5

]
u

Rewrite this as:

y =
[
3s2 + 7s+ 2

]
q, q =

[
1

s3 + 9s2 + 4s+ 5

]
u
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Define the states as: x1 = q, x2 = q̇, x3 = q̈. Then we have:

ẋ1 = x2, ẋ2 = x3, ẋ3 = −5x1 − 4x2 − 9x3 + u, y = 3x3 + 7x2 + 2x1

We get the state-space realization of H(s): ẋ1
ẋ2
ẋ3
y

 =

 0 1 0 0
0 0 1 0
−5 −4 −9 1
2 7 3 0


 x1

x2
x3
u

 or Σ =

[
A B
C D

]
=

 0 1 0 0
0 0 1 0
−5 −4 −9 1
2 7 3 0


The following observations make it easy to remember the form of the realization Σ:

(a) The denominator coefficients of H(s) appear directly in the bottom row A matrix in reverse
order with negative signs. The super-diagonal of the A matrix contains 1’s, and the rest of
the entries are 0’s.

(b) The numerator coefficients of H(s) appear directly in the C matrix in reverse order.

(c) The B matrix is easy to remember, and the D matrix is 0.

State-space realizations are not unique. We could re-order the states or define new states as linear
combinations of the old states and get very different realization for the same transfer function.

Our choice of states in Example 10 was x1 = y, x2 = ẏ, x3 = ÿ. This doesn’t always work. Try
to figure out what our states are in Example 11 in terms of u, u̇, ü and y, ẏ, andÿ.

6 Controllable Canonical Form

Example 11 easily extends to general SISO transfer functions. Consider the single-input single-
output transfer function

H(s) =
βn−1s

n−1 + · · ·+ β1s+ β0
sn + αn−1sn−1 + · · ·+ α1s+ α0

+ d

We can verify that

Σ =

[
A B
C D

]
=



0 1 · · · 0 0 0
0 0 · · · 0 0 0
...

... · · ·
...

...
...

0 0 · · · 0 1 0
−α0 −α1 · · · −αn−2 −αn−1 1
β0 β1 · · · βn−2 βn−1 d

 (3)

realizes H(s). This realization is called the controllable canonical form. We stress that this form
applies only to SISO transfer functions.

7 Observable Canonical Form

Let XT denote the transpose of the matrix X. Since H(s) is a single-input single-output transfer
function, it follows that

H(s) = H(s)T =
[
C(sI −A)−1B +D

]
= BT (sI −AT )−1CT +DT
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Thus,

Σdual =

[
AT CT

BT DT

]
=



0 0 · · · 0 −α0 β0
1 0 · · · 0 −α1 β1
...

... · · ·
...

...
...

0 0 · · · 0 −αn−2 βn−2

0 0 · · · 1 −αn−1 βn−1

0 0 · · · 0 1 d

 (4)

also realizes H(s). This is called the observable canonical form.

8 Realizations of sums of Transfer Functions

Suppose

G(s) ∼
[
A1 B1

C1 D1

]
, H(s) ∼

[
A2 B2

C2 D2

]
Then, it is easy to check that

G(s) +H(s) ∼

 A1 0 B1

0 A2 B2

C1 C2 D1 +D2


9 Modal form: real distinct poles

Assume distinct poles

H(s) = d+
∑
k

ck
s− pk

Using the discussion in point 8 above, we can write this as

H(s) ∼
[
c1 c2 · · · cr

]


1
s−p1

0 · · · 0

0 1
s−p2

· · · 0
...

...
. . .

...
0 0 · · · 1

s−pr




1
1
...
1


This can be realized as

H(s) ∼


p1 0 · · · 0 1
0 p2 · · · 0 1
...

...
. . .

...
...

0 0 · · · pr 1
c1 c2 · · · cr d


10 Modal form: complex distinct poles

Consider the transfer function

H(s) =
c1(s+ a) + c2ω

(s+ a)2 + ω2

It is easy to check that

H(s) ∼

 −a −ω 1
ω −a 0
c1 c2 0


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11 Modal form: repeated real poles

It is easy to check that

c

(s− p)2
∼

 p 1 0
0 p 1
c 0 0


This generalizes as

c

(s− p)m
∼



p 1 0 · · · 0 0
0 p 1 · · · 0 0
0 0 p · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · p 1
c 0 0 · · · 0 0

 =

[
pI +N em

ceT1 0

]

where I is the identity matrix, N is the matrix with 1’s on the super-diagonal, e1 = [1 0 · · · 0]T .

12 Building Realizations: MIMO case

We can build realizations for multi-input multi-output transfer functions by successive use of the
following result.

Theorem 12. Let Σ1(A1, B1, C1, D1) and Σ2(A2, B2, C2, D2) be realizations of the transfer func-
tions H1(s) and H2(s) respectively. Then,

(a) Σcolumn stack =

 A1 0 B1

0 A2 B2

C1 0 D1

0 C2 D2

 realizes the transfer function H(s) =

[
H1(s)
H2(s)

]

(b) Σrow stack =

 A1 0 B1 0
0 A2 0 B2

C1 C2 D1 D2

 realizes the transfer function H(s) =
[
H1(s) H2(s)

]
When we use this technique the resulting realization will generally have (unnecessarily) high
dimension. We will later discuss methods for removing redundant or unnecessary states and
finding minimal realizations from these less succinct composite realizations.

13 Building Realizations: Interconnected systems

1 Start with a general block diagram of interconnected transfer functions

2 Identify the inputs u and the outputs y of the block diagram

3 Label the states xk , inputs uk, and outputs yk of transfer function k as

ẋk = Akxk +Bkuk
yk = Cxk +Dkuk

4 Write the state-space equations of each TF using the controllable canonical form

5 The state of the interconnection is the union of the states of the component TFs

x =
[
x1 x2 · · ·xr

]T
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6 Combine all equations to get by eliminating intermediate variables uk, yk as

ẋ = Ax+Bu
y = Cx+Du

d Q(s)

K P (s) y
++

Figure 3: Realizing interconnected systems.

Example 13. Consider the block diagram shown in Figure 3. Here K is a constant, and P (s) and
Q(s) have state-space realizations

P (s) ∼
[
Ap Bp

Cp 0

]
Q(s) ∼

[
Aq Bq

Cq 0

]
Let xp, xq denote the states of P (s) and Q(s) respectively, and define

x =

[
xq
xp

]
We could stack the states of the subsystems P,Q in reverse order also to give a different realiza-
tion. The realization of the interconnected system is

ẋq = Aqxq +Bqd

ẋp = Apxp +BpK (Cqxq + Cpxp) = (Ap +BpKCp)xp +BpKCqxq

y = Cqxq + Cpxp

or in matrix form: ẋq
ẋp
y

 =

 Aq 0 Bq

BpKCq Ap +BpKCp 0
Cq Cp 0

 xq
xp
d


14 Time-varying State-space Models

This is for the case when we have linear ordinary differential equation models that are not time-
invariant. We shall see later that such models naturally arise when we linearize nonlinear models
about trajectories. State space realizations for such models have time-varying system matrices:

Σ

{
ẋ(t) = A(t)x(t) +B(t)u(t)
y(t) = C(t)x(t) +D(t)u(t)

or more compactly

[
A(t) B(t)
C(t) D(t)

]
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15 Discrete-time State-space Models In discrete-time systems, differential equation models are
replaced with difference equations, resulting in a state-space realization of the form

Σ

{
xk+1 = Akxk +Bkuk
yk = Ckxk +Dkuk

or more compactly

[
Ak Bk

Ck Dk

]
We will see that many concepts and results for discrete-time systems are analogous to the
continuous-time case.

Example 14. The Fibonacci sequence defined by y[0] = 0, y[1] = 1, and y[n] = y[n−2]+y[n−1]
for integers n > 1 is an example of a LTI system (with no input) defined by a difference equation.

This can be put into the form of a discrete-time state-space model by taking the states as

x[n] =
[
x0[n] x1[n]

]⊤
, x0[n] ≜ y[n], and x1[n] ≜ y[n − 1]. Then, with x[0] =

[
0 1

]⊤
, the

following model describes the Fibonacci sequence for integers n ≥ 0.

x[n+ 1] =

[
1 1
1 0

]
︸ ︷︷ ︸

A

x[n]

y[n] =
[
1 0

]︸ ︷︷ ︸
C

x[n]

The values of the sequence can then be obtained by matrix operations. For example,

y[2] = Cx[2] = CAx[1] = CA2x[0] =
[
1 0

][1 1
1 0

]2[
0
1

]
= 1.
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C. Nonlinear Models

1 Nonlinear State Space Models

So far, we have focused on linear time invariant (LTI) systems; however, many models of physical
processes are nonlinear. Methods for LTI systems are nevertheless useful, as they can be applied
to linear approximations of nonlinear systems. Essentially, feedback control algorithms make
small adjustments to the inputs based on measured outputs. For small deviations of the input
about some nominal input trajectory, the output of a nonlinear system looks like a small deviation
around the nominal output. The effects of the small input deviations on the output is well
approximated by a linear (possibly time-varying) system.

A nonlinear state space model for a system with m inputs and p outputs has the form

ẋ1 = f1(x1, · · · , xn, u1, · · · , um)

...
...

ẋn = fn(x1, · · · , xn, u1, · · · , um)

y1 = h1(x1, · · · , xn, u1, · · · , um)

...
...

yp = hp(x1, · · · , xn, u1, · · · , um)

Here each of the possibly nonlinear functions f1, · · · , fn and h1, · · · , hp are scalar-valued. By
introducing the notation:

x = [x1, · · · , xn]T , u = [u1, · · · , um]T , y = [y1, · · · , yp]T

we can write these equation more compactly in standard state-space form as

ẋ = f(x, u)

y = h(x, u)

Note that in this form, the nonlinear functions f and h are vector-valued. This means that there
are actually many scalar functions contained in the symbols f and h.

In the special case of LTI systems, f(x, u) = Ax+Bu, h(x, u) = Cx+Du.

2 Example: Magnetically Suspended Ball

Consider a ball of massm suspended by an electromagnet as shown below. Let y be the position of
the ball, measured down from the base of the electromagnet. If a current u is injected into the coils
of the electromagnet, it will produce a magnetic field pulling the ball with force Fup = −cu2/y2.
Note that the force decreases as 1/y2 because the effect of the magnet weakens when the ball is
further away, and it is proportional to u2 which is related to the power supplied to the magnet.
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×
×
×
×

mg

Fup
y

Figure 4: (a) Magnetically suspended ball. (b) Experimental set-up.

We can write a simple model for the motion of the ball from Newton’s second law as

mÿ = mg − cu2

y2
(5)

For numerical exercises, we use the following constants:

m 0.15 Kg mass of ball
c 0.01 Kg-m3/Coul2 magnetic coupling constant

We can convert this nonlinear input-output differential equation model to state-space by defining
the states:

x1 = y, x2 = ẏ

and obtain the state space equations:

ẋ1 = f1(x1, x2, u) = x2

ẋ2 = f2(x1, x2, u) = g − cu2

mx21
= 9.8− 1

15

(
u

x1

)2

y = h(x1, x2, u) = x1

3 Equilibrium Points

Consider the time-invariant nonlinear model

ẋ = f(x, u), y = h(x, u) (6)

An equilibrium point of (6) is a pair (xeq, ueq) such that f(xeq, ueq) = 0.

If we start with initial condition x(0) = xeq and apply the constant input u(t) = ueq, then
x(t) = xeq is a solution of the differential equation ẋ = f(x, u). This is because ẋ(t) = 0 for
x(t) = xeq, which is constant. Under mild conditions, such as continuous differentiability of f ,
the solutions of the differential equation are unique, meaning x(t) = xeq is the only solution.
Then we can assert that: if we start the system at xeq and apply the constant input ueq, then
x(t) stays at the equilibrium value xeq.
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For a nonlinear system, there can be many equilibrium points. To find all the equilibrium points
of a nonlinear system, we simple set

f(xeq, ueq) = 0

and solve for xeq, ueq.

Note that the output function h(x, u) plays no role in finding equilibrium points, but it allows
us to evaluate the equilibrium value of the output from

yeq = h(xeq, ueq)

Example 15. Returning to the magnetically suspended ball example, we calculate the equilibrium:

f(xeq, ueq) = 0 =⇒ f1(x
eq
1 , xeq2 , ueq) = 0 and f2(x

eq
1 , xeq2 , ueq) = 0

=⇒ xeq2 = 0 and 10−
(

ueq

3.87xeq1

)2

= 0

=⇒ xeq2 = 0, xeq1 = 0.082ueq

The equilibrium points are:

xeq1 = 0.082α, xeq2 = 0, ueq = α

which are parameterized by the free variable ueq = α. The resulting value of output is

yeq = h(xeq, ueq) = xeq1 = 0.082α

We could also parameterize these equilibrium points by the free variable yeq = β as follows:

xeq1 = β, xeq2 = 0, ueq = 12.12β

4 Jacobians and the Taylor Expansion

First consider a scalar valued function ϕ(x1, x2, · · · , xn) of n variables. The Jacobian of ϕ is the
row vector

∂ϕ

∂x
:=
[

∂ϕ
∂x1

· · · ∂ϕ
∂xn

]
For example, for the function ϕ(x1, x2, x3) of three variables,

ϕ(x1, x2, x3) = x1x
2
2 − 1/x1 + sin(x3)

the Jacobian is

∂ϕ

∂x
=
[

∂ϕ
∂x1

∂ϕ
∂x2

∂ϕ
∂x3

]
=
[
x22 + 1/x21 2x1x2 cos(x3)

]
The Jacobian is a function of the variables x1, x2, x3. We can evaluate the Jacobian at a point
and get actual numbers. In this example, if we evaluate the Jacobian at (x1, x2, x3) = (1, 2, 0):

∂ϕ

∂x
(1, 2, 0) =

[
5 4 1

]
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Now consider a vector-valued function ϕ : Rn → Rm. This means that we have m individual
functions in n variables, stacked into an m dimensional vector, ϕ. The variables are collectively
represented by the n dimensional vector x. Let us write this function as

ϕ(x) = ϕ(x1, x2, · · · , xn) =

 ϕ1(x1, · · · , xn)
...

ϕm(x1, · · · , xn)


The Jacobian of ϕ is the m× n matrix of functions

∂ϕ

∂x
=


∂ϕ1

∂x1
· · · ∂ϕ1

∂xn
... · · ·

...
∂ϕm

∂x1
· · · ∂ϕm

∂xn


We can evaluate the Jacobian at a point ξ ∈ Rn to get an m×n matrix of numbers. Our notation
for this is

∂ϕ

∂x
(ξ) =


∂ϕ1

∂x1
· · · ∂ϕ1

∂xn
... · · ·

...
∂ϕm

∂x1
· · · ∂ϕm

∂xn


@ξ

For example, consider the function

ϕ(x1, x2, x3) =

[
ϕ1(x1, x2, x3)
ϕ2(x1, x2, x3)

]
=

[
x1 sin(x2)
x22 cos(x3)

]
The Jacobian of ϕ(x) evaluated at (1, π/2, 0) is

∂ϕ

∂x
(1, π/2, 0) =

[
sin(x2) x1 cos(x2) 0

0 2x2 cos(x3) −x22 sin(x3)

]
@(1,π/2,0)

=

[
1 0 0
0 π 0

]
Analogous to the classical Taylor series expansion of a scalar function of one variable, we can
write the Taylor series expansion of ϕ around ξ as

ϕ(x) = ϕ(ξ) +
∂ϕ

∂x
(ξ) (x− ξ) + higher order terms

The first two terms above form an affine linear approximation of ϕ around ξ, as illustrated
geometrically in Figure 5.

x1

x2

ϕ σ

ξ

NL fn ϕ(x1, x2)

Linear approx

Figure 5: Geometric illustration of linearization.
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5 Linearization about Equilibrium Points

We use the Taylor expansion to approximate a nonlinear model by a LTI model. This approx-
inmation, called Jacobian linearization, is good as long as the applied input u(t) is close to its
equilibrium value ueq and the resulting state trajectory x(t) is close to the equilibrium value xeq.

Consider a nonlinear time-invariant input-output differential equation model realized as

ẋ = f(x, u), y = h(x, u)

Let ξ = (xeq, ueq) be an equilibrium point of this model, and define yeq = h(xeq, ueq).
We can approximate f in a neighborhood of ξ as

f(x, u) ≈ f(xeq, ueq) +
∂f

∂x
(ξ)(x− xeq) +

∂f

∂u
(ξ)(u− ueq)

= 0 +


∂f1
∂x1

· · · ∂f1
∂xn

... · · ·
...

∂fn
∂x1

· · · ∂fn
∂xn


@ξ︸ ︷︷ ︸

=: A

(x− xeq) +


∂f1
∂u1

· · · ∂f1
∂um

... · · ·
...

∂fn
∂u1

· · · ∂fn
∂um


@ξ︸ ︷︷ ︸

=: B

(u− ueq)

Thus, if we define the deviation variables x̃ := x− xeq and ũ := u− ueq, we can write

˙̃x = ẋ = f(x, u) ≈ Ax̃+Bũ

Note that linearization is meaningful only around an equilibrium because, otherwise, f(xeq, ueq) ̸=
0 remains in the equation above and the approximation is no longer linear.

In a similar fashion we can approximate h in a neighborhood of ξ as

h(x, u) ≈ h(xeq, ueq) +


∂h1
∂x1

· · · ∂h1
∂xn

... · · ·
...

∂hp

∂x1
· · · ∂hp

∂xn


@ξ︸ ︷︷ ︸

=: C

(x− xeq) +


∂h1
∂u1

· · · ∂h1
∂um

... · · ·
...

∂hp

∂u1
· · · ∂hp

∂um


@ξ︸ ︷︷ ︸

=: D

(u− ueq)

= yeq + Cx̃+Dũ

Thus, the output deviation variable ỹ = y − yeq can be approximated as

ỹ ≈ Cx̃+Dũ

To summarize, Jacobian linearization at the equilibrium ξ = (xeq, ueq) approximates the nonlinear
system by the following LTI model for the deviations of x, u, y from their equilibrium values:

˙̃x(t) = Ax̃(t) +Bũ(t)
ỹ(t) = Cx̃(t) +Dũ(t)

A =


∂f1
∂x1

· · · ∂f1
∂xn

... · · ·
...

∂fn
∂x1

· · · ∂fn
∂xn


@ξ

B =


∂f1
∂u1

· · · ∂f1
∂um

... · · ·
...

∂fn
∂u1

· · · ∂fn
∂um


@ξ

C =


∂h1
∂x1

· · · ∂h1
∂xn

... · · ·
...

∂hp

∂x1
· · · ∂hp

∂xn


@ξ

D =


∂h1
∂u1

· · · ∂h1
∂um

... · · ·
...

∂hp

∂u1
· · · ∂hp

∂um


@ξ
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This approximation is good provided (x, u) remains sufficiently close to the equilibrium point
ξ = (xeq, ueq); that is, (x̃, ũ) remains close to zero. This is guaranteed in control applications,
where ũ is designed as a function of x̃ to ensure x̃ and ũ indeed remain close to zero. This is the
subject of stabilization by feedback, which we will study later.

Example 16. Consider again the magnetically suspended ball. To linearize the dynamics about

xeq =

[
β
0

]
ueq = 12.12β yeq = β

we calculate the matrices

A =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
@eq

=

[
0 1

19.59
β 0

]
B =

[ ∂f1
∂u
∂f2
∂u

]
@eq

=

[
0

−1.61
β

]
C =

[
∂h
∂x1

∂h
∂x2

]
@eq

=
[
1 0

]
D =

[
∂h
∂u

]
@eq

= 0

Note that the A-matrix here has eigenvalues at ±4.43/
√
β, one of which is in the right half-plane.

This means that the equilibrium is unstable: small deviations will send the ball away from the
equilibrium point. An appropriate feedback design based on the linear model will, however,
stabilize this equilibrium locally.

6 Linearization about Nominal Trajectories

The ideas of the previous item can be easily extended to linearize a nonlinear system about
a nominal trajectory. To this end, consider a general nonlinear time-invariant input-output
differential equation model realized as

ẋ = f(x, u), y = h(x, u)

Let ξ(t) = (xnom(t), unom(t)) be a state/input trajectory pair that satisfies the system equation

ẋnom(t) = f(xnom(t), unom(t))

As before, introduce the deviation variables x̃ = x−xnom(t), ũ = u−unom(t), and ỹ = y−ynom(t).
We can then write

˙̃x = ẋ− ẋnom(t) = f(x, u)− f(xnom(t), unom(t))

≈ ∂f

∂x
(ξ(t))x̃+

∂f

∂u
(ξ(t))ũ = A(t)x̃+B(t)ũ

Similarly, we have

ỹ = y − ynom(t) = h(x, u)− h(xnom(t), unom(t))

≈ ∂h

∂x
(ξ(t))x̃+

∂h

∂u
(ξ(t))ũ = C(t)x̃+D(t)ũ

This approximation is good provided the trajectories of the nonlinear system remain sufficiently
close to nominal. Note that this approximation is a linear time-varying system. This is the
most common source of linear time-varying systems in practical applications. The matrices
A(t), B(t), C(t), D(t) are obtained the same way as in the previous section, but they are now time
varying because the Jacobians are evaluated over a trajectory ξ(t) rather than at equilibrium ξ.
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EECS 221A Vector Spaces

A. Algebraic Aspects

B. Geometric Aspects
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A. Algebraic Aspects

1 What is in this Section

We are intimately familiar with the 3-dimensional space R3 in which we live. Some of the vector
spaces we will encounter in this course are less familiar than R3. They will have more dimensions,
or even infinitely many dimensions. Indeed, the vectors may be sequences or functions. In this
section we introduce vector spaces and study their algebraic properties.

2 Vector Spaces

A vector space is an abstraction that captures all the properties of R3. For example, the set of
m × n real matrices Rm×n is also a vector space. Think of writing a matrix A as a long vector
in Rmn by stacking its columns. We also have infinite dimensional vector spaces like sequence
spaces and function spaces. The following definition captures all of these cases.

Definition 17. A vector space V is a set of vectors V together with a set of scalars F (either R or
C in this course) and two operations: vector-vector addition (+) and vector-scalar multiplication
(◦) such that for all α, β ∈ F and all v1, v2, v3 ∈ V the following properties hold:

Closure v1 + v2 ∈ V, α ◦ v1 ∈ V
Commutativity v1 + v2 = v2 + v1

Associativity (v1 + v2) + v3 = v1 + (v2 + v3)

Distribution α ◦ (v1 + v2) = α ◦ v1 + α ◦ v2
(α+ β) ◦ v1 = α ◦ v1 + β ◦ v1

Identity There exists a vector 0 ∈ V such that v + 0 = v

Additive Inverse For all v ∈ V, there exists a (−v) ∈ V such that v + (−v) = 0

We omit the notation ◦ when clear from the context. If the set of scalars is R we have a real
vector space. If the set of scalars is C we have a complex vector space.

3 Examples

Example 18. The following are examples of vector spaces:

⋄ Rn, Cn with component-wise addition and scalar multiplication.

⋄ Rm×n, Cm×n with matrix addition and scalar multiplication.

⋄ R[s] (polynomials in s with real coefficients) over F = R, with usual addition and scalar
multiplication of polynomials.

⋄ C[a, b] = {f : [a, b] → R, f continuous} over R with pointwise addition and multiplication.

⋄ The Lebesgue spaces Lp[a, b], 1 ≤ p < ∞ defined as

Lp[a, b] =

{
f : [a, b] → R :

∫ b

a
|f(t)|pdt < ∞

}
are vector spaces over R with pointwise addition and multiplication.

⋄ The space ℓp of sequences of real numbers as

ℓp =

{
v = [v1, v2, · · · , vk, · · · ] : vk ∈ R,

∞∑
k=1

|vk|p < ∞

}
over R with pointwise addition and multiplication.
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4 Linear Dependence, Independence, Basis, Dimension

Definition 19. Let S = {vi : i ∈ I} be a set (possibly infinite) of vectors from V. The expression∑
i∈I

αivi

with at most finitely many αi being nonzero is called a finite linear combination of vectors from
S. If further, not all αi are zero, it is called a nontrivial linear combination. 2

For example, consider the vectors in R3:

v1 =

 1
2
3

 , v2 =

 2
4
6

 , v3 =

 0
1
0

 , v4 =

 1
0
1


Stack these vectors side-by-side. Then any linear combination of these vectors looks like

α1v1 + α2v2 + α3v3 + α4v4 =

 1 2 0 1
2 4 1 0
3 6 0 1


 α1

α2

α3

α4


which is matrix-vector multiplication.

We only permit finite linear combinations. This is because we know how to add a finite number
of vectors. To add infinitely many vectors, we need a notion of convergence. We write

w =
∞∑
k=0

αkvk

if the sequence of partial sums converges to w:

lim
N→∞

N∑
k=0

αkvk → w

This means that this sequence gets closer and closer to w. For this, we need a notion of distance
between two vectors. This is called a norm and will be introduced later.

Definition 20. The set S of vectors is called linearly dependent if there exists a nontrivial, finite,
linear combination of vectors from S such that∑

i∈I
αivi = 0

Otherwise, the set of vectors S is said to be linearly independent. 2

Definition 21. The dimension of a vector space V is the maximal number of linearly independent
vectors in V. 2

Definition 22. A set B of vectors in V is called a basis for V if every vector in V can be uniquely
expressed as a finite linear combination of vectors in B. 2

Example 23. The following examples illustrate the concepts we have covered so far.
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⋄ In the vector space R2,

v1 =

[
1
2

]
, v2 =

[
2
3

]
, v3 =

[
3
4

]
is a set of linearly dependent vectors because −v1 + 2v2 + v3 = 0.

⋄ The set of vectors S = {1, t, t2, · · · } are linearly independent in C[0, 1].
⋄ The dimension of Rn is n and the set

B =


 1

0
·
·

 ,

 0
1
·
·

 , · · · ,

 0
0
·
1




qualifies as a basis for this vector space. This is called the standard basis for Rn. The ith

standard basis vector is written ei or e
[i].

⋄ The dimension of Rm×n is m · n. Exhibit a basis for this space.

⋄ Bases are not unique. For example, both 1 and −1 qualify as basis for R. 2

Theorem 24. Let V be an n-dimensional vector space. Let B be a collection of n linearly inde-
pendent vectors drawn from V. Then B is a basis. 2

Proof. Let B = {b1, b2, · · · , bn} be a set of n linearly independent vectors in V.
Fix any vector v ∈ V. Then the set of vectors {v, b1, b2, · · · , bn} contains n+ 1 vectors. This set
must be linearly dependent because dim(V) = n = the maximal number of linearly independent
vectors in V. Therefore, there exist scalars αi, i = 0, · · ·n not all zero such that

α0v + α1b1 + α2b2 + · · ·+ αnbn = 0

Suppose α0 = 0. Then

α1b1 + α2b2 + · · ·+ αnbn = 0

with some αi being nonzero, i.e. the set B is linearly dependent which contradicts the hypothesis.
Thus α0 ̸= 0. Then we can write

v = −α−1
0 α1b1 − α−1

0 α2b2 − · · · − α−1
0 αnbn

Thus v is expressible as a linear combination of vectors in B.
We now establish that this representation is unique. Suppose

v =

n∑
i=1

αibi

=

n∑
i=1

βibi

Subtracting we arrive at

n∑
i=1

(αi − βi) bi = 0

Since B is linearly independent, it must be the case that all the coefficients in the linear combi-
nation above are zero, i.e. αi = βi, i = 1, · · · , n. This establishes that B is a basis. 2
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5 Subspaces

Definition 25. Let V be a vector space. A subset S ⊆ V is called a subspace if S is itself a vector
space. 2

In R2 subspaces look like lines passing through the origin. In R3 subspaces look like planes or
lines passing through the origin. These generalize to hyperplanes in Rn. See Figure 6.

Here is a simple test for determining if S is a subspace.

Theorem 26. A set S ⊆ V is a subspace if and only if it is closed under vector addition and scalar
multiplication, i.e. for all α ∈ F, w1, w2 ∈ S we have

αw1 ∈ S, w1 + w2 ∈ S 2

The zero vector must lie in every (nonempty) subspace because we can select α = 0.

Definition 27. Let S = {vi : i ∈ I} be a set of vectors drawn from V. Span{S} is the set of all
finite linear combinations of vectors drawn from S. 2

S

T

S ∩ T

Figure 6: Subspaces in R3 are planes and lines through the origin: S and T and their intersection.

Theorem 26 implies that Span{S} is a subspace.

Definition 28. Let S and T be two subspaces of the vector space V. The sum of subspaces is
defined as

S + T = {x ∈ V : x = s+ t, s ∈ S and t ∈ T } 2

The intersection S ∩T and sum S+T are both subspaces, but the union S ∪T is not a subspace.

6 Direct-sum Decomposition

Definition 29. Let V be a vector space. If

V = S1 + S2
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we say that V is a (subspace) decomposition of S1 and S2.

If further S1 ∩ S2 = {0}, we say that V is a direct sum decomposition of S1 and S2. This is
written as

V = S1 ⊕ S2

Lemma 30. Let V = S1 ⊕ S2. Then any vector v ∈ V can be uniquely expressed as

v = y1 + y2 : yi ∈ Si

Proof. Since V = S1 + S2, we know that any vector v ∈ V can be expressed as

v = y1 + y2 : yi ∈ Si

We only have to show uniqueness. So suppose we have another decomposition

v = z1 + z2 : zi ∈ Si

Subtracting, we get

0 = (y1 − z1) + (y2 − z2) =⇒ S1 ∋ (y1 − z1) = −(y2 − z2) ∈ S2

This implies

(y1 − z1) and (y2 − z2) ∈ S1 ∩ S2 = 0

establishing that y1 = z1 and y2 = z2 completing the proof.
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B. Geometric Aspects

1 What is in this Section

So far we have dealt with the algebra of vector spaces. We now need a “ruler” to measure the
length of a vector. This ruler is called the norm and is defined precisely below. Norms play a
key role in analysis. For example, when we say that a sequence of vectors converges to v, i.e.

v1, v2, v3, · · · → v

we mean that vk gets closer and closer to v. We use the norm to make sense of the phrase closer.

We also need a notion of “angle” between vectors. For example, we need to be able to say when
two vectors are perpendicular to each other. For this we introduce the notion of an inner product.

Norms and inner products equip vector spaces with a rich geometrical structure. They allow
us to generalize our native Euclidean geometry in R3. We can speak of convergence, describe
geometric objects, pose optimization problems, etc.

2 Norms

Definition 31. Let V be a vector space. A norm is a function ∥ · ∥ : V → R such that for all
α ∈ F, v, w ∈ V,

(a) (non-negative) ∥v∥ ≥ 0 and ∥v∥ = 0 ⇐⇒ v = 0.

(b) (scaling) ∥αv∥ = |α| ∥v∥
(c) (triangle inequality) ∥v + w∥ ≤ ∥v∥+ ∥w∥ .

A vector space on which a norm has been defined is called a normed space.

For a candidate norm, the only axiom that may be nontrivial to verify is the triangle inequality.
This is illustrated in Figure 7. It asserts that in a triangle, the sum of the lengths of two sides
is less than the third.

v

w

v +
w

Figure 7: Triangle inequality.

3 Examples

On Rn or Cn:

⋄ ∥v∥1 =
∑n

i=1 |vi|

⋄ ∥v∥2 =
(∑n

i=1 |vi|2
) 1

2 =
√
v∗v (2-norm)

⋄ ∥v∥∞ = maxi |vi| (sup norm)
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where v =
[
v1 v2 · · vn

]T
.

On the space of matrices Rm×n or Cm×n :

⋄ The Frobenius norm

∥M∥F =

 m∑
i=1

n∑
j=1

|mi,j |2
 1

2

= [trace(M∗M)]
1
2

where mi,j is the i, j-th element of the matrix M . We can regard the matrix M as a long
vector vec(M) in Rmn by stacking its columns. Then the Frobenius norm of M is the same
as the 2-norm of vec(M).

⋄ The induced 2-norm

∥M∥2 = sup
x ̸=0

∥Mx∥2
∥x∥2

Think of a matrix M ∈ Rm×n as a black box. It takes in vectors in x ∈ Rn and produces
vectors in Mx ∈ Rm. Think of the 2-norm as a measure of energy. Then, the induced
2-norm is the maximum energy amplification the box can produce.

On the sequence spaces ℓp:

⋄ ∥v∥p =

[ ∞∑
k=1

|vk|p
] 1

p

for 1 ≤ p < ∞

⋄ ∥v∥∞ = sup
k

|vk| for p = ∞

On the function spaces L2[a, b], Lp[a, b]:

⋄ ∥f∥2 =
[∫ b

a
|f(t)|2dt

] 1
2

⋄ ∥f∥p =
[∫ b

a
|f(t)|pdt

] 1
p

, for 1 ≤ p < ∞

4 Equivalent Norms

Definition 32. Let V be a vector space, and let ∥ · ∥a and ∥ · ∥b be two norms defined on V. These
norms are called equivalent if there exist constants m,M with m ̸= 0 such that

m ≤ ∥v∥a
∥v∥b

≤ M for all v ∈ V \ {0}

Lemma 33. For finite-dimensional vector spaces, all norms are equivalent.

5 Inner Products

Inner products generalize the familiar notion of dot products in R3 (where we multiply the vectors
component-wise and add the results) to general vector spaces. The allow us to compute the angle
θ between vectors v, w as

v · w = ∥v∥ ∥w∥ cos(θ)
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Definition 34. Let V be a vector space. An inner product on V is a function

⟨·, ·⟩ : V× V → C such that

(a) ⟨v, w⟩ = ⟨w, v⟩ where ⟨w, v⟩ denotes the conjugate of ⟨w, v⟩
(b) ⟨v, αw⟩ = α ⟨v, w⟩
(c) ⟨v, w1 + w2⟩ = ⟨v, w1⟩+ ⟨v, w2⟩
(d) ⟨v, v⟩ ≥ 0, ⟨v, v⟩ = 0 ⇔ v = 0

Inner products are linear in the second argument and conjugate-linear in the first argument:

⟨v + αw, v + αw⟩ = ⟨v, v⟩+ α ⟨w, v⟩+ α ⟨v, w⟩+ αα ⟨w,w⟩

A vector space on which an inner product has been defined is called a inner product space.

6 Examples

⋄ On Rn, ⟨v, w⟩ = vTw

⋄ On Cn, ⟨v, w⟩ = v∗w where v∗ denotes the conjugate transpose of v

⋄ On Rm×n, ⟨A,B⟩ = Trace(ATB)

⋄ On ℓ2, ⟨v, w⟩ =
∑

vkwk

⋄ On L2[a, b], ⟨f(t), g(t)⟩ =
∫ b

a
f(t)g(t) dt

7 Cauchy-Schwartz Inequality

Theorem 35. (Cauchy-Schwartz) Let V be an inner product space. Then

|⟨v, w⟩| ≤ ⟨v, v⟩
1
2 ⟨w,w⟩

1
2 (7)

Proof. The result clearly holds if w = 0. Assume w ̸= 0 and observe that

0 ≤ ⟨v + αw, v + αw⟩ = ⟨v, v⟩+ α ⟨w, v⟩+ α ⟨v, w⟩+ αα ⟨w,w⟩

Let us choose α = −⟨w, v⟩ / ⟨w,w⟩. With this choice, we obtain

0 ≤ ⟨v, v⟩ − ⟨v, w⟩ ⟨w, v⟩
⟨w,w⟩

− ⟨w, v⟩ ⟨v, w⟩
⟨w,w⟩

+
⟨v, w⟩ ⟨w, v⟩

⟨w,w⟩

= ⟨v, v⟩ − ⟨v, w⟩ ⟨w, v⟩
⟨w,w⟩

This can be re-arranged as

| ⟨v, w⟩ |2 = ⟨v, w⟩ ⟨w, v⟩ ≤ ⟨v, v⟩ ⟨w,w⟩

proving the claim. 2

An immediate consequence of the Cauchy-Schwartz inequality applied to the inner product space
L2[a, b] is∫ b

a
f(t)g(t) dt ≤

[∫ b

a
f2(t) dt

] 1
2
[∫ b

a
g2(t) dt

] 1
2
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Theorem 36. Let V be an inner product space. Then

∥v∥ := ⟨v, v⟩
1
2

qualifies as a norm on V.

Proof. We simply need to verify that ∥v∥ = ⟨v, v⟩
1
2 satisfies the defining properties of a norm.

Clearly, ∥v∥ ≥ 0. Also ∥v∥ = 0 if and only if v = 0.

Next, ∥αv∥ = ⟨αv, αv⟩
1
2 = |α| ⟨v, v⟩

1
2 = |α|∥v∥.

To check the triangle inequality, we need the Cauchy-Schwartz inequality. Note that

∥v + w∥2 = ⟨v + w, v + w⟩ = ⟨v, v⟩+ ⟨w,w⟩+ ⟨v, w⟩+ ⟨w, v⟩
= ∥v∥2 + ∥w∥2 + ⟨v, w⟩+ ⟨w, v⟩
≤ ∥v∥2 + ∥w∥2 + | ⟨v, w⟩ |+ | ⟨w, v⟩ |
≤ ∥v∥2 + ∥w∥2 + 2 ⟨v, v⟩

1
2 ⟨w,w⟩

1
2

= ∥v∥2 + ∥w∥2 + 2∥v∥∥w∥ = (∥v∥+ ∥w∥)2

proving the claim.

The Cauchy-Schwartz inequality states that the magnitude of the dot product of two vectors is
smaller than the product of the vector lengths:

|v · w| ≤ ∥v∥ ∥w∥

The norm defined above is said to be induced by the inner product. In an inner product space this
is the natural norm to use. Figure 8 illustrates the relationship between vector spaces, normed
spaces, and inner product spaces.

Vector
Spaces

Normed
Vector
Spaces

Inner
Product
Spaces

Figure 8: Vector spaces, normed vector spaces, inner product spaces.

8 Orthogonality

Definition 37. In an inner product space V two vectors v, w are said to be orthogonal if ⟨v, w⟩ = 0.
This is written as v⊥w.

Further, v is orthogonal to the set of vectors S if v⊥w for all w ∈ S. This is written as v⊥S.
A set of vectors S is called orthogonal if

v⊥w for all v ̸= w, v, w ∈ S

and is called orthonormal if in addition ∥v∥ = 1 for all v ∈ S.
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Theorem 38. (Pythagoras) If v⊥w, then ∥v + w∥2 = ∥v∥2 + ∥w∥2

Proof. Observe that

∥v + w∥2 = ⟨v + w, v + w⟩ = ⟨v, v⟩+ ⟨v, w⟩+ ⟨w, v⟩+ ⟨w,w⟩
= ⟨v, v⟩+ ⟨w,w⟩ = ∥v∥2 + ∥w∥2

9 Projection

Let v ∈ R3 be an arbitrary vector and let b ∈ R3 be a unit vector (i.e. a vector of length ∥b∥ = 1).
Then the dot product b · v = ⟨b, v⟩ is the length of the projection of v along the direction b. The
projection itself is ŝ = ⟨b, v⟩ b.

v

ŝ

v − ŝ

Span{b}

Figure 9: Projection onto Span{b}.

An important property of the projection ŝ is that it is the closest point in Span{b} to v and the
difference v− ŝ is perpendicular to Span{b}; see Figure 9. We now generalize these observations
to an arbitrary inner product space:

Lemma 39. Let V be an inner product space and fix v ∈ V. Let b ∈ V be a unit vector (∥b∥ = 1)
and consider the subspace S = Span{b}. We wish to find the closest point to v in the subspace
S; more precisely, we wish to solve the problem:

min
s∈S

∥v − s∥

(a) The solution is unique and given by

ŝ = ⟨b, v⟩ b

(b) v − ŝ ⊥ S

Proof. (b) When ŝ = ⟨b, v⟩ b, we have

⟨b, v − ŝ⟩ = ⟨b, v − ⟨b, v⟩ b⟩ = ⟨b, v⟩ − ⟨b, v⟩ ⟨b, b⟩ = ⟨b, v⟩ − ⟨b, v⟩ = 0

Since any s ∈ S can be written as s = αb, we have ⟨s, v − ŝ⟩ = 0, thus (v − ŝ)⊥S.
(a) Next, we show that no other vector s in S is closer to v than ŝ is. This is because

∥v − s∥2 = ∥v − ŝ− (s− ŝ)∥2 = ∥v − ŝ∥2 + ∥s− ŝ∥2 ≥ ∥v − ŝ∥2

where the second equality follows from Pythagoras’ theorem, because s − ŝ ∈ S and, from part
(b) that we already proved, v − ŝ ⊥ s− ŝ. Note that the final inequality is strict if s ̸= ŝ. Thus,
any other point s ∈ S is farther from v than ŝ.
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10 The Projection Theorem

We now extend the ideas above to find the projection of a vector v onto a subspace S that is
more general than the span of a single vector.

v − ŝ

v

ŝ

subspace S

Figure 10: Projection onto a subspace S.

Theorem 40. (Projection Theorem) Let V be an inner-product space and fix v ∈ V. Consider the
subspace

S = Span{b1, b2, · · · , bm}

where the vectors {b1, · · · , bm} are linearly independent. We wish to solve the problem:

min
s∈S

∥v − s∥

(a) The (unique) solution is

ŝ = α1b1 + α2b2 + · · ·+ αmbm

where the coefficients αk solve the Gram equations: ⟨b1, b1⟩ · · · ⟨b1, bm⟩
...

. . . · · ·
⟨bm, b1⟩ · · · ⟨bm, bm⟩

 α1
...

αm

 =

 ⟨b1, v⟩
...

⟨bm, v⟩


(b) v − ŝ ⊥ S

Before proving the theorem we remark that the m×m matrix in the Gram equations is invertible
because the vectors {b1, b2, · · · , bm} are linearly independent. (This will be proven in a homework
problem.) Thus, the Gram equations admit the unique solution α1

...
αm

 =

 ⟨b1, b1⟩ · · · ⟨b1, bm⟩
...

. . . · · ·
⟨bm, b1⟩ · · · ⟨bm, bm⟩

−1  ⟨b1, v⟩
...

⟨bm, v⟩


.
We also note that, once part (b) is proven, the proof of part (a) is identical to that in the theorem
of the previous section. Thus, we will only prove part (b).
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Proof. (b) Note that, for any k ∈ {1, . . . ,m},

⟨bk, v − ŝ⟩ = ⟨bk, v⟩ − ⟨bk, ŝ⟩ = ⟨bk, v⟩ −
∑
i

⟨bk, αibi⟩ = ⟨bk, v⟩ −
∑
i

⟨bk, bi⟩αi

= ⟨bk, v⟩ −
[
⟨bk, b1⟩ · · · ⟨bk, bm⟩

]  α1
...

αm

 = 0

where the last equality follows from the Gram equations. Thus v− ŝ ⊥ bk for all k, which implies
v − ŝ ⊥ S.

11 The Projection Theorem in Rn

If we are working with the vector space Rn under the usual inner product, the Projection Theorem
simplifies. Fix v ∈ Rn and consider the subspace

S = Span {b1, b2, · · · , bm} ⊆ Rn

Assume the vectors {b1, · · · , bm} are linearly independent. Stack these vectors side-by-side to
form the matrix

B =
[
b1 b2 · · · bm

]
Then, the solution to the optimization problem:

min
s∈S

∥v − s∥

can be written succinctly as

ŝ = B(BTB)−1BT v

This is known as the Least Squares approximation of v in the subspace S, which is commonly
used in sciences and engineering.

12 Gram-Schmidt Orthonormalization

Given a collection of vectors

B = {b1, b2, · · · , bn}

from an inner product space V, suppose we wish to construct a set of vectors

C = {c1, c2, · · · , cr}

that forms an orthonormal basis for Span{B}.
The Gram-Schmidt procedure does this iteratively using the Projection Theorem. When b1, b2, · · · , bn
are linearly independent, the Gram-Schmidt procedure consists of the following steps:

⋄ Normalize b1 to get a unit vector c1 and put it in C.
⋄ Now take b2 and finds its projection ŝ onto the subspace S1 = Span {c1}. From the Pro-
jection Theorem, y2 := b2 − ŝ is orthogonal to S1. Normalize y2 to get a unit vector c2 and
add it to C. Note that c2⊥c1.
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⋄ Then take b3 and find its projection ŝ onto the subspace S2 = Span {c1, c2}. From the
projection theorem, y3 = b2 − ŝ is orthogonal to S2. Normalize y3 to get a unit vector c3
and add it to C. Note that c3⊥c1 and c3⊥c2.

⋄ Continue this until B is exhausted.

If b1, b2, · · · , bn are not linearly independent, some of the vectors b1, y2, y3, . . . in the procedure
above will be zero and, thus, can’t be normalized. In this case we skip the corresponding step
and continue to the next element of B.
The resulting Gram-Schmidt algorithm is summarized below.

1 Initialize k = 1

2 If b1 ̸= 0, compute c1 =
b1

∥b1∥
3 While k < n

k = k + 1

yk = bk −
k−1∑
i=1

⟨ci, bk⟩ ci

If yk ̸= 0, compute ck =
yk
∥yk∥

3 end

Figure 11: Gram-Schmidt Procedure

Example 41. Consider the following set in R3:

B =


 1

2
3

 ,

 2
3
4

 ,

 3
4
5


We use the Gram-Schmidt procedure to find an orthonormal basis for Span {B}.

y1 = b1 =

 1
2
3

 , and c1 =
1√
14

 1
2
3


y2 = b2 − ⟨c1, b2⟩ c1 =

1

7

 4
1
−2

 , and c2 =
7√
21

 4
1
−2


y3 = b3 − ⟨c1, b3⟩ c1 − ⟨c2, b3⟩ c2 =

 0
0
0


Then C = {c1, c2} forms the desired orthonormal basis.

For Rn there are much more efficient methods to find orthonormal basis using the Singular Value
Decomposition. We will learn about this later.

13 Orthogonal Complements

Definition 42. Let S be a subspace of V. The orthogonal complement of S is the set

S⊥ = {v ∈ V : v⊥S}
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Lemma 43. (a) S⊥ is a subspace.

(b) S ∩ S⊥ = {0}.
(c) If S ⊂ T , then T ⊥ ⊂ S⊥

Proof.

(a) Let v, w ∈ S⊥. Then,

⟨v, s⟩ = ⟨w, s⟩ = 0 for all s ∈ S

Also for all s ∈ S,

⟨v + w, s⟩ = ⟨v, s⟩+ ⟨w, s⟩ = 0 and ⟨αv, s⟩ = α ⟨v, s⟩ = 0

We have argued that αv and v + w are in S⊥, proving that this is a subspace.

(b) Let s ∈ S ∩ S⊥. Then, s ∈ S and s ∈ S⊥. So

s ⊥ s =⇒ 0 = ⟨s, s⟩ = ∥s∥2 =⇒ s = 0

(c) Suppose x ∈ T ⊥. Then ⟨x, t⟩ = 0 ∀t ∈ T , which implies ⟨x, s⟩ = 0 ∀s ∈ S since S ⊂ T .
Thus x ∈ S⊥. We have shown x ∈ T ⊥ ⇒ x ∈ S⊥, which means T ⊥ ⊂ S⊥.

The next lemma holds when the subspace S is finite dimensional.

Lemma 44. Suppose S is finite dimensional. Then

(a) V = S ⊕ S⊥

(b) (S⊥)⊥ = S

Proof. The proof uses the Projection Theorem, which is applicable to finite dimensional sub-
spaces.

(a) Let v be any vector in V and let s be the projection of v onto S. Write

v = s+ (v − s) = s+ t

From the Projection Theorem,

t = (v − s) ⊥ S =⇒ t ∈ S⊥

Thus, V = S + S⊥. Moreover S ∩ S⊥ = {0} from the previous lemma. Therefore, the sum
is a direct sum: V = S ⊕ S⊥.

(b) Let s ∈ S. Then, for all t ∈ S⊥, we have ⟨s, t⟩ = 0. So, s ∈ (S⊥)⊥, proving the containment
S ⊆ (S⊥)⊥. Next, suppose v ∈ (S⊥)⊥ or v ⊥ S⊥. From (c), we can write

v = s+ t, s ∈ S, t ∈ S⊥

Notice that v ⊥S⊥ and s ⊥ S⊥. Then we have

⟨t, t⟩ = ⟨v − s, t⟩ = ⟨v, t⟩ − ⟨s, t⟩ = 0 =⇒ ∥t∥2 = 0, or t = 0

Thus v = s ∈ S, proving the containment (S⊥)⊥ ⊆ S.
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Orthogonal complements in R3 are illustrated in Figure 12. S⊥ is the subspace perpendicular to
S. Every vector in R3 can be expressed uniquely as a linear combination of S and S⊥.

S

S⊥

Figure 12: Orthogonal complements.

14 Completeness

Consider a normed vector space V. Suppose the sequence of vectors

v1, v2, v3, v4, · · · converges to w

This means that vk gets closer and closer to w as k increases, i.e.

lim
k→∞

∥vk − w∥ = 0

We can check if the sequence of vectors in V converges by testing convergence of the sequence of
real numbers ∥vk − w∥. But this requires we know the candidate limit w.

Can we identify convergent sequences without explicitly identifying their limits?

For a wide range of normed vector spaces (which are called complete normed vector spaces) a
convergent sequence is synonymous with a Cauchy sequence. As you will see in the definition
below, checking if a sequence is Cauchy doesn’t require knowledge of a limit.

Definition 45. Let V be a normed vector space and let {vk} be a sequence of vectors from V. The
sequence is called a Cauchy sequence if ∥vm − vn∥ → 0 as n,m → ∞. In other words, given any
ϵ > 0 there exists Nϵ such that for all m,n > Nϵ,

∥vm − vn∥ < ϵ

Every convergent sequence is Cauchy. To see this suppose vk → w. Then

∥vm − vn∥ = ∥vm − w + w − vn∥ ≤ ∥vm − w∥+ ∥vn − w∥ → 0.

A normed vector space in which the converse is also true (every Cauchy sequence is convergent)
is called complete. Thus, in complete spaces, convergent and Cauchy sequences are synonymous
and we can identify convergent sequences without knowing their limits.
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Every finite dimensional vector space is complete. Therefore, to find a Cauchy sequence that
does not converge, we need to consider infinite dimensional spaces. Here is one: consider the
vector space P[0, 1] of polynomials in the variable t ∈ [0, 1]. The sequence of polynomials

1, 1 + t, 1 + t+
t2

2!
, 1 + t+

t2

2!
+

t3

3!
, · · ·

converges to

et = 1 + t+
t2

2!
+

t3

3!
+

t4

4!
+ · · ·

But the limit is an exponential function which is not a polynomial. It is not back in the space
P[0, 1]. This means that the sequence above is not convergent. On the other hand it is a Cauchy
sequence (you can show this by using an appropriate norm, such as ∥p∥ = maxt∈[0,1] |p(t)|).
Therefore, P is not complete.

A complete normed vector space is called a Banach space.
A complete inner product space is called a Hilbert space.
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EECS 221A Matrix Theory

A. Notation

B. Linear operators

C. Range and null spaces

D. Eigenvalues and eigenvectors

E. Functions of a square matrix

F. Hermitian and Positive Definite Matrices

G. Singular Value Decomposition

H. Adjoints
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A. Notation

R(A) range space of the operator A
N (A) null space of the operator A

AT the transpose of the matrix A
A∗ the adjoint of the operator A, or the complex-conjugate-transpose of the matrix A
A > 0 a positive-definite matrix
A ≥ 0 a positive-semi-definite matrix

λi(A) ith eigenvalue of A
Spec(A) the set of eigenvalues (or ”spectrum”) of A
ρ(A) spectral radius of A = maxi |λi(A)|

σi(A) ith singular value of A (in descending order)
σ largest singular value
σ smallest nonzero singular value
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B. Linear Operators

1 Linear Operators

Let V and W be vector spaces over the same field F.

Definition 46. A linear operator is a mapping

L : V −→ W

such that for all v1, v2 ∈ V and all scalars α ∈ F

(a) L(v1 + v2) = L(v1) + L(v2) (additivity)

(b) L(αv1) = αL(v1) (homogeneity) 2

Example 47. The following operators are linear:

(a) V = Rn, W = Rm, L(x) = Ax, where A ∈ Rm×n

(b) L : C(−∞,∞) → R : f(t) → f(0).
Recall that L : C(−∞,∞) is the vector space of continuous functions on (−∞,∞).

(c) Suppose h(t) ∈ L2[a, b] and consider

L : L2[a, b] → R : f(t) →
∫ b

a
h(t)f(t)dt

This operator is well-defined, i.e. L(f) is always a real number, because f ∈ L2[a, b]. To see
this, we use the Cauchy-Schwartz inequality:

|L(f)| =
∣∣∣∣∫ b

a
h(t)f(t)dt

∣∣∣∣ = | ⟨h, f⟩ | ≤ ∥h∥∥f∥ < ∞

(d) Let PN denote the vector space of polynomials of degree ≤ N with real coefficients:

PN = {p : p(t) = α0 + α1t+ α2t
2 + · · ·+ αN tN , α0, α1, · · · , αN ∈ R}

and consider the differentiation operator L : PN → PN−1:

L(p)(t) = dp(t)

dt

(e) Let A,B,X ∈ Rn×n and consider the Sylvester operator

L : Rn×n → Rn×n : X → AX +XB 2

Example 48. The following operators are not linear:

(a) V = Rn, W = Rm, L(x) = Ax, where b ̸= 0

(b) Let A,X ∈ Rn×n and consider

L : Rn×n → Rn×n : X → XAX +X 2
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2 Matrix Representation of Linear Operators

Let V and W be finite dimensional vector spaces over a field F, with dim(V) = n, dim(W) = m,
and suppose L : V → W is linear. Given a basis {v1, v2, · · · , vn} for V and {w1, w2, · · · , wn} for
W, we can construct an m× n matrix L (with entries in F) such that

v =

n∑
j=1

αjvj =⇒ L(v) =
m∑
i=1

βiwi

where β1...
βm

 = L

α1
...
αn


This means that we can turn the action of the operator into a familiar matrix-vector product.

How do we construct L? For j = 1, . . . , n, pick the basis vector vj , write L(vj) as a linear
combination of the basis vectors w1, w2, · · · , wn, and store the coefficient of wi as ℓij . Then
L = [ℓij ]. Thus, the entries of L are selected such that

L(vj) =
m∑
i=1

ℓijwi, j = 1, · · · , n

To see why this construction works, note that

v =
n∑

j=1

αjvj =⇒ L(v) =
n∑

j=1

αjL(vj) =⇒ L(v) =
n∑

j=1

αj

m∑
i=1

ℓijwi

where the first implication is due to the linearity of L. Rearranging the double summation on
the right, we get

L(v) =
m∑
i=1

 n∑
j=1

ℓijαj

wi

That is, L(v) =
∑m

i=1 βiwi, where βi =
∑n

j=1 ℓijαj , which meansβ1...
βm

 = L

α1
...
αn


Note that the matrix L depends on the choice of bases for V and W. Therefore, the matrix
representing the same operator L may look different depending on what bases we choose.

Example 49. (Rotation operators)

Consider the vector space R2 and let L be the operator that rotates a given vector by θ counter-
clockwise. Choose the standard basis vectors e1, e2 for V = W = R2, and follow the construction
above. First consider the action of L on e1: we get a new vector that we can write as

L(e1) = cos θ︸︷︷︸
ℓ11

e1 + sin θ︸︷︷︸
ℓ21

e2
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Similarly,
L(e2) = − sin θ︸ ︷︷ ︸

ℓ12

e1 + cos θ︸︷︷︸
ℓ22

e2

Thus,

L =

[
cos θ − sin θ
sin θ cos θ

]
.

Repeat this construction using a different basis for R2. You should get a different L.

Example 50. What is a matrix representation for the differentiation operator L : PN → PN−1:

L(p)(t) = dp(t)

dt

discussed above? Choose the basis {1, t, t2, · · · , tN} for PN and {1, t, t2, · · · , tN−1} for PN−1.
That is, vi(t) = wi(t) = ti−1. Then,

L(v1)(t) =
d1

dt
= 0 = 0w1(t) + 0w2(t) + 0w3(t) + · · ·+ 0wN (t)

L(v2)(t) =
dt

dt
= t = 1w1(t) + 0w2(t) + 0w3(t) + · · ·+ 0wN (t)

L(v3)(t) =
dt2

dt
= 2t = 0w1(t) + 2w2(t) + 0w3(t) + · · ·+ 0wN (t)

...

L(vN+1)(t) =
dtN

dt
= NtN−1 = 0w1(t) + 0w2(t) + 0w3(t) + · · ·+NwN (t)

Collecting the coefficients above, we get

L =


0 1 0 · · · · · · 0
0 0 2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · · · · 0 N − 1 0
0 · · · · · · · · · 0 N


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C. Range and Null Spaces

1 Range and Null Spaces

Definition 51. The range space R(L) of a linear operator L is the set

R(L) = {L(v) : v ∈ V}

that is, the set of all w such that w = L(v) for some v ∈ V.
The null space N (L) is the set

N (L) = {v ∈ V : L(v) = 0}

Show that R(L) and N (L) are subspaces of W and V respectively.

For a matrix A ∈ Cm×n, R(L) and N (L) refer implicitly to the linear transformation L(x) = Ax
from Cn to Cm. In this case, R(A) is simply the set of all linear combinations of the columns of
A and N (A) is the set of vectors x ∈ Cn such that Ax = 0.

In the following theorem we collate some very important properties of range and null spaces. We
will make very frequent use of these properties.

Theorem 52. Let A ∈ Cm×n. Then

(a) R⊥(A) = N (A∗)

(b) Cm = R(A)⊕N (A∗)

(c) N (A∗A) = N (A)

(d) R(AA∗) = R(A)

Proof.

(a) v ∈ N (A∗) ⇐⇒ A∗v = 0 ⇐⇒ v∗A = 0 ⇐⇒ v∗Ax = 0 for all x
⇐⇒ v⊥Ax for all x ⇐⇒ v⊥R(A) ⇐⇒ v ∈ R(A)⊥

(b) For any subspace S of Cm, we can write

Cm = S ⊕ S⊥

Notice that R(A) is a subspace of Cm. Then, we have (using (a))

Cm = R(A)⊕R⊥(A) = R(A)⊕N (A∗)

(c) We first show the containment N (A) ⊆ N (A∗A). For this, we have

v ∈ N (A) =⇒ Av = 0 =⇒ A∗Av = 0 =⇒ v ∈ N (A∗A)

We next show the reverse containment N (A∗A) ⊆ N (A) as

v ∈ N (A∗A) =⇒ A∗Av = 0 =⇒ v∗A∗Av = 0

=⇒ ∥Av∥ = 0 =⇒ Av = 0 =⇒ v ∈ N (A)
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(d) It follows from part (c) that N (AA∗) = N (A∗) (just replace A with A∗ in part (c)). Then,
N (A∗)⊥ = N (AA∗)⊥ and, from part (a),

R(A) = R((AA∗)∗) = R(AA∗)

2

2 Rank and Nullity

Definition 53. The rank of a matrix A is the dimension of R(A).

The nullity of a matrix A is the dimension of N (A).

Theorem 54. Let A ∈ Cm×n and B ∈ Cn×r. Then

(a) rank (A) = rank (A∗)

(b) rank (A) ≤ min {m,n}
(c) rank (A) + nullity (A∗) = m

(d) rank (A∗) + nullity (A) = n

(e) rank (A) = rank (AA∗) = rank (A∗A)

(f) (Sylvester’s inequality)

rank (A) + rank (B)− n ≤ rank (AB) ≤ min {rank (A), rank (B)}

Multiplication by invertible matrices preserves rank. More precisely, we have the following:

Theorem 55. Let A ∈ Cm×n and C ∈ Cn×n and suppose C is invertible. Then,

R(A) = R(AC) and thus rank (A) = rank (AC)

Proof. We first prove that R(A) ⊆ R(AC). For this,

v ∈ R(A) =⇒ v = Ax =⇒ v = ACC−1x =⇒ v ∈ R(AC)

To show the reverse containment, we write

v ∈ R(AC) =⇒ v = ACx =⇒ v = Ay where y = Cx =⇒ v ∈ R(A)

proving the claim. 2

3 Invertible Matrices

Definition 56. Let A ∈ Cn×n. The matrix A is called invertible or nonsingular if there exists a
matrix B ∈ Cn×n such that AB = I 2

Theorem 57. Let A ∈ Rn×n. The following are equivalent

(a) A is invertible

(b) R(A) = Rn i.e. rank (A) = n

(c) N (A) = {0} i.e. nullity(A) = 0

4 Linear Systems of Equations

Theorem 58. Let A ∈ Rm×n, b ∈ Rm. Then,

(a) Ax = b is solvable for x ∈ Rn if and only if b ∈ R(A)

(b) Suppose Ax = b is solvable for some b. This solution is unique if and only if N (A) = {0}
(c) Ax = b has a unique solution for every b if and only if A is square and invertible.
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D. Eigenvalues and Eigenvectors

1 Eigenvectors and Eigenvalues

Definition 59. Let A ∈ Cn×n. The characteristic polynomial of A is written as

χA(s) = det(sI −A) = sn + αn−1s
n−1 + · · ·+ α1s

1 + α0s
0

The roots of χA(s), of which there are n, are called the eigenvalues of A.
The set of eigenvalues of A including multiplicity is called the Spectrum of A written Spec A.

Lemma 60. The eigenvalues of A ∈ Cn×n are continuous functions of the entries of A.

Lemma 61. Let A ∈ Cn×n and λ be an eigenvalue of A. Then, there exists a vector v ̸= 0 such
that Av = λv. This vector v is called an eigenvector of A with associated eigenvalue λ.

Proof. Since λ is an eigenvalue of A, we have

det(λI −A) = χA(λ) = 0

Thus the matrix (λI −A) is not invertible. Consequently, its null space is not trivial, i.e.

∃v ̸= 0 such that (λI −A)v = 0

proving the claim. 2

It is evident that any nonzero multiple of v is also an eigenvector corresponding to the same
eigenvalue. We regard all (nonzero) scalar multiples of an eigenvector as being the same eigen-
vector.

Let A ∈ Cn×n. If all the eigenvalues of A are distinct, we can clearly find one eigenvector for each
eigenvalue. it turns out (we prove this below) that these eigenvectors are linearly independent. If,
however, A has repeated eigenvalues it may or may not have n linearly independent eigenvectors.

Definition 62. A matrix A ∈ Cn×n is called simple if it has distinct eigenvalues. A matrix A is
called semi-simple if it has n linearly independent eigenvectors. 2

2 The Simple Case

In the special case where A is simple, we have the following key result.

Theorem 63. Let A ∈ Cn×n be simple with eigenvalues λi and corresponding eigenvectors vi, for
i = 1, · · · , n. Then

(a) The eigenvectors form a basis for Cn.

(b) Define the (nonsingular) matrix T and the matrix Λ by

T =
[
v1 · · · vn

]
, Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

... · · ·
...

0 0 · · · λn


Then, T−1AT = Λ
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Proof. (a) We will use contradiction. Suppose v1, · · · , vn are linearly dependent. Then one of
these vectors can be expressed as a linear combination of the remaining vectors. Without loss of
generality assume the first vector is a linear combination of the others:

v1 =
n∑

k=2

αkvk

Define the matrix

M = (λ2I −A)(λ3I −A) · · · (λnI −A)

Note that for any pair (λ, v) satisfying Av = λv,

Mv = (λ2I −A)(λ3I −A) · · · (λn−1I −A)(λn − λ)v

= (λ2I −A)(λ3I −A) · · · (λn−2I −A)(λn−1 − λ)(λn − λ)v

= (λ2 − λ)(λ3 − λ) · · · (λn−2 − λ)v

Using the fact that A has distinct eigenvalues, we have

Mv1 = (λ2 − λ1)(λ3 − λ1) · · · (λn−2 − λ1)v1 ̸= 0

For k = 2, 3, · · · , n, we have

Mvk = (λ2 − λk)(λ3 − λk) · · · (λn−2 − λk)vk = 0

It now follows from (??) that

0 ̸= Mv1 = M

(
n∑

k=2

αkvk

)
=

n∑
k=2

αkMvk = 0

This is a contradiction, proving that the eigenvectors v1, · · · , vn are linearly independent. Equiv-
alently, the matrix

T =
[
v1 v2 · · · vn

]
∈ Cn×n

is invertible.

(b) Observe that

AT =
[
Av1 Av2 · · · Avn

]
=
[
λ1v1 λ2v2 · · · λnvn

]
= TΛ

Pre-multiplying by T−1 yields T−1AT = Λ, completing the proof. 2

The matrix T−1AT is the representation of the operatorA(x) = Ax in the new basis {v1, v2, . . . , vn}
for Cn. The columns of the matrix T are these basis vectors and the transformation T−1AT is
called a similarity transformation.

Theorem 63 states that simple matrices can be diagonalized using similarity transformations.
Observe that the order in which the eigenvalues appear in Λ corresponds to the order in which
its eigenvectors are placed in the matrix T .
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Example 64. Let

A =

[
2 −3
1 −2

]
This matrix is simple and has eigenvalues at 1,−1 with associated eigenvectors

[
3 1

]′
and[

1 1
]′
. It then follows that

T−1AT =

[
1 0
0 −1

]
, where T =

[
3 1
1 1

]
3 Jordan Form

The similarity transformation discussed above brings any semi-simple matrix A to a diagonal
form. When A is not semi-simple, we can’t bring A to a diagonal form, but we can bring it to
what is called a Jordan form.

Let λ1, · · · , λk be the eigenvalues of A with associated multiplicities m1, · · · ,mk. Observe that∑
imi = n.

We have the following result:

Theorem 65. There exists a nonsingular matrix T ∈ Cn×n such that

T−1AT =


J1 0 · · · 0
0 J2 · · · 0
...

... · · ·
...

0 0 · · · Jk


where the Jordan block Jℓ ∈ Cℓ×ℓ corresponding to the eigenvalue λℓ has the structure

Jℓ =


J1,ℓ 0 · · · 0
0 J2,ℓ · · · 0
...

... · · ·
...

0 0 · · · Jrℓ,ℓ


and the Jordan sub-blocks are as

Ji,ℓ =


λℓ 1 · · · 0 0
0 λℓ · · · 0 0
...

... · · ·
...

...
0 0 · · · λℓ 1
0 0 · · · 0 λℓ


To determine the Jordan form of A we require the sizes and number of the various sub-blocks
Ji,ℓ as well as the associated transformation matrix T . We will not delve into the details of this
task, but we point out the following salient points:

(a) The eigenvalues of A, including multiplicity, appear on the diagonal of the Jordan form.

(b) If A is semi-simple, its Jordan form is diagonal.

(c) In the general case, the Jordan form may have 1′s along portions of the super-diagonal.
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The reason we do not emphasize Jordan forms is the numerical instability inherent in the com-
putation of Jordan forms, illustrated in the example below. Instead we will later see Schur forms
that serve a similar purpose and are computationally reliable.

Example 66. The Jordan form of a matrix A is not a continuous function of the entries of A. To
see this consider:

Aϵ =

[
1 + ϵ 1
0 1

]
The Jordan form of Aϵ for ϵ ̸= 0 is[

1 + ϵ 0
0 1

]
while the Jordan form for A0 is[

1 1
0 1

]
As a result one should steer clear of algorithms that require computation of the Jordan form of
a matrix.

4 Determinant and Trace from Eigenvalues

Although we have advised against numerical computation of the Jordan form, it is conceptually
useful to know that any matrix can be brought to Jordan form. For example, the Jordan form
helps us derive the following useful formulas:

det(A) = λ1λ2 · · ·λn Tr(A) = λ1 + λ2 + · · ·+ λn

These follow because we know that an invertible matrix T brings T−1AT to Jordan form, which
is upper triangular with eigenvalues on the diagonal. Thus,

det(T−1AT ) = λ1λ2 · · ·λn Tr(T−1AT ) = λ1 + λ2 + · · ·+ λn

Since det(T−1AT) = det(TT−1A) = det(A) and Tr(T−1AT) = Tr(TT−1A) = Tr(A), we conclude
det(A) = λ1λ2 · · ·λn and Tr(A) = λ1 + λ2 + · · ·+ λn.

The formula for the determinant is particularly useful because the computation of the determinant
suggested by the standard definition is awkward. Instead, we can simply multiply the eigenvalues
(multiplicities included).
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E. Functions of a Square Matrix

1 Functions of a Matrix

Let A ∈ Cn×n and let p(s) =
∑k

i=0 αis
i be a polynomial. Then, we define

p(A) =
k∑

i=0

αiA
i ∈ Cn×n

where A0 = I.

We can generalize this notion to arbitrary (analytic) functions as follows. Consider the Taylor
series

f(s) =
∞∑
i=0

αis
i

and assume that this Taylor series converges on Spec(A). Then, we define

f(A) =
∞∑
i=0

αiA
i ∈ Cn×n

(it will happen that this defining Taylor series also converges).

Lemma 67. Let f(s), g(s) be arbitrary functions and let h(s) = f(s)g(s). Then

(a) f(A)g(A) = g(A)f(A) = h(A)

(b) f(T−1AT ) = T−1f(A)T

(c) f

([
A 0
0 B

])
=

[
f(A) 0
0 f(B)

]
2 Computing functions of a matrix

We begin with the case where A ∈ Cn×n is simple. In this case, the Jordan form J = T−1AT of
A is diagonal and may be readily computed. We can then employ properties (b) and (c) above
to write

f(A) = Tf(J)T−1 = T


f(λ1) 0 · · · 0
0 f(λ2) · · · 0
...

... · · ·
...

0 0 · · · f(λn)

T−1

Observe that f(λi) are well-defined because f(s) converges on Spec(A). The reason we impose
this requirement in defining f(A) is now transparent.

Example 68. Let

A =

[
2 −3
1 −2

]
We compute A300:

A300 = TJ300T−1 = T

[
1300 0
0 −1300

]
T−1 = I
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We now turn our attention to the general case. Again, we shall proceed via the Jordan canonical
form. Using the same idea, we see that we need to be able to compute f(J) for a general Jordan
block

J =


λ 1 · · · 0 0
0 λ · · · 0 0
...

... · · ·
...

...
0 0 · · · λ 1
0 0 · · · 0 λ


It turns out that

f(J) =


f(λ) 1

1!f
(1)(λ) · · · 1

(k−2)!f
(k−2)(λ) 1

(k−1)!f
(k−1)(λ)

...
... · · ·

...
...

0 0 · · · f(λ) 1
1!f

(1)(λ)
0 0 · · · 0 f(λ)


Observe that the derivatives f (i)(λ) above exist. We are therefore in a position to compute
(analytic) functions of an arbitrary matrix.

Example 69. Consider the matrix

A =

[
2 1
0 2

]
Using the above result, we obtain

cos(A) =

[
cos(2) − sin(2)

0 cos(2)

]
3 The Spectral Mapping Theorem

Theorem 70. Let A ∈ Cn×n and let f(s) be an arbitrary analytic function.

(a) Suppose A has eigenvalues {λ1, · · · , λn}. Then, the eigenvalues of f(A) are {f(λ1), · · · , f(λn)}.
(b) Let v be an eigenvector of A with associated eigenvalue λ. Then v is also an eigenvector of

f(A) with associated eigenvalue f(λ).

4 The Cayley-Hamilton Theorem.

We will make use of the following result.

Theorem 71. Let A ∈ Cn×n and let

χ(s) = sn + αn−1s
n−1 + · · ·+ α1s

1 + α0

be the characteristic polynomial of A. Then,

χ(A) = 0

As a consequence of this theorem, it is evident that An is a linear combination of the set of
matrices S =

{
I, A, · · · , An−1

}
. By an inductive argument it follows that any power of A, and

therefore any function of A is expressible as a linear combination in S.
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5 Matrix Exponentials

Matrix exponentials are particularly important and arise in connection with systems of coupled
linear ordinary differential equations. Since the Taylor series

est = 1 + st+
s2t2

2!
+

s3t3

3!
+ · · ·

converges everywhere, we can define the exponential of any matrix A ∈ Cn×n by

eAt = I +At+
A2t2

2!
+

A3t3

3!
+ · · ·

6 Properties of Matrix Exponentials

Theorem 72. (a) e0 = I

(b) If AB = BA then e(A+B)t = eAteBt = eBteAt

(c) det
[
eAt

]
= etraceAt

(d) eAt is always invertible and
[
eAt

]−1
= e−At

7 Computing Matrix Exponentials

How could we compute matrix exponentials? Using the Taylor series definition is hopeless. A
much easier way is to go through the Jordan form.

We will focus on the simple case, i.e. all the eigenvalues of A are distinct. We can diagonalize A
as

A = TΛT−1, where Λ =

 λ1 · · · 0
...

. . .
...

0 · · · λn


As we have shown,

eAt = TeΛtT−1, where eΛt =

 eλ1t · · · 0
...

. . .
...

0 · · · eλnt


Example 73. Let A be as in item Example 64. We compute eAt:

eAt = TeJtT−1 = T

[
et 0
0 e−t

]
T−1 =

[
1.5et − 0.5e−t −1.5et + 1.5e−t

0.5et − 0.5e−t −0.5et + 1.5e−t

]
2

Example 74. Consider the matrix

A =

[
σ ω
−ω σ

]
You should be able to check that

eAt = eσt
[

cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

]
2
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F. Hermitian and Positive Definite Matrices

1 What is in this Section?

We first introduce Unitary matrices. These are square matrices whose columns form an orthonor-
mal basis.
We then study Hermitian matrices. These are also square matrices. Hermitian matrices gen-
eralize the concept of symmetric matrices. They are extremely important in Linear Algebra.
Hermitian matrices enjoy very nice numerical properties. They have real eigenvalues, and these
can be computed very reliably. Hermitian matrices appear in many applications. In Quantum
Mechanics, Hermitian matrices represent physical quantities like energy, linear momentum, and
angular momentum.

2 Unitary Matrices

Definition 75. A matrix U ∈ Cn×n is called unitary if U∗U = I = UU∗.

A real unitary matrix is called an orthogonal matrix.

Example 76. The matrix

U =

[
cos θ sin θ
− sin θ cos θ

]
is unitary. Since all the entries of U are real, we say that U is orthogonal. It is easy to verify
that U is unitary:

U∗U =

[
cos θ − sin θ
sin θ cos θ

] [
cos θ sin θ
− sin θ cos θ

]
=

[
1 0
0 1

]
We can also think of the columns of U as being an orthonormal basis for R2. This basis is just
the standard basis rotated counter-clockwise by θ degrees.

Theorem 77. Properties of Unitary Matrices Let U ∈ Cn×n be unitary. Then,

(a) ∥Ux∥ = ∥x∥
(b) ⟨Ux,Uy⟩ = ⟨x, y⟩
(c) U−1 = U∗

(d) The columns of U form an orthonormal basis of Cn. 2

Proof.

(a) ∥Ux∥2 = x∗U∗Ux = x∗x = ∥x∥2

(b) ⟨Ux,Uy⟩ = x∗U∗Uy = x∗y = ⟨x, y⟩
(c) This is immediate.

(d) This follows from (a) and (b) on observing that the ith column of U can be written as Uei
where ei is the ith standard basis vector in Cn.

3 The Schur Form

Unlike the Jordan form, Schur form is extremely reliable computationally. It transforms any
square matrix into an upper-triangular matrix T using unitary matrices. The eigenvalues of A
appear on the diagonal of T .
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Theorem 78. Let A ∈ Cn×n. There exists U unitary such that

A = UTU∗ T =


λ1 ∗ · · · ∗ ∗
0 λ2 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · λn−1 ∗
0 0 · · · 0 λn


Proof. We use induction on n. The result clearly holds for n = 1. Suppose the result holds for
k = 1, · · · , n− 1. Let λ1 be any eigenvalue of A. Normalize its eigenvector:

Av1 = λ1v1, ∥v1∥ = 1

Extend v1 by {v2, v3, · · · , vn} to form an orthonormal basis for Cn. Notice that

V =
[
v1 v2 · · · vn

]
is unitary. Then

AV = A
[
v1 v2 · · · vn

]
=
[
λ1v1 ∗ · · · ∗

]
=

[
v1 v2 · · · vn

] 
λ1 ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · λn

 = V

[
λ1 ∗
0 A22

]

This implies

A = V

[
λ1 ∗
0 A22

]
V ∗

Since A22 is (n− 1)× (n− 1), the result holds for A22. We can then write

A22 = WT22W
∗

where W is unitary and T22 is upper-triangular. It follows that

A = V

[
1 0
0 W

]
︸ ︷︷ ︸

U

[
λ1 ∗
0 T22

]
︸ ︷︷ ︸

T

[
1 0
0 W ∗

]
V ∗︸ ︷︷ ︸

U∗

Notice that U is unitary, and T is upper-triangular, proving the claim.

4 Hermitian Matrices

Definition 79. A matrix H ∈ Cn×n is called Hermitian if H = H∗.

Real symmetric matrices are, in particular, Hermitian. The matrix

A =

[
1 j
j 1

]
̸=
[

1 −j
−j 1

]
= A∗

is symmetric but not Hermitian.
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5 Main Results on Hermitian Matrices

We will now prove several results regarding Hermitian matrices. These results also hold almost
verbatim for real symmetric matrices. The central result is that all the eigenvalues of a Hermitian
matrix are real, and the eigenvectors form an orthonormal set.

Theorem 80. Let H ∈ Cn×n be Hermitian.

(a) The eigenvalues of H are real.

(b) H has a full set of eigenvectors, and these eigenvectors form an orthogonal set.

(c) Hermitian matrices can be diagonalized by unitary transformations, i.e. there exists a uni-
tary matrix U such that

H = UDU∗, where D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


Here λ1, · · · , λn are the (real) eigenvalues of H.

Proof.

(a) Let λ be any eigenvalue of H. We can find an eigenvector corresponding to λ and write

Hv = λv, with v ̸= 0

Taking the complex-conjugate transpose and recognizing that H is Hermitian, we get

v∗H∗ = v∗H = λv∗

It follows that

v∗Hv = λv∗v = λv∗v =⇒ (λ− λ)v∗v = 0

Since v∗v = ∥v∥2 ̸= 0, we have λ = λ proving that λ is real.

(b) and (c). We will prove this by induction on n. The result is clearly true isH is 1×1. Suppose
it is true for all Hermitian matrices that are N×N or smaller. Consider an (N+1)×(N+1)
Hermitian matrix H. Select any eigenvalue λ of H. Let v be the corresponding eigenvector.
Normalize v to have unit length. We can write

Hv = λv, ∥v∥ = 1

Extend v by v1, · · · vN to form an orthonormal basis for CN+1. This can be done, for
example, using the Gram-Schmidt procedure. As a result, the matrix

V =
[
v v1 v2 · · · vN

]
∈ C(N+1)×(N+1) is unitary.

Next observe that

HV =
[
Hv Hv1 · · · HvN

]
= V


λ ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
...

...
...

. . .
...

0 ∗ ∗ · · · ∗

 = V

[
λ w∗

0 G

]
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Therefore

V ∗HV =

[
λ w∗

0 G

]
or H = V

[
λ w∗

0 G

]
V ∗

Since H is Hermitian, we get[
λ 0
w G∗

]
= (V ∗HV )∗ = V ∗HV =

[
λ w∗

0 G

]
This forces w = 0 and G = G∗. Since G ∈ CN×N , the induction hypothesis lets us write

G = ZDGZ
∗

where Z is unitary and DG is a diagonal matrix of the (real) eigenvalues of G. Putting all
this together, we get

H = V

[
λ 0
0 G

]
V ∗ = V

[
1 0
0 Z

] [
λ 0
0 DG

] [
1 0
0 Z∗

]
V ∗ = UDU∗

where

D =

[
λ 0
0 DG

]
is diagonal, and U = V

[
1 0
0 Z

]
Observe that U is unitary because

U∗U =

[
1 0
0 Z∗

]
V ∗V

[
1 0
0 Z

]
=

[
1 0
0 Z∗Z

]
= I

completing the induction.

6 Positive Definite Matrices

Definition 81. A matrix P ∈ Cn×n is called positive-definite, written P ≻ 0, if P is Hermitian
and further,

v∗Pv > 0 , for all 0 ̸= v ∈ Cn

A matrix P ∈ Cn×n is called positive-semi-definite, written P ⪰ 0, if P is Hermitian and further,

v∗Pv ≥ 0 , for all v ∈ Cn 2

Analogous are the notions of negative- and negative-semi- definite matrices.
Suppose A and B are Hermitian. We will write A ≻ B to mean A−B ≻ 0.

Example 82. A positive-definite matrix can have negative entries. The following matrix is
positive-definite:

P =

[
2 −1
−1 2

]
Clearly P is Hermitian. So see that P ≻ 0, observe that for all x, y

v∗Pv =
[
x y

] [ 2 −1
−1 2

] [
x
y

]
= 2x2 + 2y2 − 2xy = x2 + y2 + (x+ y)2 ≥ 0
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Also, v∗Pv = 0 ⇐⇒ x = y = 0.
Conversely, just because a matrix A has all positive entries, it does not mean that A ≻ 0. For
example, the matrix

A =

[
1 2
2 1

]
is not positive-definite. This is apparent when we calculate

v∗Av =
[
1 −1

] [ 1 2
2 1

] [
1
−1

]
= −2 2

Theorem 83. Let P ∈ Cn×n be Hermitian.

(a) P ⪰ 0 ⇐⇒ all the eigenvalues of P are ≥ 0.

(b) P ≻ 0 ⇐⇒ all the eigenvalues of P are > 0. 2

Proof. We prove (a). Let P ⪰ 0. Since P = P ∗, we can write

P = U∗ΛU, Λ = diag {λ1, · · · , λn}

If Spec (P ) ≥ 0, then for any v ∈ Cn we have

v∗Pv = v∗U∗ΛUv = w∗Λw =
∑

λk|wk|2 ≥ 0

Conversely suppose P ⪰ 0. Let w = U∗ek where ek is the kth standard basis vector. Then

0 ≤ w∗Pw = ekUU∗ΛUU∗ek = λk

proving the claim. The proof of (b) is very similar.

Theorem 84. Let 0 ≺ P ∈ Cn×n. Then

(a) ∥x∥2 = x∗Px qualifies as a norm

(b) ⟨x, y⟩ = x∗Py qualifies as an inner-product

Proof. To prove (b) we just check that x∗Py satisfies all the axioms required of an inner-product.
Since P ≻ 0, we have x∗Px ≥ 0 and x∗Px = 0 if and only if x = 0. Linearity in y is easy to
verify. Part (a) follows immediately on setting x = y.

7 Square-roots

Definition 85. Let 0 ⪯ P ∈ Cn×n. We can then write P = UDU∗ where U is unitary and D is a
diagonal matrix. Define the square-root of P written P

1
2 by

P
1
2 = UD

1
2U∗ 2

where D
1
2 is the entry-wise square-root of the diagonal matrix D.

It follows that

P
1
2P

1
2 = UD

1
2U∗UD

1
2U∗ = UD

1
2D

1
2U∗ = UDU∗ = P

which is why we call P
1
2 the square-root of P .

It is evident that P
1
2 as defined above is Hermitian, and moreover P

1
2 ⪰ 0. Further, if P ≻ 0,

then P
1
2 ≻ 0.
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G. The Singular Value Decomposition

1 The SVD

Theorem 86. Let M ∈ Cm×n with rank (M) = r. Then we can find unitary matrices U ∈ Cm×m

and V ∈ Cn×n such that

M = UΣV ∗ = U

[
Σ1 0
0 0

]
V ∗

where

Σ1 =


σ1 0 · · · 0
0 σ2 · · · 0
...

... · · ·
...

0 0 · · · σr


The real numbers σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are called the singular values of M and the represen-
tation above is called a singular-value decomposition (SVD) of M .

Although Σ is uniquely determined, U and V are not: e.g., if we define Ũ = −U and Ṽ = −V ,
then Ũ and Ṽ are also unitary and M = ŨΣṼ ∗.

When M is real we can choose U and V to be real, orthogonal matrices.

2 Four Subspaces

Theorem 87. Let M ∈ Cm×n with rank (M) = r and let M = UΣV ∗ be a singular-value decom-
position of M . Partition U and V as

U =
[
U1 U2

]
, V =

[
V1 V2

]
where U1∈ Cm×r and V1∈ Cn×r. Then

(a) The columns of U1 and U2 form orthonormal bases for R(M) and N (M∗) respectively.

(b) The columns of V1 and V2 form orthonormal bases for R(M∗) and N (M) respectively.

3 Alternative Forms of SVD

Using the partition above, we get the alternative form

M = U1Σ1V
∗
1 .

If we denote by u1, . . . , ur the columns of U1 and by v1, . . . , vr the columns of V1, then

M = σ1u1v
∗
1 + · · ·+ σrurv

∗
r ,

which is yet another representation of SVD.

4 Computing the singular-value decomposition

While definitely not the method of choice vis-a-vis numerical aspects, the following result provides
an adequate method for determining the singular-value decomposition of a matrix.
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Theorem 88. Let M ∈ Cm×n with rank (M) = r. Let λ1, · · · , λr be the nonzero eigenvalues of
MM∗. These will be non-negative because MM∗ ⪰ 0. Also, from Theorem 80 it follows that
there exists a unitary matrix U ∈ Cm×m such that

MM∗ = U

[
Λ 0
0 0

]
U∗

where Λ = diag (λ1, · · · , λr). Then the singular values of M are λ
1
2
1 , · · · , λ

1
2
r and a singular-value

decomposition of M is

M = U

[
Λ

1
2 0
0 0

]
V ∗

where V = [V1, V2] with V1 defined as V1 = M∗U1Λ
−1/2 and V2 selected as a matrix whose columns

constitute an orthonormal basis for the null space of M .

Here U is already selected to be unitary. Convince yourself that the proposed V is also unitary
and that the product

U

[
Λ

1
2 0
0 0

]
V ∗ = U1Λ

1
2V ∗

1

indeed recovers M .

The following variant of the theorem above makes use of M∗M instead of MM∗:

Theorem 89. Let M ∈ Cm×n with rank (M) = r. Let λ1, · · · , λr be the nonzero eigenvalues
of M∗M , which are non-negative because M∗M ⪰ 0. From Theorem 80 there exists a unitary
matrix V ∈ Cn×m such that

M∗M = V

[
Λ 0
0 0

]
V ∗

where Λ = diag (λ1, · · · , λr). Then the singular values of M are λ
1
2
1 , · · · , λ

1
2
r and a singular-value

decomposition of M is

M = U

[
Λ

1
2 0
0 0

]
V ∗

where U = [U1, U2] with U1 = MV1Λ
−1/2 and U2 selected as a matrix whose columns constitute

an orthonormal basis for the null space of M∗.
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H. Adjoints

1 Adjoints

We said earlier that we should think of matrices as representations of linear operators rather
than just an array of numbers. Similarly, the transpose of a real matrix or the adjoint (conjugate
transpose) of a complex matrix can be viewed as a matrix representation of what is called an
adjoint operator.

Definition 90. Let A : V → W be a linear operator, where V and W are inner-product spaces.
The adjoint of A, written A∗, is the operator

A∗ : W → V

defined by

⟨w,A(v)⟩ = ⟨A∗(w), v⟩ for all v ∈ V, w ∈ W

The inner product on the left is for the vector space W and the one on the right is for V.

To see the connection to the adjoint of a complex matrix, consider the case where A : Cn → Cm

is defined by A(v) = Av, A ∈ Cm×n. Then the adjoint operator A∗ can be represented with the
matrix A∗; that is A∗(w) = A∗w. This follows by applying the definition above with the usual
inner product ⟨x, y⟩ = x∗y for complex vectors:

⟨w,A(v)⟩ = w∗Av = (A∗w)∗v = ⟨A∗(w), v⟩

2 The Lyapunov operator

Let A ∈ Rn×n. and consider the Lyapunov operator L(X) = ATX + XA. We show that
L∗(Y ) = AY + Y AT .

Note that

L : Rn×n → Rn×n and L∗ : Rn×n → Rn×n

We use the standard trace inner-product on Rn×n.

⟨Y,X⟩ = Trace(Y TX)

Set L∗(Y ) = Z. Using the definition of adjoint,

⟨Y,L(X)⟩ = ⟨L∗(Y ), X⟩ =⇒ Trace(Y T (ATX +XA)) = Trace(ZTX)

for all X,Y ∈ Rn×n. Note that

Trace(Y T (ATX +XA)) = Trace(Y TATX) + Trace(Y TXA)

= Trace(Y TATX) + Trace(AY TX)

= Trace((Y TAT +AY T )X) = Trace((AY + Y AT )TX)

Thus, Z must be such that

Trace((AY + Y AT )TX) = Trace(ZTX)

for all X,Y . This is indeed the case with

Z = L∗(Y ) = AY + Y AT
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3 Operator from function space to Euclidean space

Let A : Lm
2 [0, T ] → Rn be defined as

A(v) =

∫ T

0
G(t)v(t)dt

where G(t) ∈ Rn×m, t ∈ [0, T ]. To find A∗ : Rn → Lm
2 [0, T ] we use the definition

⟨w,A(v)⟩ = ⟨A∗(w), v⟩ for all w ∈ Rn, v ∈ Lm
2 [0, T ]

The inner product on the left is the inner product for Rn, thus

⟨w,A(v)⟩ = wTA(v) = wT

∫ T

0
G(t)v(t)dt =

∫ T

0
wTG(t)v(t)dt

The inner product on the right is for Lm
2 [0, T ]. If we denote A∗(w) = u, it has the form

⟨A∗(w), v⟩ = ⟨u, v⟩ =
∫ T

0
u(t)T v(t)dt

Matching the two inner products, we get∫ T

0
wTG(t)v(t)dt =

∫ T

0
u(t)T v(t)dt

For this to hold for all v, w, we need

u(t) = G(t)Tw

Thus, for w ∈ Rn, A∗(w) is a function whose value at t is

A∗(w)(t) = G(t)Tw
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EECS 221A Open Loop Aspects

A. Solution of state space equations

B. Stability

C. LTV Systems

D. Controllability

E. Observability

F. Modal Observability and Controllability Tests

G. Kalman decomposition
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A. Solution of State-Space Equations

1 Solution of State Space equations

Theorem 91. Consider the LTI System

Σ :

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

with initial condition x(0) = ξ

The closed-form solution of these differential equations is

x(t) = eAtξ +

∫ t

0
eA(t−τ)Bu(τ)dτ (8)

y(t) = CeAtξ +

∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t)

Proof. All we have to do is verify that the proposed solution satisfies the initial conditions and
solves the state space differential equation. We check:

x(0) = eA0ξ +

∫ 0

0
eA(t−τ)Bu(τ)dτ = ξ

Next using the Leibniz differentiation rule1.

dx

dt
= AeAtξ +

d

dt

[∫ t

0
eA(t−τ)Bu(τ)dτ

]
= AeAtξ +A

∫ t

0
eA(t−τ)Bu(τ)dτ +Bu(t)

= Ax(t) +Bu(t)

This general solution has two parts: the free response and the forced response.

The free response is the part of the solution due to initial conditions only with input u = 0:

free response: yfree(t) = CeAtξ (9)

The forced response is the part due to the input alone with initial conditions ξ = 0:

forced response: yforced(t) =

∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t) (10)

Remark 92. The D-term captures the immediate effect of the input u on the output y. Most
often, D = 0 because physical systems do not respond immediately to the input.

1The Leibniz differentiation formula tells us how to take the derivative of a definite integral:

d

dt

∫ b(t)

a(t)

f(t, τ)dτ =
db(t)

dt
· f(t, b(t))− da(t)

dt
· f(t, a(t)) +

∫ b(t)

a(t)

∂f

∂t
(t, τ)dτ
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2 Free Response

The free response is the part of the solution due to initial conditions only with input u = 0:

yfree(t) = CeAtξ

In the case where A is semisimple, the matrix exponential eAt has the form

eAt = TeΛtT−1, where eΛt =

 eλ1t · · · 0
...

. . .
...

0 · · · eλnt


We see that the free response is a linear combination of eλit where λi ∈ Spec A. We can
understand the free response qualitatively by plotting eλt for various eigenvalue locations λ.

We begin with real eigenvalues. The free response term eλt is shown in Figure 13. Notice that

(a) there are no oscillations

(b) the response decays exponentially to zero if and only if Real λ < 0 with faster decay when
λ is more negative

(c) the response grows exponentially when Real λ > 0 with faster growth when λ is more
positive

(d) the response is constant when λ = 0

λ = −2 λ = −1 λ = 0
λ = 1

Figure 13: Free response terms for real eigenvalues.

We now turn to the case of complex eigenvalues. When λ = σ ± jω, the Euler identity gives

eλt = eσtejωt = eσt [cos(ωt) + j sin(ωt)]

This looks like a sinusoid of frequency ω modulated by an exponential envelop eσt. The real part
of eλt is shown in Figure 14. Note that

(a) there are oscillations

(b) the response decays exponentially to zero if and only if Real λ < 0 with faster decay when
σ = Real λ is more negative

(c) the response grows exponentially when Real λ > 0 with faster growth when σ = Real λ is
more positive

(d) the frequency of the oscillations increases with ω

(e) the response is a pure sinusoid when σ = 0
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−2± j −1± j 0± j

1± j

−2± 2j −1± 2j 0± 2j

1± 2j

Figure 14: Real part of eλt for various complex values of λ.

When A is not semisimple, the free response has terms like

eλt, teλt, t2eλt, · · · , tq−1eλt

where q is the size of the largest Jordan block associated with the eigenvalue λ.

3 Forced Response as a Convolution

Note that, when D = 0, the forced response has the form

y(t) =

∫ t

0
h(t− τ)u(τ)dτ

where

h(t) = CeAtB

You may recognize the integral above as the convolution of the functions h and u, denoted h ∗u,
if you have studied convolution before. The function h above is called the impulse response, as
it is the output when we apply the Dirac delta function as the input, i.e. u = δ, with zero initial
conditions. Indeed, applying the forced response formula with u = δ, we get∫ t

0
CeA(t−τ)Bδ(τ)dτ =

{
CeAtB t ≥ 0

0 t < 0
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4 Discrete-time LTI solution

Consider the discrete-time LTI realization[
xk+1

yk

]
=

[
A B
C D

] [
xk
uk

]
, with initial condition x0 = ξ

The solution of these equations is

xk = Akξ +
k−1∑
ℓ=0

AℓBuk−1−ℓ

yk = CAkξ +
k−1∑
ℓ=0

CAℓBuk−1−ℓ +Duk

We can rewrite these equations as
x0
x1
x2
...
xk

 =


I
A
A2

...
Ak

 ξ +


0 0 0 · · · 0
B 0 0 · · · 0
AB B 0 · · · 0
...

...
...

. . .
...

Ak−1B Ak−2B Ak−3B · · · 0




u0
u1
u2
...

uk−1




y0
y1
y2
...
yk

 =


I
A
A2

...
Ak

 ξ +


D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D · · · 0

...
...

...
. . .

...
CAk−1B CAk−2B CAk−3B · · · D




u0
u1
u2
...

uk−1


The first term is the free response, the second term is the forced response. Define the Markov
parameters:

H0 = D, Hk = CAk−1B

The forced response can now be written more clearly as:
y0
y1
y2
...
yk


forced

=


H0 0 0 · · · 0
H1 H0 0 · · · 0
H2 H1 H0 · · · 0
...

...
...

. . .
...

Hk−1 Hk−2 Hk−3 · · · H0




u0
u1
u2
...

uk−1


or more compactly, as

y = Tu

The matrix T is block lower-triangular It has a special structure – blocks repeat down all diago-
nals. Such a matrix is called Toeplitz.
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5 MatLab Commands

State-space realizations offer a very convenient data structure to handle LTI ODEs. In MATLAB,
we can use the ss command to create state space realization objects. For example these simple
commands create the object plant as a state-space realization.

>> A = [0 1 0; 0 0 1; -2 -3 -4];

>> B = [0; 0; 1];

>> C = [1 0 0];

>> D = 0;

>> plant = ss(A,B,C,D);

We can simulate the response of a state-space realization to inputs u and initial conditions x0

using the lsim command.

% lsim(sys,u,t)

% lsim(sys,u,t,x0)

>> t = linspace(0,10, 1000);

>> u = sin(0.8*t) + randn(1,1000);

>> y = lsim(plant, u, t);

>> plot(t,y);

% to specify the initial conditions x0 use

>> y = lsim(plant, u, t, x0)

For discrete-time state-space models, you can specify the sampling time ts.

% to leave sampling time unspecified, use ts = -1

>> plant = ss(A,B,C,D, ts);

% simulation works as before

>> y = lsim(plant, u, t, x0);

>> plot(t,y);
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B. Stability

1 Internal Stability

There are many notions of stability for state-space models. For LTI systems these diverse notions
collapse and are equivalent. We begin with the following, which only concerns the free response
of the system:

Definition 93. The system Σ is called asymptotically stable if the solution of

ẋ = Ax, x(0) = ξ

with any initial condition ξ ∈ Rn satisfies

lim
t→∞

x(t) = 0

Theorem 94. The linear time-invariant system Σ(A, ∗, ∗, ∗) is asymptotically stable if and only if
all the eigenvalues of A have negative real parts:

Real(Spec(A)) < 0

Proof: We assumeA has distinct eigenvalues say λ1, · · · , λn with associated eigenvectors v1, · · · , vn.
Then, we can write

A = TΛT−1 =
[
v1 · · · vn

]  λ1 · · · 0
...

. . .
...

0 · · · λn

 [ v1 · · · vn
]−1

Using this decomposition, we can calculate

eAt = TeΛtT−1 = T

 eλ1t · · · 0
...

. . .
...

0 · · · eλnt

T−1

Clearly eAt → 0 if and only if eλkt → 0 for each eigenvalue λk. That will happen if and only if
Real{λ} < 0. 2

A matrix whose eigenvalues have strictly negative real parts is sometimes called Hurwitz.

2 The Lyapunov equation

Theorem 95. Consider the matrix equation

A∗P + PA+Q = 0 (11)

The following are equivalent

(a) The Lyapunov equation has a unique solution P for some Q

(b) The Lyapunov equation has a solution P for every Q

(c) The Lyapunov equation has a unique solution P for every Q

(d) For all λi, λj ∈ Spec(A), λi + λj ̸= 0
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Proposition 96. If A is Hurwitz, the unique solution of the Lyapunov equation (11) is

P =

∫ ∞

0
eA

∗tQeAtdt

3 Stability Test using the Lyapunov Equation

Asymptotic stability can also be characterized in terms of the Lyapunov equation:

Theorem 97. If there exists P ≻ 0 such that

Q = −A∗P − PA ≻ 0

then the system Σ is asymptotically stable.

Algebraic proof. We show that the condition above implies A is Hurwitz, this Σ is asymptotically
stable. Let λ ∈ Spec (A). Then

Av = λv, v ̸= 0

Notice that v∗A∗ = λv∗. Multiplying the Lyapunov equation by v on the right and v∗ on the left
we get

v∗Qv = −v∗A∗Pv − v∗PAv = −λv∗Pv − λv∗Pv + v∗Qv

= −(λ+ λ)v∗Pv = −2 Real λv∗Pv

Since P,Q ≻ 0 and v ̸= 0 we conclude that

Real λ = − v∗Qv

2v∗Pv
< 0

proving that A is Hurwitz.

Trajectory-based proof. This proof bypasses the eigenvalue characterization of asymptotic stabil-
ity, used in the algebraic proof. It shows directly that x(t) → 0. Define the function

V (x) = x∗Px

which satisfies

V (x) ≥ 0 and V (x) = 0 ⇐⇒ x = 0

Next along trajectories of ẋ = Ax, we have

d

dt
V (x(t)) = ẋ(t)∗Px(t) + x(t)∗Pẋ(t) = x(t)∗A∗Px(t) + x(t)∗PAx(t) = −x(t)∗Qx(t)

Since Q ≻ 0, we have d
dtV (x(t)) ≤ 0 so V (x(t)) is a decreasing function of time. Since P ≻ 0,

V (x(t)) ≥ 0. These two facts together imply that V (x(t)) converges to a constant c ≥ 0. It can
be argued2 that c = 0, which means that V (x(t)) → 0. Since x∗Px = 0 implies x = 0 by P ≻ 0,
we conclude x(t) → 0. 2

2c > 0 leads to a contradiction: d
dt
V (x(t)) < 0 only when x(t) = 0, that is, only when V (x(t)) = 0
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The function V used in the trajectory-based proof is called a Lyapunov function. It converges
to zero along the trajectories of the system because its time derivative is a negative definitie
function of the state. Since V (x) is positive for all x ̸= 0, convergence of V (x) to zero implies
convergence of x to zero.

The idea of finding a positive definite Lyapunov function whose time derivative is negative definite
extends naturally to nonlinear systems. Although nonlinear systems are beyond the scope of this
course, we use the following example as a simple illustration.

Example 98. We use V (x) = x2 to show asymptotic stability of ẋ = −x3. Note that

d

dt
V (x(t)) = 2x(t)ẋ(t) = −2x(t)4

which is negative except when the state is zero. The arguments above then guarantee x(t) → 0.

4 Input-Output Stability

Input-output notions of stability focus on the effect of the inputs on the outputs, rather than the
unforced system behaviour.

Definition 99. A signal u(t) is called bounded if there exists a constant Ku such that

∥u(t)∥ ≤ Ku < ∞ for all t

For example the signal u(t) = sin(t) is bounded, but the signal u(t) = t is not.

A common input-output stability notion is bounded-input bounded-output (BIBO) stability.

Definition 100. A system is called BIBO stable if every bounded input produces a bounded
output.

For LTI systems, our earlier notion of internal stability implies BIBO stability.

Theorem 101. An asymptotically stable LTI system is BIBO stable.

Proof: Recall that the forced response is

y(t) =

∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t)

When u is bounded, the second term is bounded, so we need to show boundedness of the first
term. We rewrite is as∫ t

0
h(t− τ)u(τ)dτ

where h(t) = CeAtB. With the shifted time variable s = t− τ , the integral above becomes∫ t

0
h(s)u(t− s)ds

Note that∥∥∥∥∫ t

0
h(s)u(t− s)ds

∥∥∥∥ ≤
∫ t

0
∥h(s)u(t− s)∥ds ≤

∫ t

0
∥h(s)∥∥u(t− s)∥ds ≤ Ku

∫ t

0
∥h(s)∥ds

Moreover, the rightmost term is bounded by Ku

∫∞
0 ∥h(s)∥ds, which is well defined because

h(t) = CeAtB is a combination of terms of the form eλt, teλt, t2eλt, . . . , λ ∈ Spec(A) and all
such terms are absolutely integrable when Real(λ) < 0 (guaranteed by the asymptotic stability
assumption). Thus, the output is bounded and the system is BIBO stable.
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C. LTV Systems

1 Solution of LTV systems

Unlike the LTI system

ẋ(t) = Ax(t), x(t0) = ξ

whose solution is given by x(t) = eA(t−t0)ξ, for the LTV system

ẋ(t) = A(t)x(t), x(t0) = ξ

there is no explicit formula for the solution. Nevertheless the following characterization of the
solution is useful:

Let ϕi(t, t0) denote the solution of the unforced LTV system above when the initial condition is
ei, the ith unit vector. This means:

∂

∂t
ϕi(t, t0) = A(t)ϕi(t, t0), ϕi(t0, t0) = ei

For a more compact representation, we define the n× n matrix

Φ(t, t0) := [ϕ1(t, t0), · · · , ϕn(t, t0)]

and note that it satisfies the matrix differential equation

∂

∂t
Φ(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = I

Indeed, the ith column of this matrix differential equation corresponds to the differential equation
for ϕi above.

The solution of the unforced LTV system from an arbitrary initial condition ξ is then given by:

x(t) = Φ(t, t0)ξ

The matrix Φ(t, t0) is called the state transition matrix because it determines where the state
vector x(t) ends up at time t when it starts at ξ at time t0. In the special case of an LTI system,
where A is constant, Φ(t, t0) = eA(t−t0).

Note that the formula above is not an explicit solution because, to find Φ(t, t0), we would have to
solve the system equations (from the initial conditions e1, · · · , en). Instead, it is a characterization
of solutions from an arbitrary initial condition ξ in terms of the solutions from n initial conditions.
Once we compute these n solutions (typically using numerical integration), we can form the state
transition matrix and use it to obtain the solution from any other initial condition.

The state transition matrix also enables to characterize the solutions of a forced LTV system

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = ξ

The solution is now

x(t) = Φ(t, t0)ξ +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ

which you can verify by substituting back into the differential equation and by using the matrix
differential equation for Φ derived above.
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2 Stability of LTV systems can’t be judged from eigenvalues

Checking whether the eigenvalues of A have negative real parts was a convenient stability test
in the LTI case. For a time-varying A(t) we can’t conclude stability even if the eigenvalues have
negative real parts at each time t. Here is a counterexample:

A(t) =

[
−1 + 1.5 cos2 t 1− 1.5 sin t cos t

−1− 1.5 sin t cos t −1 + 1.5 sin2 t

]
The eigenvalues are −0.25∓ i0.25

√
7 for all t. They have negative real parts and don’t even vary

in time. Yet, the state transition matrix with t0 = 0 has a term that grows unbounded:

Φ(t, 0) =

[
e0.5t cos t e−t sin t
e−0.5t sin t e−t cos t

]
If x(0) = e1, then the solution x(t) is the first column of this matrix, which is unbounded.
Therefore, the system is unstable.
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D. Controllability

1 T -Controllability

Definition 102. Consider the LTI system

ẋ(t) = Ax(t) +Bu(t), x(0) = ξ

where x(t) ∈ Rn, u(t) ∈ Rm, and fix a time T > 0. The initial state ξ ∈ Rn is said to be
T -controllable if there exists an input u : [0, T ] → Rm that drives the state from ξ to x(T ) = 0.

Define CT ⊆ Rn to be the set of T -controllable states. The system is called T -controllable if every
state ξ ∈ Rn is T -controllable, i.e., if CT = Rn.

2 The Controllable Subspace CT
Recall that the state at t = T is given by

x(T ) = eAT ξ + eAT

∫ T

0
e−AtBu(t)dt

Setting x(T ) = 0 and using invertibility of eAT , we reach the following characterization of CT :

Lemma 103. ξ ∈ CT if and only if there exists an input u : [0, T ] → Rm such that

ξ = −
∫ T

0
e−AtBu(t)dt

We can view the right-hand side of this as a linear operator mapping the input function u to Rn:

Lu =

∫ T

0
G(t)u(t)dt, G(t) := −e−AtB

Then, the lemma above implies that CT is the range space of this operator: CT = R(L). An
immediate consequence is the following:

Lemma 104. The set CT of T -controllable states is a subspace of Rn.

We now give a sharper characterization of CT using the fact3

R(L) = R(LL∗)

where L∗ is the adjoint. The benefit of using LL∗ is that it maps Rn to Rn and can be represented
as a n× n matrix, whose range space is easy to find. In contrast, the domain of L is an infinite
dimensional vector space of input functions, which makes L difficult to analyze.

The operator Lu =
∫ T
0 G(t)u(t)dt was studied as an example for adjoint operators in the previous

chapter. It was shown that for z ∈ Rn, L∗z is a function whose value at time t is G(t)T z. Thus,

LL∗z = L(G(t)T z) =

∫ T

0
G(t)G(t)T zdt =

(∫ T

0
e−AtBBT e−AT tdt

)
z

Once the integral is computed, the bracketed term on the right is a constant n× n matrix. It is
called the controllability Grammian and its range space is precisely the controllable subspace.

3We showed this for matrices before, but the same result is true for operators whose codomain is finite dimensional.
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3 Controllability Grammians

Definition 105. The controllability Grammian for the system Σ on the interval [0, T ] is the matrix
W (0, T ) ∈ Rn×n defined by

W (0, T ) =

∫ T

0
e−AtBBT e−AT tdt

Theorem 106. Consider the system Σ and let T > 0. Then,

(a) CT = R [W (0, T )]

(b) Let ξ ∈ CT . From (a) above, there exists a vector z ∈ Rn such that ξ = W (0, T )z. Then,
the input

u(t) = −BT e−AT tz, 0 ≤ t ≤ T

drives the state from initial state x(0) = ξ to terminal state x(T ) = 0.

Proof: We already argued part (a) in the previous section. To show part (b), recall that an input
driving the state to zero at time T must satisfy

ξ = Lu

To find such u we can first find z ∈ Rn such that

ξ = LL∗z = W (0, T )z

and set u = L∗z. The resulting function u is indeed the one proposed in part (b). 2

4 Test for Controllability

Theorem 107. Define the matrix Mc ∈ Rn×mn as

Mc =
[
B AB · · · An−1B

]
Then, for any T > 0,

CT = R(Mc)

and, thus, the system is controllable iff rank (Mc) = n.

Mc is called the controllability matrix. Note that it does not depend on the time T allotted for
controllability. We therefore conclude that if a state ξ ∈ Rn is controllable on the interval [0, T ],
it is controllable on any (nonzero) interval. We thus drop the superfluous argument T from the
notion of T -controllability and the controllable subspace, which we now write as C.
Proof of the Theorem: We already know CT = R(W (0, T )), so we will show R(W (0, T )) = R(Mc)
which is equivalent to

R(W (0, T ))⊥ = R(Mc)
⊥

But R(Mc)
⊥ = N (MT

c ) and R(W (0, T ))⊥ = N (W (0, T )T ) = N (W (0, T )), where the last equal-
ity is due to the symmetry of W (0, T ), so we need to prove

N (W (0, T )) = N (MT
c )
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Since W (0, T ) is positive semidefinite (it is the integral of a Gram matrix which is positive
semidefinite at each time), x ∈ N (W (0, T )) is equivalent to

xTW (0, T )x = 0.

Substituting W (0, T ) from its definition,

xTW (0, T )x =

∫ T

0
xT e−AtBBT e−AT txdt =

∫ T

0
w(t)Tw(t)dt =

∫ T

0
∥w(t)∥2dt

where w(t) := BT e−AT tx. Thus,

x ∈ N (W (0, T )) ⇔ xTW (0, T )x = 0 ⇔ w(t) = 0 ∀t ∈ [0, T ]

Note that

w(t)T = xT e−AtB = xT
(
I −At+

1

2
A2t2 − 1

3!
A3t3 + · · ·

)
B =

∞∑
k=0

(−1)k

k!

(
xTAkB

)
tk

and, thus, w(t) = 0 ∀t ∈ [0, T ] means

xTAkB = 0, k = 0, 1, 2, · · ·

By Cayley-Hamilton Theorem, this is equivalent to the n equalities

xTAkB = 0, k = 0, 1, 2, · · · , n− 1

because, for k ≥ n, Ak is a linear combination of I, A, . . . , An−1.

To summarize, we have shown that x ∈ N (W (0, T )) is equivalent to the n equalities above, which
we rewrite compactly as

xT
[
B AB · · · An−1B

]
= 0

But this means MT
c x = 0, i.e., x ∈ N (MT

c ), proving N (W (0, T )) = N (MT
c ).

5 Example

Consider the system Σ(A,B, ∗, ∗) where

A =


0 1 · · · 0 0
0 0 · · · 0 0
...

... · · ·
...

...
0 0 · · · 0 1

−α0 −α1 · · · −αn−2 −αn−1

 B =


0
0
...
0
1


It can be readily verified that the controllability matrix for this realization is

Mc =


0 0 · · · 0 1
0 0 · · · 1 ∗
...

... · · ·
...

...
0 1 · · · ∗ ∗
1 ∗ · · · ∗ ∗


Observe that rank (Mc) = n. As a result, Σ is controllable. This is the canonical example of a
single-input controllable system.
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E. Observability

1 The Unobservable Subspace UO

Definition 108. Consider the system Σ. A state ξ ∈ Rn is called unobservable if, with initial
condition x(0) = ξ and with input u(t) = 0, t ≥ 0, the output trajectory is

y(t) = CeAtξ = 0 for all t ≥ 0

Let UO ⊆ Rn be the set of unobservable states of Σ.

The realization Σ is called observable if the only unobservable state is the zero state, i.e. UO = 0.

2 Test for Observability

Theorem 109. Consider the system Σ and define the matrix Mo ∈ Rpn×n as

Mo =


C
CA
...

CAn−1


Then

UO = N (Mo)

and, thus, the system is observable iff rank (Mo) = n.

Mo is called the observability matrix. Note that an immediate consequence of this theorem is
that the set UO of unobservable states is a subspace of Rn.

Proof of the Theorem: Note that

CeAtξ = C(I +At+
1

2
A2t2 + · · · )ξ

Thus CeAtξ = 0 for all t ≥ 0 means

CAkξ = 0, k = 1, 2, · · ·

By Cayley-Hamilton Theorem, this is equivalent to the n equalities

CAkξ = 0, k = 0, 1, 2, · · · , n− 1

because, for k ≥ n, Ak is a linear combination of I, A, . . . , An−1. Rewriting these n equalities
compactly as

C
CA
...

CAn−1

 ξ = M0ξ = 0

we see that CeAtξ = 0 is equivalent to ξ ∈ N (Mo), which proves the theorem. 2
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3 Observability Grammian

Definition 110. The observability Grammian for the system Σ on the interval [0, T ] is the matrix
U(0, T ) ∈ Rn×n defined by

U(0, T ) =

∫ T

0
eA

T tCTCeAtdt

Theorem 111. Consider the system Σ and let T > 0. Then,

UO = N (U(0, T ))

Proof: Note that U(0, T ) is positive semidefinite by construction and, thus, ξ ∈ N (U(0, T )) iff

ξTU(0, T )ξ =

∫ T

0
ξT eA

T tCTCeAtξdt =

∫ T

0
∥CeAtξ∥2dt = 0

This means CeAtξ = 0 for all t ∈ [0, T ] and, thus, ξ ∈ N (Mo) by the arguments in the proof of
the previous theorem. Therefore, N (U(0, T )) = N (Mo) = UO. 2

Note that the value of T > 0 in the theorem is immaterial: the null space of U(0, T ) is the
unobservable subspace for any T > 0. When A is Hurwitz, limT→∞ U(0, T ) exists because the
integrand in the definition above converges exponentially and

U(0,∞) =

∫ ∞

0
eA

T tCTCeAtdt

exists. The advantage of considering this limit is that this integral is the unique solution of the
Lyapunov Equation

ATP + PA+ CTC = 0

as we saw before. Thus we can evaluate the observability Grammian U(0,∞) by solving this
Lyapunov equation algebraically rather than by evaluating an interval. The following theorem
is a specialization of the previous one to the limit T → ∞, which allows us to use the solution of
the Lyapunov Equation for U(0,∞).

Theorem 112. Consider the realization Σ and suppose A is Hurwitz. Then,

UO = N (P )

where P is the unique solution of the Lyapunov equation above.
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F. Modal Observability and Controllability Tests

1 Duality

The dual of the system Σ is defined as

Σdual =

[
Adual Bdual

Cdual Ddual

]
=

[
AT CT

BT DT

]
We now show that the dual system is observable iff the original system is controllable, and vice
versa. To see this, note

Mdual
o =


Cdual

CdualAdual

...

CdualAdualn−1

 =


BT

BTAT

...

BTAT n−1

 =
[
B AB · · · An−1B

]T
= MT

c

Thus rank(Mdual
o ) = n iff rank(Mc) = n; that is, the dual system is observable iff the original

system is controllable.

2 Modal Observability and Controllability Tests

The following test uses the eigenvectors of A and the matrix C to judge observability:

Theorem 113. The system Σ is unobservable iff A has an eigenvector v such that Cv = 0.

If such an eigenvector exists, the corresponding eigenvalue is called an unobservable mode. If no
such eigenvector exists, then the system is observable by the theorem.

Proof of the “if” statement: Let v ̸= 0 be such that Av = λv and Cv = 0. Then,
C
CA
...

CAn−1

 v =


Cv
CAv
...

CAn−1v

 =


Cv
Cλv
...

Cλn−1v

 = 0

which means v ∈ N (Mo) = UO. Since v ̸= 0, UO is nontrivial and the system is unobservable.

We will prove the “only if” statement after we discuss the Kalman Decomposition below. Note
that, if the unobservability condition above holds, then the eigenvector v lies in the nullspace of[

A− λI
C

]
.

Since v ̸= 0, this means the null space is nontrivial and, thus, the columns are linearly dependent.
Conversely, if this matrix has full column rank, than no eigenvector satisfies the condition of the
theorem above. This observation is known as the Popov-Belevich-Hautus (PBH) criterion:

Theorem 114. The system Σ is observable iff, for all λ ∈ Spec(A),

rank

([
A− λI

C

])
= n.
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The results above can be translated to controllability using duality:

Theorem 115. The system Σ is uncontrollable iff AT has an eigenvector v such that BT v = 0.
Equivalently, the system is controllable iff, for all λ ∈ Spec(A),

rank
([

A− λI,B
])

= n.

3 A-Invariance of the Controllable and Unobservable Subspaces

Definition 116. Given a matrix A ∈ Rn×n, a subspace S ⊂ Rn is called A-invariant if it closed
under multiplication with A:

ξ ∈ S ⇒ Aξ ∈ S.

Note that the span of an eigenvector (or a set of eigenvectors) of A is A-invariant by this definition.

Lemma 117. The unobservable and controllable subspaces of Σ are A-invariant.

Proof of the Lemma: We start with the unobservable subspace UO. Since UO = N (Mo), ξ ∈ UO
means

M0ξ =


C
CA
...

CAn−1

 ξ = 0

By the Cayley-Hamilton Theorem, we also have CAnξ = 0, so
CA
CA2

...
CAn

 ξ = 0 ⇒


C
CA
...

CAn−1

Aξ = 0

Thus, Aξ ∈ N (Mo) = UO, which means that the unobservable subspace is A-invariant.

Next, we show A-invariance of the controllable subspace C, which is the range space of the
controllability matrix

Mc =
[
B AB · · · An−1B

]
.

Thus, if ξ ∈ C, then Aξ belongs to the range space of

AMc =
[
AB A2B · · · AnB

]
.

By the Cayley-Hamilton Theorem, AnB can be written as a linear combination ofB,AB, · · · , An−1B;
therefore Aξ also lies in the range space of Mc, which is the controllable subspace C. Thus, the
controllable subspace is also A-invariant. 2
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G. Kalman Decomposition

1 Similar Realizations

Recall that a similarity transformation of a state space representation consists of a change of
variables. We choose a nonsingular matrix T ∈ Rn×n and define new states via

Txnew = x

If we rewrite the differential equations defining Σ in terms of these new states, we arrive at

Σnew

{
ẋnew(t) = T−1ATxnew(t) + T−1Bu(t)
y(t) = CTxnew(t) +Du(t)

This new realization

Σnew =

[
T−1AT T−1B
CT D

]
=

[
Anew Bnew

Cnew Dnew

]
(12)

is said to be similar to Σ.

Similar representations are fundamentally the same. They share identical properties such as
stability, controllability, etc., and they yield the same transfer function:

Hnew(s) = Cnew(sI −Anew)
−1Bnew +Dnew = C(sI −A)−1B +D = H(s).

Indeed, we arrived at Σnew from Σ with only a change of variables, and Σnew is a different
realization of the same transfer function.

2 Kalman Decomposition into Controllable and Uncontrollable Subsystems

We start with a state-space model Σ. By an appropriate choice of basis for the state-space, we
can exhibit clearly the “controllable subsystem” and the “uncontrollable subsystem” as shown
in Figure 15. Notice that the controllable subsystem is directly affected by the input. The
uncontrollable subsystem is unaffected by the input and evolves autonomously. We can discard
the uncontrollable subsystem without changing the input-output behavior of the realization Σ.

u Controllable y

Uncontrollable

Figure 15: Controllable and Uncontrollable Subsystems.

Theorem 118. Consider the system Σ(A,B,C,D) with transfer function H(s) and let dim(C) = r.
Let {t1, · · · , tr} be a basis for C and extend this by {tr+1, · · · , tn} to form a basis for Rn. Then

T =
[
t1 · · · tr tr+1 · · · tn

]
is invertible, so we can do a similarity transformation using the change of variables Txnew = x.
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(a) Σnew has the structure

Σnew =

[
T−1AT T−1B
CT D

]
=

 A11 A12 B1

0 A22 0
C1 C2 D


where A11 ∈ Rr×r, and B and C are partitioned conformably with the partition of A.

(b) The reduced model

Σreduced(A11, B1, C1, D)

is controllable and also realizes H(s).

It is clear that the Kalman decomposition is not unique: different basis choices yield different
decompositions, though they all share the structure described in the above theorem.

Proof: The key features of Anew and Bnew are the zero blocks. To see how the zero block arises
at the bottom left of Anew, recall that the controllable subspace C is A-invariant. This means
that for each basis vector ti, i = 1, · · · , r, we have Ati ∈ C, meaning that Ati can be written as
a linear combination of t1, · · · , tr:

Ati =
r∑

j=1

αjitj .

If we define a r × r matrix whose (i, j) entry is the coefficient αij , we get:

A[t1 · · · tr] = [t1 · · · tr]A11.

Thus,

A
[
t1 · · · tr tr+1 · · · tn

]︸ ︷︷ ︸
T

=
[
t1 · · · tr tr+1 · · · tn

]︸ ︷︷ ︸
T

[
A11 A12

0 A22

]

with appropriate matrices A12, A22, and

Anew = T−1AT =

[
A11 A12

0 A22

]
.

To see the reason for the zero block at the bottom of Bnew, recall that C coincides with the range
space of the controllability matrix

Mc =
[
B AB · · · An−1B

]
.

Thus, the columns of B lie in C, and can be written as linear combinations of the basis vectors
t1, · · · , tr. This means that

B = [t1 · · · tr]B1 =
[
t1 · · · tr tr+1 · · · tn

] [ B1

0

]
= T

[
B1

0

]
for an appropriately dimensioned matrix B1. It then follows that

Bnew = T−1B =

[
B1

0

]
.
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Next, we show that

Σreduced(A11, B1, C1, D)

is controllable. To see this, we note that the rank of the controllability matrix Mc above is r,
since its columns span the r-dimensional controllable subspace. Thus,

T−1Mc =
[
T−1B T 1ATT−1B · · · T 1An−1TT 1B

]
=

[
B1 A11B1 · · · An−1

11 B1

0 0 · · · 0

]
also has rank r, which means[

B1 A11B1 · · · An−1
11 B1

]
has rank r because the additional zero rows above do not change the rank. Since r ≤ n, it follows
from the Cayley-Hamilton theorem that the range space of this matrix is the same as that of

Mc,reduced =
[
B1 A11B1 · · · Ar−1

11 B1

]
.

Thus, Mc,reduced has rank r, proving the controllability of Σreduced(A11, B1, C1, D) which has r
state variables.

Finally, to see that Σreduced(A11, B1, C1, D) also realizes H(s), recall that

H(s) = Cnew(sI−Anew)
−1Bnew+Dnew =

[
C1 C2

] [ sI −A11 −A12

0 sI −A22

]−1 [
B1

0

]
+D.

The upper left block of the inverse matrix above is (sI −A11)
−1, from which it floows that

H(s) = C1(sI −A11)
−1B1 +D,

which is the transfer function associated with Σreduced(A11, B1, C1, D). 2

3 Kalman Decomposition into Observable and Unobervable Subsystems

Similarly, by an appropriate choice of basis, we can exhibit the “observable subsystem” and
the “unobservable subsystem” as shown in Figure 16. Note that only the observable subsystem
affects the output. We can discard the unobservable subsystem without changing the input-
output behavior.

u Observable y

Unobervable

Figure 16: Observable and Unobervable Subsystems.

The following theorem is analogous to Theorem 118:

Theorem 119. Consider the system Σ(A,B,C,D) with transfer function H(s) and let dim(UO) =
r. Let {t1, · · · , tr} be a basis for UO and extend this by {tr+1, · · · , tn} to form a basis for Rn.
Then

T =
[
t1 · · · tr tr+1 · · · tn

]
is invertible, so we can do a similarity transformation using the change of variables Txnew = x.
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(a) Σnew has the structure

Σnew =

[
T−1AT T−1B
CT D

]
=

 A11 A12 B1

0 A22 B2

0 C2 D


where A11 ∈ Rr×r, and B and C are partitioned conformably with the partition of A.

(b) The reduced model

Σreduced(A22, B2, C2, D)

is observable and also realizes H(s).

As an application of this decomposition, we return to Theorem 113 in the previous section, and
complete the proof of its “only if” statement: if the system Σ is unobservable then A must have
an eigenvector v such that Cv = 0. We will prove this statement for the decomposed system in
Theorem 119; that is will show there exists an eigenvector vnew of Anew such that Cnewvnew = 0.
To construct such an eigenvector, pick an arbitrary eigenvalue/eigenvector pair (λ, v1) for A11:

A11v1 = λv1.

Then,

Anew

[
v1
0

]
=

[
A11 A12

0 A22

] [
v1
0

]
=

[
A11v1
0

]
= λ

[
v1
0

]
.

Moreover,

Cnew

[
v1
0

]
=
[
0 C2

] [ v1
0

]
= 0.

Thus,

vnew =

[
v1
0

]
is an eigenvector of Anew that satisfies Cnewvnew = 0. It then follows that v = Tvnew satisfies

Av = (TAnewT
−1)(Tvnew) = TAnewvnew = Tλvnew = λv

and

Cv = (CnewT
−1)(Tvnew) = Cnewvnew = 0.

We thus conclude that A has an eigenvector v such that Cv = 0.

4 Kalman Decomposition: Most General Version

We now present the most general version of the Kalman decomposition that is based on both
controllability and observability.
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Theorem 120. Consider the realization Σ(A,B,C,D) of some transfer function H(s). Let {t1, · · · , tn1}
be a basis for C ∩ UO. Extend this basis by {tn1+1, · · · , tn2} to form a basis for C, and by
{tn2+1, · · · , tn3} to form a basis for UO. Finally, extend the collection of vectors {t1, · · · , tn3} by
{tn3+1, · · · , tn} to complete a basis for Rn. Define the invertible matrix

T =
[
t1 · · · tn

]
and let Σnew be the realization similar to Σ obtained by the state-space change of basis Txnew = x.

(a) Σnew has the structure

Σnew =

[
T−1AT T−1B
CT D

]
=


A11 A12 A13 A14 B1

0 A22 0 A24 B2

0 0 A33 A34 0
0 0 0 A44 0
0 C2 0 C4 D


where Aii ∈ Rni×ni for i = 1, · · · , 4, and B and C are partitioned conformably with the
partition of A.

(b) The reduced system

Σreduced(A22, B2, C2, D)

is controllable and observable, and it also realizes H(s).

5 Minimal Realizations

Definition 121. A realization Σ is called minimal if it is both controllable and observable.

The Kalman decompositions above showed us how to obtain a minimal realization starting from a
nonminimal one. It can be shown further that the state dimension of two minimal realizations of
a transfer function have the same state dimension and are related by a similarity transformation:

Theorem 122. Let Σ1 and Σ2 be two minimal realizations of some transfer function H(s). Then

(a) Σ1 and Σ2 have the same state-space dimension.

(b) Σ1 and Σ2 are similar.

From the above result, the state dimension is independent of the particular minimal realization
chosen and depends only on the transfer function H(s). This dimension is called the McMillan
degree of H(s). In the case of a SISO system, McMillan degree is the order of the denominator
polynomial after the transfer function has been simplified to remove any pole-zero cancellations.
It corresponds to the number of state variables needed in the minimal realization of the system.
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EECS 221A Feedback Aspects

A. State feedback

B. Observers

C. Output feedback
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A. State Feedback

1 Introduction

In these notes, we will learn how to design controllers for LTI plants in state-space form. The
methods we will learn form the basis of modern control system design and are numerically more
attractive that transfer-function methods.

2 State Feedback

Consider the system

Σ

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

x(t0) = x0

As we’ve learned, the behavior of the trajectories depends on the eigenvalues of A. For instance,
the realization is internally stable if and only if all these eigenvalues are in the open left-half
complex plane. If the eigenvalues of A have large negative real parts, we expect the impulse
response of Σ to decay rapidly to zero. If these eigenvalues are complex, stable, and are close to
the imaginary axis, we expect the step response of Σ to resemble a lightly damped sinusoid.

v Plant y

L

+ u

+

x

Figure 17: State feedback.

We now investigate the use of feedback to alter the behavior of the system by changing the
eigenvalues of A. Suppose we measure the entire state of Σ and implement the state-feedback law

u = Lx+ v

as illustrated in Figure 17. Here v is some new input which we could use for feedforward (not
considered for now) and L is a m × n matrix where n is the number of states, and m is the
number of inputs. In this case, the closed-loop system becomes

Σcl

{
ẋ(t) = [A+BL]x(t) +Bv(t)
y(t) = Cx(t) +Du(t)

x(t0) = x0

The behavior of the system is now governed by the eigenvalues of A+BL. The natural question
to ask then is whether we can place the eigenvalues of Acl = A+BL as we wish by choice of L.

3 Controllable canonical form

Theorem 123. Consider the controllable single-input system Σ(A, b, ∗, ∗). Let

det(sI −A) = sn + αn−1s
n−1 + · · ·+ α1s+ α0
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and define Σ̂(Â, b̂, ∗, ∗) by

Â =


0 1 · · · 0 0
0 0 · · · 0 0
...

... · · ·
...

...
0 0 · · · 0 1

−α0 −α1 · · · −αn−2 −αn−1

 b̂ =


0
0
...
0
1


Let M,M̂ ∈ Rn×n be the controllability matrices of Σ and Σ̂ respectively. Then, Σ and Σ̂ are
similar:

Â = T−1AT, b̂ = T−1b

with T = MM̂−1.

Proof. First observe that by the Cayley-Hamilton theorem,

Anb = −
n−1∑
0

αkA
kb

As a consequence,

AM = A
[
b Ab · · · An−1b

]
=

[
Ab A2b · · · Anb

]

= M


0 0 · · · 0 −α0

1 0 · · · 0 −α1
...

... · · ·
...

...
0 0 · · · 0 −αn−2

0 0 · · · 1 −αn−1


=: MQ

Since A and Â have the same characteristic polynomial, we can analogously conclude that

ÂM̂ = M̂Q

Combining these we arrive at

T−1AT = M̂M−1AMM̂−1

= M̂QM̂−1

= Â

Next, note that Me1 = b where e1 is the first unit vector in Rn. We therefore have

T−1b = M̂M−1b = M̂e1

= b̂

proving the claim. 2
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4 Single-input pole placement

We now show that, when (A,B) is controllable, we can arbitrarily place all the eigenvalues of
A+BL by choice of state-feedback matrix L. We first focus on single-input single-output systems.

Theorem 124. Consider the controllable single-input system Σ(A, b, ∗, ∗) and let

det (sI −A) = sn + αn−1s
n−1 + · · ·+ α1s+ α0

Suppose we are given desired closed-loop pole locations p1, · · · , pn, leading to the desired charac-
teristic polynomial

(s− p1)(s− p2) · · · (s− pn) = sn + γn−1s
n−1 + · · ·+ γ1s+ γ0

Define the matrices Â, b̂ in controllable canonical form as in the previous section, and let

L̂ =
[
(α0 − γ0) (α1 − γ1) · · · (αn−2 − γn−2) (αn−1 − γn−1)

]
Compute the n× n controllability matrices M and M̂ as in the previous section, and define the
matrix

L = L̂T−1 where T = MM̂−1

Then, the closed-loop system under the state-feedback law u = Lx+v has the desired characteristic
polynomial, i.e.,

det [sI − (A+ bL)] = sn + γn−1s
n−1 + · · ·+ γ1s+ γ0

Proof: The matrix T above transforms Σ to controllable canonical form:

Â = T−1AT, b̂ = T−1b

Then, we have

Â+ b̂L̂ = T−1AT + T−1bLT = T−1 (A+ bL)T

As a result, the eigenvalues of (A+ bL) are the same as those of the (similar) matrix (Â+ b̂L̂).
Equivalently, (A + bL) and (Â + b̂L̂) have the same characteristic polynomial. To find this
polynomial, note:

Â+ b̂L̂ =


0 1 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 1
−α0 −α1 · · · −αn−1

+


0
0
...
0
1

 [ (α0 − γ0) (α1 − γ1) · · · (αn−1 − γn−1)
]

=


0 1 · · · 0

0 0
. . . 0

...
... · · ·

...
0 0 · · · 1

−γ0 −γ1 · · · −γn−1


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It is easy to read-off the characteristic polynomial of Â + b̂L̂ because it is still in the special
controllable canonical form:

det
[
sI − (Â+ b̂L̂)

]
= sn + γn−1s

n−1 + · · ·+ γ1s+ γ0

This matches the desired characteristic polynomial, concluding the proof. 2

5 Multi-input pole placement

We now turn our attention to multi-input controllable systems. Let Σ be a multi-input control-
lable realization. We first show that by a preliminary choice of feedback it is possible to make Σ
controllable from a single input.

Heymann’s Lemma. Let Σ(A,B, ∗, ∗) be a multi-input controllable system. Let v ∈ Rm be
such that Bv ̸= 0 and denote b = Bv. Then there exists a matrix L0 ∈ Rm×n such that the
single-input system Σv(A+BL0, b, ∗, ∗) is controllable.

Armed with this result, we can adress the pole-placement problem for multi-input systems.

Theorem 125. Let Σ(A,B, ∗, ∗) be a multi-input controllable realization. Then, by choice of state-
feedback gain L we can arbitrarily assign the closed-loop eigenvalues of Acl = A+BL.

Proof: Pick v such that b = Bv ̸= 0 and let L0 be as in Heymann’s Lemma above. Since
(A + BL0, b) is a single-input controllable pair, we can find L1 such that (A + BL0) + bL1 has
the desired eigenvalues. Note that

(A+BL0) + bL1 = (A+BL0) + (Bv)L1 = A+B(L0 + vL1)

Thus, L = L0 + vL1 assigns the eigenvalue of A+BL as desired.

6 Pole placement and Controllability

We have shown that for controllable systems we can place closed-loop eigenvalues arbitrarily by
state feedback. The obvious question is what happens if Σ is uncontrollable ?

To address this question the natural tool to employ is the Kalman decomposition. We know that
there exists a similarity transformation T such that

A = T

[
A11 A12

0 A22

]
T−1, B = T

[
B1

0

]
with (A11, B1) being controllable. Next observe that

Acl = A+BL

= T

[
A11 A12

0 A22

]
T−1 + T

[
B1

0

]
L

= T

([
A11 A12

0 A22

]
+

[
B1

0

]
LT

)
T−1

If we partition the matrix LT as

LT =
[
L1 L2

]
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we obtain

Acl = T

[
A11 +B1L1 A12 +B1L2

0 A22

]
T−1

As a consequence, the eigenvalues of Acl are precisely those of A11 +B1L1 combined with those
of A22. Further, since (A11, B1) is controllable, we can arbitrarily assign the eigenvalues of
A11 + B1L1 by choice of L1 (i.e. choice of L). However, regardless of the state-feedback gain L
selected, the eigenvalues of A22 remain as eigenvalues of Acl. These uncontrollable modes cannot
be moved by state-feedback. We are simply stuck with these eigenvalues.

We summarize our conclusions in the following theorem.

Theorem 126. The system Σ(A,B, ∗, ∗) is controllable if and only if we can arbitrarily assign the
closed-loop eigenvalues by state-feedback. The uncontrollable eigenvalues of A are unaffected by
state-feedback.

7 Stabilizability

Although we can’t move uncontrollable eigenvalues (i.e., the eigenvalues of A22 in the Kalman de-
composition above) by feedback, these eigenvalues may be acceptable for the closed-loop system.
For example, the following definition describes the situation where the uncontrollable eigenvalues
already have negative real parts, so that we can make the closed loop system stable by feedback
(i.e., by designing L1 such that the eigenvalues of A11 +B1L1 also have negative real parts).

Definition 127. A realization Σ(A,B, ∗, ∗) is called stabilizable if there exists a state-feedback gain
L such that Acl = A + BL is stable; equivalently, the uncontrollable eigenvalues have negative
real parts.

Note that all controllable realizations are stabilizable, but not vice versa.

8 Matlab Commands

The place command computes L so that eigenvalues of A−BL are at specified locations in the
complex plane. Note that this command assigns the eigenvalues of A minus BL. Therefore, we
must enter −B instead of B to be consistent with our convention where the feedback is u = Lx
and the closed-loop matrix is A + BL. Alternatively, you can enter B but apply the feedback
u = −Lx.
Another quirk of the place command is that poles must be distinct, e.g.,
>> poles = [ -1; -1.000001, -1.0000002];

>> % start with any state-space realization Sigma(A,B,C)

>> % desired pole locations as a vector

>> poles = [p1; p2; ... ;pn];

>> L = place(A,-B, poles);

>>% then eig(A+BL) = poles
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B. Observers

1 Introduction

In the previous section we studied the state feedback u = Lx+v. But this requires having access
to the entire state vector, i.e. we need sensors that measure all of the states. We will now build
a system called an observer that provides an estimate x̂ of the states using the plant model,
knowledge of the input u and measurement of the output y. This is illustrated in Figure 18.

In the subsequent section we will replace the states with their estimates in the feedback law, that
is, u = Lx̂+ v.

u Plant y

Observer x̂

Figure 18: Block Diagram for an Observer.

2 Asymptotic observers

Imagine running a simulation copy of the system model in real time with the same input u(t)
applied to the actual system:

˙̂x(t) = Ax̂(t) +Bu(t)
ŷ(t) = Cx̂(t) +Du(t)

(13)

Then the error

e := x̂− x

between the simulated state x̂ and the actual state x satisfies

ė(t) = Ax̂(t)−Ax(t) = Ae(t)

Thus, if A is Hurwitz, e(t) converges to zero asymptotically and we obtain an accurate estimate
of the actual states from the simulation copy.

But what if A is not Hurwitz (so e(t) doesn’t go to zero) or if its eigenvalues are too close to the
imaginary axis (so it takes a long time for e(t) to die out)? In this case can use the discrepancy
between the measured output y and the predicted output ŷ to correct the simulation copy:

˙̂x(t) = Ax̂(t) +Bu(t) +K(ŷ(t)− y(t))

This corrected simulation model is called an observer and the matrix K is called the output
injection matrix. To design K so that e(t) converges to zero, note that e now satisfies

ė(t) = Ax̂(t) +K(Cx̂(t)− Cx(t))−Ax(t) = (A+KC)e(t)

Thus, if we choose K such that A+KC is Hurwitz, then

lim
t→∞

e(t) = 0
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Furthermore, the eigenvalues of A+KC determine the rate of convergence of e(t).

Can we design K to assign the eigenvalues of A+KC arbitrarily? The answer is greatly simplified
if we use duality. The eigenvalues of A+KC are the same as those of its transpose AT +CTKT .
Denote

Adual = AT , Bdual = CT , Ldual = KT

and note that if we can design Ldual to assign the eigenvalues of Adual + BdualLdual arbitrarily,
that means we can assign the eigenvalues of A+KC arbitrarily with K = LT

dual.

We know we can assign the eigenvalues of Adual +BdualLdual arbitrarily iff (Adual, Bdual) is con-
trollable. We also know (Adual, Bdual) is controllable iff (C,A) is observable. Thus, we reach the
following conclusion:

Theorem 128. We can choose K to assign the eigenvalues of A +KC arbitrarily if and only if
(C,A) is observable.

On the other hand, if (C,A) is not observable but the unobservable eigenvalues already have
negative real parts, we can choose K such that A+KC is Hurwitz. Thus, the error e converges
to zero even if we can’t choose the rate at which it does so. This leads to the notion of detectability :

Definition 129. The system Σ(A, ∗, C, ∗) is called detectable if there exists K such that A+KC
is Hurwitz.

Note that the system is detectable iff its dual is stabilizable.

3 Example

We will work out a detailed example of using an observer. Our plant is a boat traveling in one
dimension.It has two states: position y, and velocity ẏ. The boat has an outboard motor which
provides thrust u. There is a drag force from the water proportional to the velocity of the boat.
The drag coefficient is b. The boat has mass m = 300Kg, and let b = 2.5Newtons-sec/m. The
dynamics are

mÿ = −bẏ + u+ d (14)

where d is a disturbance force due to waves and currents. The waves add a periodic force at two
frequencies and the currents add a constant force. So we will write

d = 3 + 2 cos(t)− sin(2t) Newtons

We do not know d in advance. The throttle u is known, say by measuring the diesel engine
torque. Let us say that the boat starts at y = 0, and we apply full throttle for 20 minutes, and
then idle the engine. So we write

u =

{
7 t ∈ [0, 20)
0 t ∈ [20, 30]

The throttle u and the disturbance force d are shown in Figure 19. We have available a noisy
measurement z of the boat position, say by range finders to known buoys. We write this as

z = y + n
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where n is sensor noise.

Define the state of the boat as

x1 = y, x2 = ẏ

We will design an observer that estimates the sate from the measurement of the position y. We
ignore the sensor noise n and the disturbance d in designing our observer. We write the boat
dynamics in state-space form as ẋ1

ẋ2
y

 =

 0 1 0
0 −b/m 1/m
1 0 0

 x1
x2
u


All we have to do is choose stable observe pole locations. The Matlab command place will
calculate the observer gain K if we use duality: enter AT instead of A and CT instead of B. The
command will return feedback matrix L, but we use K = LT as the output injection matrix.
Recall the place command has a quirk that you cannot give repeated pole locations.

>> obs_poles = [-5, -5.01];

>> b = 2.5; m =300;

>> A = [0 1; 0 -b/m];

>> C = [1 0];

>> foo = place(A’, - C’);

>> K = foo’;

% plant model

% 1/(s^2 + 0.5s) ==> y’’ +0.5y’ = u

% viscous damping coefficient is 0.5

A = [0 1; 0 -0.5];

B = [0 ; 1];

C = [1 0];

D = 0;

nx = size(A,1);

plant = ss(A,B,eye(nx),zeros(nx,1));

% input and disturbance

tt = [0:0.1:40]’;

%uu = cos(1*tt) - 2*sin(2*tt)+ 3*(tt >10) - 2*(tt>20);

dd = 0.3 + 0.2*cos(1*tt) - 0.5*sin(2*tt); %+ 3*(tt >10) - 2*(tt>20);

uu = ones(401,1)*10;

uu(201:end) = 0; uu(201) = 8; uu(202) = 6; uu(203) = 4; uu(204) = 2;

% simulate plant

xx = lsim(plant, uu+dd, tt);

zz = xx(:,1) + randn(size(tt));

zzdot = [0; diff(zz)];

Now we can simulate the observer. This time we put in sensor noise and the disturbance.

Our objective is to estimate the position y and the velocity ẏ of the boat.
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Figure 19: (a) Engine thrust u and disturbance d, (b) measured position of boat.

As a baseline, we can ignore the ship model, and use the position measurement z as an estimate
of the ship position x. We can also numerically differentiate z to estimate the ship velocity ẏ.
Of course, differentiating a noisy signal is not advisable, but let us see what we get. The results
are shown in Figure 20. The position estimate is noisy but acceptable with an accuracy of ±2m.
But the velocity estimate is awful. It is off by 20m/min when the boat is moving, and has an
accuracy of ±3m/min when the boat is idling. This approach discards useful information: the
model of the boat and the known throttle.
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Figure 20: State estimation using position sensor alone: (a) position error, (b) velocity error.

Let us now try an observer to estimate the state. Here, we use both the measured position and
the boat model. We try three cases: case A is the least aggressive with a low observer gain, case
B has a medium gain, and case C is the most aggressive with observer poles deep into the left
half lane and high observer gain. The position and velocity error plots are shown in Figure 22,
and the results are summarized in Figure 21. We notice that there is a sweet spot: being either
too aggressive or too conservative with observer poles results in poor state estimates. Observers
combine measurements and the model to compute state estimates. We have to strike a balance
between how good the measurements are (i.e. how big is the sensor nose) versus how good the
model is (i.e. how big are the disturbances). Kalman Filtering is a technique that does this in
an optimal way, but this is beyond the scope of this class.

Case observer poles observer gain K position error (m) velocity error (m/min)
A -0.1, -0.1 −[0.290.156] ±20 ±6
B -5, -5 −[5.66.5] ±1 ±1
C -100, -100 −[199.6991.0] ±2.2 ±25

Figure 21: Summary of results: A. low observer gain, B. medium observer gain, C. high observer gain
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Figure 22: State estimation using observers. Case A: low gain, case B: medium gain, case C: high gain.
Top row: position errors, bottom row: velocity errors.
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C. Output Feedback

1 Output Feedback

Previously, our scheme for state feedback stabilization assumed that we had access to the plant
state x, as illustrated in Figure 23. In practice, we usually do not have sensors to measure every
state variable. But now that we know how to construct an estimate x̂ of the plant state x, we
can use this estimate for state feedback. This idea is illustrated in Figure 24.

v Plant y

L

+ u

+

x

Figure 23: State-Feedback Stabilization

v Plant y

L Observer

+

u

x̂

+

controller

Figure 24: Output Feedback Stabilization

We will now derive state-space equations for the output feedback controller shown in Figure 24.
The observer and state feedback equations are:

˙̂x = (A+KC)x̂+Bu−K(y −Du)

u = Lx̂+ v

Combining these we get the controller dynamics:

˙̂x = (A+KC +BL+KDL)x̂+ (B +KD)v −Ky

u = Lx̂+ v

Note the controller itself has n states, where n is the number of states in the plant model. Thus,
the closed-loop system of Figure 24 has 2n states - n plant model states, and n controller states.

2 The Separation Principle

When we use the observer estimate of the state for feedback control, it is not clear whether we
have the same stability properties as state feedback. The following central result guarantees that
implementing the state feedback law with observer states does indeed maintain stability.

Theorem 130. (Separation Principle) Consider a LTI plant with state space realization[
ẋ
y

]
=

[
A B
C D

] [
x
u

]
Suppose we control this plant with the controller[

˙̂x
u

]
=

[
A+KC +BL+KDL B +KD −K

L I 0

] x̂
v
y


as illustrated in Figure 24. Then,
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(a) the closed loop system can be written as ẋ
˙̂x
y

 =

 A BL B
−KC A+KC +BL B
C DL D

 x
x̂
v


(b) the eigenvalues of

Acl =

[
A BL

−KC A+KC +BL

]
are those of A+BL and A+KC combined:

Spec(Acl) = Spec(A+BL) ∪ Spec(A+KC)

Proof: We simply combine the plant and controller dynamics to write down the state-space
equations for the closed-loop system. For this, first notice that

u = Lx̂+ v

y = Cx+Du (15)

Using these equations, we can write

ẋ = Ax+Bu = Ax+BLx̂+Bv (16)

˙̂x = (A+KC +BL+KDL)x̂+ (B +KD)v −Ky

= (A+KC +BL+KDL)x̂+ (B +KD)v −KCx−KDu

= (A+KC +BL+KDL)x̂+ (B +KD)v −KCx−KDLx̂−KDv

= −KCx+ (A+KC +BL)x̂+Bv (17)

Equations (15) through (17) can be written collectively as in part (a) of the Theorem.

We now examine the eigenvalues of Acl. Recall that for any invertible matrix T , the matrix
T−1AclT has the same eigenvalues as Acl. If we choose

T =

[
I 0
I I

]
then

T−1 =

[
I 0
−I I

]
and

T−1AclT =

[
I 0
−I I

] [
A BL

−KC A+KC +BL

] [
I 0
I I

]
=

[
A BL

−(A+KC) A+KC

] [
I 0
I I

]
=

[
A+BL BL

0 A+KC

]
This final matrix is block upper triangular, so its spectrum is Spec(A+BL) ∪ Spec(A+KC),
proving part (b). 2
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The Separation Principle assures us that we can separately design the state-feedback gain L and
the observer gain K. So as long as we design these gain matrices so that A+ BL and A+KC
are stable, the output feedback controller will stabilize the plant model. This is true only for LTI
plant models. It breaks down for nonlinear systems. It also breaks down for situations where the
controller structure is constrained (such as decentralized control). In these cases, the design of
the observer and state-feedback gain become intimately coupled.
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EECS 221A Optimal Control

A. Finite-horizon optimal control in discrete time

B. Finite-horizon optimal control in continuous time

C. Infinite-horizon LQR
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A. Finite-Horizon Optimal Control in Discrete Time

1 Optimality

The following principle plays a key role in derivations leading to optimal control policies:

Lemma 131. (Bellman’s Principle of Optimality)

min
V1,V2

{F1(V1) + F2(V1, V2)} = min
V1

{
F1(V1) + min

V2

F2(V1, V2)

}
Proof. We prove this by showing (LHS ≤ RHS) and (LHS ≥ RHS), which together imply that
the left-hand side must be equal to the right-hand side.

(≤) Let V̄1, V̄2 be the minimizer of RHS, i.e., RHS = F1(V̄1) + F2(V̄1, V̄2). Since LHS minimizes
F1(V1) + F2(V1, V2) over all V1, V2, we have LHS ≤ RHS.

(≥) Let V ∗
1 , V

∗
2 be the minimizer of LHS, i.e., LHS = F1(V

∗
1 ) + F2(V

∗
1 , V

∗
2 ). Then,

LHS = F1(V
∗
1 ) + F2(V

∗
1 , V

∗
2 )

≥ F1(V
∗
1 ) + min

V2

F2(V
∗
1 , V2)

≥ min
V1

{
F1(V1) + min

V2

F2(V1, V2)

}
= RHS

Note that the last inequality holds since the choice V ∗
1 can’t lead to a smaller value than the

minimum over all V1.

This principle states that, in an optimal sequence of decisions, the remaining subsequence after
the first decision is also optimal. That is, if V ∗

1 , V
∗
2 is the optimal sequence, then after taking the

first step V ∗
1 , there is no better action than V ∗

2 for the remaining problem minV2 F2(V
∗
1 , V2).

2 Finite-horizon optimal control and Linear Quadratic Regulator in Discrete Time

Consider the following discrete time system with a given initial state x0,

xk+1 = f(xk, uk), xk ∈ Rn, uk ∈ Rm.

We want to design a sequence of inputs u0, · · · , uN−1 to minimize the following cost,

N−1∑
k=0

gk(xk, uk) + gN (xN ),

where gi’s are user-defined cost functions.

Note that the initial condition x0 and the input sequence u0, u1, . . . , uN−1 uniquely determine
the trajectory x1, · · · , xN . Therefore, the only independent variables above are the input values
u0, u1, . . . , uN−1. With this in mind, we rewrite the optimal control problem above as:

min
u0,··· ,uN−1

J(x0;u0, u1, · · · , uN−1) :=
N−1∑
k=0

gk(xk, uk)︸ ︷︷ ︸
stage cost

+ gN (xN )︸ ︷︷ ︸
terminal cost

s.t. xk+1 = f(xk, uk).

(18)
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The first term in the objective function is called the stage cost, while the second term is called
the terminal cost which only depends on the final state xN . Moreover, we denote the minimum
cost of the problem as V0(x0), the so-called “value function”, i.e.,

V0(x0) = min
u0,··· ,uN−1

J(x0;u0, u1, · · · , uN−1).

An important special case of (1) is the linear quadratic regulator.

Dicrete-time Linear Quadratic Regulator (LQR). Consider the special case of:

• Linear system dynamics: xk+1 = Axk +Buk

• Quadratic stage cost independent of k: gk(x, u) = g(x, u) = x⊤Qx+ u⊤Ru,Q ⪰ 0, R ≻ 0

• Quadratic terminal cost: gN (x) = x⊤Sx, S ⪰ 0.

That is, the LQR is a specialization of the general problem (18) to:

min
u0,··· ,uN−1

J(x0;u0, · · · , uN−1) =

N−1∑
k=0

(x⊤k Qxk + u⊤k Ruk) + x⊤NSxN

s.t xk+1 = Axk +Buk.

(19)

Example 132. Suppose we want to bring XN close to origin without expending too much control
effort, and we are not worried about the trajectory x1, · · · , xN−1 prior to the Nth time step.
Then, we can select the cost function as

J =

N−1∑
k=0

γ||uk||2 + ||xN ||2 with γ ≫ 1,

which means Q = 0, R = γI, S = I in the general formulation (19). A larger value of γ places
more priority on spending the least control effort; a small value of γ aims to bring xN closer to
the origin at the cost of more control effort.

3 Solutions of finite-horizon optimal control problem and LQR in discrete time

We first apply Lemma 131 to demonstrate the process for solving the general problem (18); then
we specialize to the LQR problem (19) where the solution becomes computationally tractable.

Recall that

V0(x0) = min
u0,u1,··· ,uN−1

{
N−1∑
k=0

gk(xk, uk) + gN (xN )

}

= min
u0︸︷︷︸
:=V1

,u1, · · · , uN−1︸ ︷︷ ︸
:=V2

{
g0(x0, u0)︸ ︷︷ ︸
:=F1(V1)

+

N−1∑
k=1

gk(xk, uk) + gN (xN )︸ ︷︷ ︸
:=F2(V1,V2)

}

=min
u0

{
g0(x0, u0) + min

u1,··· ,uN−1

N−1∑
k=1

gk(xk, uk) + gN (xN )︸ ︷︷ ︸
:=V1(x1) “cost to go”

}

= min
u0

g0(x0, u0) + V1(x1),
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where the third equality is due to Lemma 131. Note that V1(x1) is implicitly a function of u0
since x1 = f(x0, u0). Applying 131 recursively, we get

Vk−1(xk−1) = min
uk−1

{gk−1(xk−1, uk−1) + Vk(xk)} , k = 1, · · · , N (20)

VN (xN ) = gN (xN ), (21)

which are called the Bellman Equations. Here Vk is called the cost-to-go function from the kth
time instant, and it depends on uk−1 as Vk(xk) = Vk(f(xk−1, uk−1)). Thus, if we know the cost-
to-go function Vk, then we can in principle find the minimizer uk−1 in terms of xk−1 for (20),
and substitute it to find the function Vk−1. Since the cost-to-go VN at the final time is equal to
the terminal cost gN , which is known, we can start the process at k = N and solve the Bellman
equations backwards from k = N to 1. In the end, we obtain the value function V0(x0) and, along
the way, we generate the optimal control input uk1 as a function of xk−1, k = N,N − 1, · · · , 1.
In general, finding an analytical solution to the optimization problem (20) may be impossible.
However, when we specialize to the LQR problem, the function being minimized in (20) is
quadratic in xk−1 and uk−1, and it is possible to derive an analytic solution.

Solution of LQR. The Bellman equations (20) and (21) for LQR become

VN (xN ) = x⊤NSxN

Vk−1(xk−1) = min
uk−1

{
x⊤k−1Qxk−1 + u⊤k−1Ruk−1 + Vk(xk)

}
, k = 1, · · · , N

For k = N ,

VN−1(xN−1) = min
uN−1

x⊤N−1QxN−1 + u⊤N−1RuN−1 + x⊤NSxN (22)

= min
uN−1

x⊤N−1QxN−1 + u⊤N−1RuN−1 + (AxN−1 +BuN−1)
⊤S(AxN−1 +BuN−1)

= min
uN−1

[
xN−1

uN−1

]⊤ [
Q+A⊤SA A⊤SB
B⊤SA R+B⊤SB

] [
xN−1

uN−1

]
(23)

To solve the minimization problem (23), we first note the following two facts and provide a
lemma.

•
[
Q+A⊤SA A⊤SB
B⊤SA R+B⊤SB

]
⪰ 0 since (22) ≥ 0.

• R+B⊤SB ≻ 0 since R ≻ 0.

Lemma 133. Suppose

[
K L⊤

L M

]
⪰ 0 and M ≻ 0. Then,

(a) argminu

[
x
u

]⊤ [
K L⊤

L M

] [
x
u

]
= −M−1Lx.

(b) minu

[
x
u

]⊤ [
K L⊤

L M

] [
x
u

]
= x⊤(K − L⊤M−1L)x.

(c) K − L⊤M−1L ⪰ 0.

Proof. The proof is left as a homework problem.
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Applying Lemma 133 to (23), we get

uN−1
(a)
= −(R+B⊤SB)−1B⊤SAx

VN−1(xN−1)
(b)
= x⊤N−1

(
Q+A⊤SA−A⊤SB(R+B⊤SB)−1B⊤SA

)
︸ ︷︷ ︸

:=PN−1

xN−1.

Note that PN−1

(c)

⪰ 0. Therefore, VN−1(xN−1) = x⊤N−1PN−1xN−1 is still in the quadratic form
which allows us to similarly consider for k = N − 1,

VN−2(xN−2) = min
uN−2

x⊤N−2QxN−2 + u⊤N−2RuN−2 + VN−1(xN−1)

= min
uN−2

x⊤N−2QxN−2 + u⊤N−2RuN−2 + x⊤N−1PN−1xN−1

= min
uN−2

[
xN−2

uN−2

]⊤ [
Q+A⊤PN−1A A⊤PN−1B
B⊤PN−1A R+B⊤PN−1B

] [
xN−2

uN−2

]
.

We can once again apply Lemma 133 and continue recursively. Thus, we have for k = N, · · · , 1,

Vk−1(xk−1) = min
uk−1

x⊤k−1Qxk−1 + u⊤k−1Ruk−1 + (Axk−1 +Buk−1)
⊤Pk(Axk−1 +Buk−1),

and Lemma 133 yields

uk−1 = −(R+B⊤PkB)−1B⊤PkAxk−1 (24)

Vk−1(xk−1) = x⊤k−1

(
Q+A⊤PkA−A⊤PkB(R+BTPkB)−1B⊤PkA

)
︸ ︷︷ ︸

:=Pk−1

xk−1. (25)

We can rewrite the last equation as an iteration on matrices Pk:

PN = S

Pk−1 = Q+A⊤PkA−A⊤PkB(R+B⊤PkB)−1B⊤PkA, k = N, · · · , 1. (26)

Summary of the steps for solving LQR:

• Starting with PN = S, solve (26) backward for N, · · · , 1 to find PN−1, PN−2, · · · , P0.

• Substitute P1, · · · , PN in (24) to find u0, · · · , uk−1

• The value function is V0(x0) = x⊤0 P0x0.

Note that since Pk depends on time instant k, (24) is a time-varying state feedback law.

Example 134. Suppose we select Q = 0, R = γ, S = I as in Example 2 and time horizon N = 3:

J = γ(u20 + u21 + u22) + ||x3||2.

Suppose further the linear system is given by:

A =

 0 1 0
0 0 1
0 0 0

 , B =

 0
0
1

 .
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What is the optimal sequence u0, u1, u2 to minimize the cost J above? To solve this LQR problem,
we first determine the Pk’s:

P3 = S = I

P2 = 0 +A⊤P3A−A⊤P3B(γ +B⊤P3B)−1B⊤P3A︸ ︷︷ ︸
=0

= A⊤P3A =

 0 0 0
0 1 0
0 0 1


P1 = 0 +A⊤P2A−A⊤P2B(R+B⊤P2B)−1B⊤P2A︸ ︷︷ ︸

=0

= A⊤P2A =

 0 0 0
0 0 0
0 0 1


P0 = 0 +A⊤P1A−A⊤P1B(R+B⊤P1B)−1B⊤P1A︸ ︷︷ ︸

=0

= A⊤P1A = 0.

Thus, the value function is V0(x0) = x⊤0 P0x0 = 0 and the optimal control inputs are:

u0 = −(R+B⊤P1B)−1B⊤P1A︸ ︷︷ ︸
=0

x0 = 0

u1 = −(R+B⊤P2B)−1B⊤P2A︸ ︷︷ ︸
=0

x1 = 0

u2 = −(R+B⊤P3B)−1B⊤P3A︸ ︷︷ ︸
=0

x0 = 0

for any initial condition x0. That is, the best control action in this example is to do nothing!
This is not surprising if we observe that A3 = 0, which implies x3 = 0 from any x0 without
inputs. Thus, the cost function is zero with u0 = u1 = u2 = 0, and applying nonzero inputs only
increases the cost.
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B. Finite-Horizon Optimal Control in Continuous Time

1 Finite-horizon optimal control and Linear Quadratic Regulator in Continuous Time

We now consider the continuous time system

ẋ = f(x(t), u(t)), x(t) ∈ Rn, u(t) ∈ Rm,

with initial state x(0) = x0. We want to design u : [0, T ] 7→ Rm to minimize∫ T

0
g(x(t), u(t)) dt+ σ(x(T )),

where g(·, ·) and σ(·) are user-defined cost functions. Note that we could allow g to also depend
on time, as we did in the discrete time case, but we drop the time dependency for simplicity.

Assuming the differential equation above satisfies conditions that guarantee uniqueness of solu-
tions, the cost defined above is a function of the initial condition x0 and input signal u only, as
the state trajectory x is determined by those. Thus, we rewrite the problem as:

min
u

J(x0;u) :=

∫ T

0
g(x(t), u(t)) dt︸ ︷︷ ︸
stage cost

+ σ(x(T ))︸ ︷︷ ︸
terminal cost

s.t. ẋ = f(x(t), u(t))

x(0) = x0.

(27)

As in discrete time, the first term in the objective function is called the stage cost, while the
second term is called the terminal cost.

Similar to the discrete-time case, we define the value function as V (0, x0 := minu J(x0, u).

Likewise, for arbitrary s ∈ [0, T ], we define the “cost to go” as

V (s, x(s)) = min
u:[s,T ] 7→Rm

∫ T

s
g(x(t), u(t)) dt+ σ(x(T )),

An important special case of (1) is the linear quadratic regulator.

Continuous-time Linear Quadratic Regulator (LQR). Consider the special case of:

• Linear system dynamics: ẋ = Ax+Bu

• Quadratic stage cost independent of k: g(x, u) = x⊤Qx+ u⊤Ru,Q ⪰ 0, R ≻ 0

• Quadratic terminal cost: σ(x) = x⊤Sx, S ⪰ 0.

Thus, LQR is a specialization of the general problem (27) to

min
u

J(x0;u) =

∫ ⊤

0
(x(t)⊤Qx(t) + u(t)⊤Ru(t)) dt+ x(T )⊤Sx(T )

s.t ẋ = Ax+Bu

x(0) = x0.

(28)
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2 Solutions of finite-horizon optimal control problem and LQR in continuous time

We now adapt the derivation of the Bellman equations from discrete to continuous time:

Pick an arbitrary s ∈ [0, T ] and h > 0 such that s+h ≤ T . Let u[s,s+h], u[s+h,T ], u[s,T ] denote the
snippets of the signal u : [0, T ] 7→ Rm on the time segments indicated by the subscript. Then,

V (s, x(s)) = min
u[s,T ]

∫ T

s
g(x(t), u(t)) dt+ σ(x(T ))

= min
u[s,T ]

∫ s+h

s
g(x(t), u(t)) dt︸ ︷︷ ︸

depends on u[s,s+h]

+

∫ T

s+h
g(x(t), u(t)) dt+ σ(x(T ))︸ ︷︷ ︸

depends on u[s,s+h] and u[s+h,T ]

= min
u[s,T ]

{∫ s+h

s
g(x(t), u(t)) dt+ min

u∈[s+h,T ]

∫ T

s+h
g(x(t), u(t)) dt+ σ(x(T ))

}
= min

u[s,s+h]

{∫ s+h

s
g(x(t), u(t)) dt+ V (s+ h, x(s+ h))

}
where the third equality follows from the principle stated in Lemma 131.

For the two terms on the right hand side, we do a Taylor expansion around h = 0 as follows:

V (s+ h, x(s+ h)) = V (s, x(s)) +
d

ds
V (s, x(s))h+O(h2)∫ s+h

s
g(x(t), u(t)) dt = g(x(s), u(s))h+O(h2).

Then,

V (s, x(s)) = min
u[s,s+h]

{∫ s+h

s
g(x(t), u(t)) dt+ V (s+ h, x(s+ h))

}
= min

u[s,s+h]

{
V (s, x(s)) +

(
d

ds
V (s, x(s)) + g(x(s), u(s))

)
h+O(h2)

}
.

Subtracting V (s, x(s)) from both sides, we get

0 = min
u[s,s+h]

{(
d

ds
V (s, x(s)) + g(x(s), u(s))

)
h+O(h2)

}
.

Since this holds for arbitrarily small h, we conclude

0 = min
u(s)

{
d

ds
V (s, x(s)) + g(x(s), u(s))

}
= min

u(s)

{
∇sV (s, x(s)) +∇xV (s, x(s))⊤f(x(s), u(s)) + g(x(s), u(s))

}
,

where the second equality follows from the chain rule. Dropping the argument s to make the
equation more concise, we get

0 = min
u

{
∇sV (s, x) +∇xV (s, x)⊤f(x, u) + g(x, u)

}
.
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Since ∇sV (s, x) does not depend on u, we move it to the left-hand side and obtain the Bellman
equations for the case of continuous time:

−∇sV (s, x) = min
u

{
g(x, u) +∇xV (s, x)⊤f(x, u)

}
(29)

V (T, x) = σ(x), (30)

where the last equality follows because the cost-to-go at time T is the terminal cost.

Compare this with the Bellman equations (20)-(21) in discrete time. Instead of the recursion in
(20), we now have the partial differential equation (29), which is impossible to solve analytically
in general. It does, however, admit an explicit solution in the special case of LQR:

Solution of LQR. When f(x, u) = Ax+Bu, g(x, u) = x⊤Qx+u⊤Ru, σ(x) = x⊤Sx, the Bellman
equations (29)-(30) become

−∇tV (t, x) = min
u

{
x⊤Qx+ u⊤Ru+∇xV (t, x)⊤(Ax+Bu)

}
V (T, x) = x⊤Sx.

Since the boundary value is V (T, x) = x⊤Sx, we will look for a quadratic solution V (t, x) =
x⊤P (t)x, where P (t) is symmetric and P (T ) = S, and show that such a solution indeed exists.
Then, −∇tV (t, x) = −x⊤Ṗ (t)x, ∇xV (t, x) = 2P (t)x, and the first equation above becomes

−x⊤Ṗ (t)x = min
u

{
x⊤Qx+ u⊤Ru+ 2x⊤P (t)(Ax+Bu)

}
= min

u

{
x⊤Qx+ u⊤Ru+ x⊤(P (t)A+A⊤P (t))x+ x⊤P (t)Bu+ u⊤B⊤P (t)x

}
= min

u

[
x
u

]⊤ [
PA+A⊤P +Q PB

B⊤P R

] [
x
u

]
= x⊤(PA+A⊤P +Q− PBR−1B⊤P )x,

where the second equality holds because x⊤P (t)Ax and x⊤P (t)Bu are scalars and, thus, equal to
their transposes x⊤A⊤P (t)x and u⊤B⊤P (t)x, respectively. This allows us to write the quadratic
expression in the third equation with a symmetric matrix. The fourth equality is by Lemma
133(b) and, since it must hold for all x, we obtain4 the matrix differential equation

−Ṗ (t) = P (t)A+A⊤P (t) +Q− P (t)BR−1B⊤P (t), P (T ) = S, (31)

which must be solved backwards to obtain P (t), t ∈ [0, T ]. This is called the Riccati Differential
Equation. Finally, note from Lemma 133(a) that the minimization problem above is solved by

u = −R−1B⊤P (t)x.

Summary of the solution of LQR:

• Solve the matrix Riccati Differential Equation (31) backwards to obtain P (t), t ∈ [0, T ].

• The optimal control is u(t) = −R−1B⊤P (t)x(t).

4Here we use the implication x⊤Mx = 0∀x ⇒ M = 0. To see why this holds, first let x = ei, the ith unit vector,
and note e⊤i Mei = Mii = 0. Thus, all diagonal entries of M must be zero. Next, substitute x = ei − ej and use
symmetry of M to conclude mij = mji = 0 when i ̸= j. Thus, the off-diagonal entries of M must also be zero.
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• The value function is V (0, x0) = x⊤0 P (0)x0.

Since P (t) depends on time, the optimal control u is a time-varying state feedback law.

3 Solving the Riccati Differential Equation (RDE)

In general, the Riccati Differential Equation (31), abbreviated as RDE, is solved numerically.
Below we first study two simple examples where the solution can obtained analytically. Next we
show that, although the RDE is nonlinear in P , its solution can be obtained from the solution
of an auxiliary linear matrix differential equation.

Example 135. Suppose Q = S = 0; that is, the cost function is

∫ T

0
u⊤Ru. It is straightforward

to see that the optimal control is u ≡ 0, since there is no cost on the state. We can confirm this
by solving the RDE:

−Ṗ (t) = P (t)A+A⊤P (t)− P (t)BR−1B⊤P (t)

P (T ) = 0,

whose solution is indeed P (t) = 0, t ∈ [0, T ], and the optimal control is u = −R−1B⊤P (t)x = 0.

Example 136. Consider the LQR problem where A = 0, B = 1, Q = 0, R = γ, S = 1; that is,

ẋ = u

J(x0, u) =

∫ 1

0
γu(t)2 dt+ x(1)2.

The Riccati Differential Equation is −Ṗ = −P 2/γ, P (1) = 1, which can be solved as follows:

dP

dτ
=

P 2

γ

⇒ dP

P 2
=

dτ

γ

⇒
∫ P (1)

P (t)

dP

P 2
=

∫ 1

t

dτ

γ

⇒ −1

P

∣∣∣∣P (1)

P (t)

=
1

P (t)
− 1

P (1)
=

1− t

γ

⇒ 1

P (t)
= 1 +

1− t

γ
⇒ P (t) =

γ

γ + 1− t
.

The optimal control u is then u(t) = − 1
γ+1−tx(t) and the closed-loop system is ẋ(t) = − 1

γ+1−tx(t),
which gives the trajectory

x(t) = e
−

∫ t
0

1
γ+1−τ

dτ
x(0) =

γ + 1− t

γ + 1
x(0).

Note that, as γ → 0, x(1) = γ
1+γx(0) → 0. Since small γ means control is “cheap,” we are able

to take aggressive control actions to bring the terminal cost close to zero. If, on the other hand,
γ is large, the priority is on spending the control effort parsimoniously at the cost of a larger
terminal cost. Indeed, if we let γ → ∞, then u(t) = − 1

γ+1−tx(t) ≈ 0 and x(1) = γ
1+γx(0) ≈ x(0).

Kameshwar Poolla and Murat Arcak. Licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

page 110 – version December 7, 2024

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


Making the RDE linear. Define the auxiliary matrix differential equation:

Ẋ(t) =
(
A−BR−1B⊤P (t)

)
X(t), X(T ) = I. (32)

Then, define Y (t) = P (t)X(t) which satisfies Y (T ) = P (T )X(T ) = S and

Ẏ = ṖX + PẊ

= (−PA−A⊤P −Q+ PBR−1B⊤P )X + P (A−BR−1B⊤P )X

= −A⊤PX −QX

= −A⊤Y −QX,

where we substituted PX = Y in the last step. With the same substitution, we rewrite (32) as:

Ẋ = AX −BR−1B⊤Y

The two differential equations can be rewritten as the following linear matrix differential equation:[
Ẋ(t)

Ẏ (t)

]
=

[
A −BR−1B⊤

−Q −A⊤

] [
X(t)
Y (t)

]
,

[
X(T )
Y (T )

]
=

[
I
S

]
Therefore, we can solve for X(t) and Y (t) from this linear equation, and obtain the solution of
the RDE from

P (t) = Y (t)X(t)−1.

Note that X(t) is invertible since X(t) = Φ(t, T )X(T ) = Φ(t, T ), where Φ(t, T ) is the state
transition matrix of (32), which is indeed invertible.

Since linear differential equations admit well defined solutions, the derivation in this section
implies that the nonlinear RDE (31) also has a well-defined solution P (t).

Solving the RDE forward in time. Note that the RDE (31) must be solved backwards in time.
Alternatively we can define

Π(t) := P (T − t),

and observe that

Π(0) = P (T ), Π̇(t) =
d

dt
P (T − t) = −Ṗ (T − t).

It then follows from (31) that

Π̇(t) = A⊤P (T − t) + P (T − t)A+Q− P (T − t)BR−1B⊤P (T − t)

= A⊤Π(t) + Π(t)A+Q−Π(t)BR−1B⊤Π(t)

Π(0) = P (T ) = S.

(33)

We can solve this equation forward in time and obtain the value function from

V (0, x0) = x⊤0 P (0)x0 = x⊤0 Π(T )x0.

Since the solution of the original RDE is P (t) = Π(T − t), the optimal control can be written as

u(t) = −R−1B⊤P (t)x(t) = −R−1B⊤Π(T − t)x(t).
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C. Infinite-Horizon LQR

1 Infinite-horizon LQR in Continuous Time

The infinite-horizon LQR problem is

min
u

J∞(x0;u) =

∫ ∞

0
(x(t)⊤Qx(t) + u(t)⊤Ru(t)) dt

s.t ẋ(t) = Ax(t) +Bu(t)

x(0) = x0

(34)

Note that there is no terminal cost, since there is no terminal time. We will formulate a solution
to this problem by examining the finite horizon problem with no terminal cost (i.e., S = 0) in
the limit as T → ∞. Apply the forward RDE (33) with S = 0:

Π̇(t) = A⊤Π(t) + Π(t)A+Q−Π(t)BR−1B⊤Π(t), Π(0) = 0, (35)

and recall that the value function is

VT (x0) = x⊤0 Π(T )x0.

We added the subscript T to emphasize the dependence of the value function on the time horizon.
We first observe that increasing the horizon cannot decrease the value function:

Lemma 137. Consider the finite horizon LQR problem (28) with S = 0, Q ⪰ 0, R ≻ 0. Then,

(a) VT (x0) is nondecreasing in T .

(b) VT (x0) ≤ J∞(x0, u) for all T , u.

Proof.

(a) Let ū be the minimizer of JT (x0, u) and let T ′ ≤ T . Then,

VT (x0) =

∫ T ′

0
(x⊤Qx+ ū⊤Rū)dt︸ ︷︷ ︸

≥VT ′ (x0)

+

∫ T

T ′
(x⊤Qx+ ū⊤Rū)dt︸ ︷︷ ︸

≥0

Thus, VT (x0) ≥ VT ′(x0).

(b) Similarly, regardless of the choice of u,

J∞(x0, u) =

∫ T

0
(x⊤Qx+ u⊤Ru)dt︸ ︷︷ ︸

≥VT (x0)

+

∫ ∞

T
(x⊤Qx+ u⊤Ru)dt︸ ︷︷ ︸

≥0

.

Now, if we can show that J∞(x0, u) < ∞ for some input function u, then we can conclude from
part (b) of Lemma 137 above that VT (x0) is bounded in T . The next lemma explicates when an
input u exists such that J∞(x0, u) < ∞.
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Lemma 138. If (A,B) is stabilizable, then ∃u s.t. J∞(x0, u) < ∞.

Proof. Recall that, when (A,B) is stabilizable, we can find a state feedback matrix L such
that A + BL is Hurwitz (i.e., it has eigenvalues with negative real parts). Then, the input
u(t) = Lx(t) ensures that x(t) converges to zero exponentially, and so does u(t) = Lx(t) itself.
Thus, x(t)⊤Qx(t)+u(t)⊤Ru(t) → 0 exponentially and its integral exists, i.e., J∞(x0, u) < ∞.

Note that stabilizability is not a superfluous assumption. The following example demonstrates
that no input can make J∞(x0, u) bounded if the system is not stabilizable.

Example 139. Consider the following system

ẋ1 = ax1

ẋ2 = u,

which is uncontrollable. It is stabilizable if a < 0 and not stabilizable if a ≥ 0.

Let Q = I and R = 1. Then

J∞ =

∫ ∞

0
(x21 + x22 + u2)dt ≥

∫ ∞

0
x21 dt =

∫ ∞

0

(
eatx1(0)

)2
,

which is unbounded whenever x1(0) ̸= 0 if the system is not stabilizable (a ≥ 0).

Thus, with the stabilizability condition, VT (x0) has a bound that does not depend on T by part
(b) of Lemma 137. Since it is also nondecreasing in T by part (a), it must have a limit as T → ∞.
We state this as a corollary to Lemmas 137 and 138:

Corollary 140. Consider the finite horizon LQR problem (28) with S = 0, Q ⪰ 0, R ≻ 0, and
suppose (A,B) is stabilizable. Then, VT (x0) is bounded (by Lemma 137(b) and Lemma 138) and
nondecreasing in T (by Lemma 137(a)). Thus, limT→∞VT (x0) exists.

Since lim
T→∞

VT (x0) = lim
T→∞

x⊤0 Π(T )x0 exists by Collorary 140,

lim
T→∞

Π(T ) =: Π (36)

exists. This means that the solution Π(t) of the RDE (35) converges to Π and, thus, Π̇(t)
converges to zero. Therefore, Π must make the right-hand side of (35) zero; that is, it must solve
the equation

0 = A⊤Π+ΠA+Q−ΠBR−1B⊤Π, (37)

which is called the Algebraic Riccati Equation (ARE).

To summarize, if (A,B) is stabilizable, then limT→∞ VT (x0) = x⊤0 Πx0, where Π is the limit of
the solution of the RDE (35) and satisfies the ARE (37). Moreover, from Lemma 137, we have

x⊤0 Πx0 ≤ J∞(x0, u), ∀u. (38)

The ARE (37) may admit multiple solutions, raising the question: which one is the limit Π of
the solution of the RDE (35)? First observe that, the cost function VT (x0) = x⊤0 Π(T )x0 ≥ 0
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for any x0; thus Π(T ) as well as its limit Π must be at least positive semidefinite. In addition,
if Q is strictly positive definite, then so is Π. This follows from (35) because Π(0) = 0 and

Π̇(0) = Q ≻ 0, which means that at T = 0, dVT (x0)
dT = x⊤0 Qx0 > 0 if x0 ̸= 0. Thus, VT (x0) > 0

for arbitrarily small T > 0 when x0 ̸= 0. Since VT (x0) is nondecreasing in T , we conclude
VT (x0) = x⊤0 Π(T )x0 > 0 for all T > 0 when x0 ̸= 0; that is Π(T ) ≻ 0 for all T .

The following lemma summarizes the observations above:

Lemma 141. If Q ⪰ 0 and R ≻ 0, then Π ⪰ 0. Moreover, if Q ≻ 0, then Π ≻ 0.

Example 142. Suppose A = 1, B = 1, Q = 1, R = 1; that is,

ẋ = x+ u

J∞(x0, u) =

∫ ∞

0
(x(t)2 + u(t)2) dt.

Then, the ARE (37) becomes 2π + 1 − π2 = 0, where we used lower case since π is a scalar in
this example. This quadratic equation has solutions π1 = 1 +

√
2 and π2 = 1−

√
2. By Lemma

141, the relevant solution is the positive one, π1 = 1 +
√
2.

Now that we understand the limit of the finite horizon LQR problem as T → ∞, we are ready
to state the main result for the infinite horizon LQR:

Theorem 143. Let Q ⪰ 0, R ≻ 0, and suppose (A,B) is stabilizable. Denote by Π the limit of the
solution of RDE (35). Then:

(a) The input u∗ generated by the feedback law

u∗(t) = −R−1B⊤Πx(t) (39)

is the optimal solution to (34).

(b) The feedback law (39) also guarantees limt→∞ x(t)⊤Πx(t) = 0.

(c) If Q ≻ 0, then x(t) → 0.

Proof. To prove (a) and (b), note that

J∞(x0, u
∗) =

∫ ∞

0

(
x(t)⊤Qx(t) +

(
−R−1B⊤Πx(t)

)⊤
R
(
−R−1B⊤Πx(t)

))
dt

=

∫ ∞

0
x(t)⊤(Q+Π

⊤
BR−1B⊤Π)x(t) dt

Note that the closed-loop system is ẋ = Ax + B(−R−1B⊤Πx) = (A − BR−1B⊤Π)x =: Aclx.
Then,

A⊤
clΠ+ΠAcl = A⊤Π+ΠA− 2ΠBR−1B⊤Π = −(Q+Π

⊤
BR−1B⊤Π),

where the last equality follows because Π satisfies the ARE (37). Substituting this in our integral
for J∞(x0, u

∗) above, we get

J∞(x0, u
∗) = −

∫ ∞

0
x(t)⊤(A⊤

clΠ+ΠAcl)x(t) dt
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= −
∫ ∞

0

(
ẋ(t)⊤Πx(t) + x(t)⊤Πẋ(t)

)
dt

= −
∫ ∞

0

d

dt
x(t)⊤Πx(t) dt

= − x(t)⊤Πx(t)
∣∣∣∞
0

= x⊤0 Πx0 − lim
t→∞

x(t)⊤Πx(t)︸ ︷︷ ︸
≥0

(40)

≤ x⊤0 Πx0

Combining with (38), we get

J∞(x0, u
∗) ≤ x⊤0 Πx0 ≤ J∞(x0, u), ∀u.

Since the second inequality holds for all u, it holds when u = u∗; thus,

J∞(x0, u
∗) ≤ x⊤0 Πx0 ≤ J∞(x0, u

∗) ⇒ J∞(x0, u
∗) = x⊤0 Πx0.

In addition, (38) states that no choice of u can lower J∞(x0, u) below x⊤0 Πx0. Thus u
∗ achieves

the minimum possible cost, which proves part (a).

Part (b) follows from (40) because we now know J∞(x0, u
∗) = x⊤0 Πx0 and, thus, the underbraced

limit in (40) must be zero.

For part (c), recall from Lemma 141 that Q ≻ 0 implies Π ≻ 0. Since limt→∞ x(t)⊤Πx(t) = 0 by
part (b) and since Π is positive definite, we conclude x(t) → 0.

Note that the optimal control (39) is a state feedback law and, unlike the finite horizon case, it
is time invariant. The closed-loop system with this feedback is ẋ = (A− BR−1B⊤Π)x =: Aclx.
If Q ≻ 0, then x(t) → 0, which implies that Acl is necessarily Hurwitz.

The Matlab command [K,P ] = lqr(A,B,Q,R) can be used to compute the solution of LQR.
It returns the optimal feedback gain K to be substituted in u = −Kx. That is, K = R−1B⊤P ,
where P corresponds to Π.

Example 144. Let A = 3, B = 4, Q = 1, R = 1. Thus,

ẋ = 3x+ 4u

J∞(x0, u) =

∫ ∞

0
(x2 + u2) dt.

Then, the ARE is 6π+1−16π2 = 0, whose solutions are Π1 =
1
2 and Π2 = −1

8 . The relevant one is
the positive solution π1 =

1
2 and the optimal feedback is u∗ = −4π1x = −2x. The corresponding

closed-loop system is ẋ = 3x+ 4(−2x) = −5x.

Example 145. Now suppose A = 0, B = 1, Q = 1, R = 1. That is,

ẋ = u

J∞(x0, u) =

∫ ∞

0
(x2 + u2) dt.

The ARE is 1 − π2 = 0, whose solutions are π = ±1. Selecting the positive one, we get the
optimal control u∗ = −x.
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Example 146. Consider the following system,

ẋ1 = x2

ẋ2 = u
with the cost function: J∞ =

∫ ∞

0
(x21 + x22 + u2) dt.

That is, Q = I,R = 1, A =

[
0 1
0 0

]
, B =

[
0
1

]
.

The corresponding ARE is ΠA+ATΠ+ I −ΠBBTΠ = 0. Since Π is symmetric, we write it as

Π =

[
π11 π12
π12 π22

]
with only three independent entries. Then, we have

[
0 π11
0 π12

]
+

[
0 0
π11 π12

]
+

[
1 0
0 1

]
−
[
π12
π22

] [
π12 π22

]
= 0

=⇒ 1− π2
12 = 0

π11 − π12π22 = 0

2π12 + 1− π2
22 = 0

=⇒ π12 = ±1, π11 = π12π22, π22 = ±
√
1 + 2π12

Since Π ≻ 0 (from Q ≻ 0), we discard π12 = −1 because that would have implied π11 = −π22,
which means zero or negative diagonal entries, contradicting positive definiteness. It follows that
π12 = 1, π11 = π22 =

√
3:

Π =

[√
3 1
1

√
3

]
.

The optimal controller is u∗ = −R−1B⊤Πx = −
[
1

√
3
]
x.

The closed-loop system is ẋ =

[
0 1
−1 −

√
3

]
x with characteristic polynomial s2 +

√
3s+ 1 = 0

and eigenvalues at −
√
3±j
2 , which confirms asymptotic stability.

2 When is the optimal control asymptotically stabilizing?

As mentioned in Theorem 143, Part (c), if Q ≻ 0, then the optimal solution will asymptotically
stabilize the system. This, however, is only a sufficient condition. To see this, suppose Q = 0,
which means J∞(x0, u) =

∫∞
0 u⊤Ru dt and the optimal control is u∗ = 0 since there is no penalty

on the state. If the matrix A is Hurwitz, we have asymptotic stability even with u∗ = 0.

This suggests that a sharper condition for the optimal control to be asymptotically stabilizing
can allow Q ⪰ 0 as long A has suitable properties. The following example will help us identify
the precise property needed.

Example 147. We return to Example 146, but this time choose

Q =

[
1 0
0 0

]
,

which is only semidefinite. Thus, the new cost is:

J∞ =

∫ ∞

0
(x21 + u2) dt, (41)
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but the system is unchanged:

ẋ1 = x2

ẋ2 = u.

Below is the modified ARE resulting from the new Q, with changes marked in red:[
0 π11
0 π12

]
+

[
0 0
π11 π12

]
+

[
1 0
0 0

]
−
[
π12
π22

] [
π12 π22

]
= 0

=⇒ 1− π2
12 = 0

π11 − π12π22 = 0

2π12 + 0− π2
22 = 0

=⇒ π12 = ±1, π11 = π12π22, π22 = ±
√
0 + 2π12

We again select5 π12 = 1, which leads to π11 = π22 =
√
2:

Π =

[√
2 1
1

√
2

]
,

and the optimal controller is u∗ = −R−1B⊤Πx = −
[
1

√
2
]
x. The closed-loop system is

ẋ =

[
0 1
−1 −

√
2

]
x, which again has eigenvalues with negative real parts. Thus, the optimal

control is asymptotically stabilizing even though Q is only semidefinite.

On the other hand, if we select

Q =

[
0 0
0 1

]
;

that is,

J∞ =

∫ ∞

0
(x22 + u2) dt, (42)

the optimal control is u∗ = −x2, which is not asymptotically stabilizing. You can show this by
modifying and solving the ARE above, and verify the closed-loop system has an eigenvalue at
zero, ruling out asymptotic stability. Alternatively, note that the problem (42) with the equation
ẋ2 = u is oblivious to the x1 subsystem, and it is identical to Example 145 with the single state
replaced with x2. The resulting optimal control u∗ = −x2 drives x2(t) to zero, but the remaining
subsystem ẋ1 = x2 integrates x2(t); thus, x1(t) does not converge to zero.

If we interpret x2 appearing in the cost (42) as the system output (that is, C = [0 1]), then the
x1 subsystem is unobservable; in fact, undetectable since the unobservable x1 subsystem is not
asymptotically stable by itself. By contrast, the cost (41) depends on x1 (C = [1 0]), from which
the system is observable, thus also detectable.

5The argument for discarding π12 = −1 is slightly modified, as we no longer have Q ≻ 0 and can only restrict our
search to Π ⪰ 0, rather than Π ≻ 0. The choice π12 = −1 contradicts Π ⪰ 0 as well because it implies π11 = −π22,
meaning either a negative diagonal entry (contradicting positive semidefiniteness) or two zero diagonal entries (which
also contradicts positive semidefiniteness since the off-diagonal entry π12 is nonzero).
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Generalizing the example above, it can be shown that the optimal control (39) for the stabilizable
system ẋ = Ax+Bu with cost

J∞ =

∫ ∞

0
(y⊤y + u⊤Ru) dt, (43)

where y = Cx and the pair (C,A) is detectable, is asymptotically stabilizing. Furthermore, sta-
bilizability and detectability guarantee that the ARE (37) admits a unique positive semidefinite
solution, which is necessarily Π, the limit of the RDE (35) used in the optimal control (39).

Note that (44) corresponds to Q = C⊤C in the LQR formulation, and any Q ⪰ 0 can be written
in this form with a suitable C (using a Schur or Cholesky decomposition). The statement above
(whose proof is omitted) is less restrictive than the condition Q ≻ 0 used in Theorem 143, Part
(c) to prove asymptotic stability. On the other hand, Q is a design choice, so the practical
distinction between Q ≻ 0 and Q ⪰ 0 is insignificant. For example, instead of the cost (42), we
can choose

J∞ =

∫ ∞

0
(εx21 + x22 + u2) dt (44)

with a small ε > 0, so that Q =

[
ε 0
0 1

]
≻ 0 while the emphasis remains on regulating x2.

3 Infinite-horizon LQR in Discrete Time

The infinite-horizon LQR problem in discrete time,

min
u

J∞(x0;u) =

∞∑
k=0

(
x⊤k Qxk + u⊤k Ruk

)
s.t. xk+1 = Axk +Buk,

is again solved using the limit as N → ∞ of the finite horizon problem (19) with zero terminal
cost, i.e., S = 0. We define Πk = PN−k and rewrite the Riccati Difference Equation (26) as

Π0 = S = 0

Πk+1 = Q+A⊤ΠkA−A⊤ΠkB(R+B⊤ΠkB)−1B⊤ΠkA, k = 1, · · · , N, (45)

so that it is solved forward in time instead of backwards. If (A,B) is stabilizable, Q ⪰ 0, and
R ≻ 0, then Π = limN→∞ΠN exists, and it is a positive semidefinite solution of the Discrete
Algebraic Riccati Equation

Π = Q+A⊤ΠA−A⊤ΠB(R+B⊤ΠB)−1B⊤ΠA.

The optimal control problem is then solved by the time-invariant state feedback

u∗k = −(R+B⊤ΠB)−1B⊤ΠAxk,

which achieves the minimum value J∞(x0;u
∗) = x⊤0 Πx0. In addition, if6 Q ≻ 0, then u∗ guaran-

tees xk → 0 as k → ∞. We omit derivations, as they are similar to continuous time.

6Q ≻ 0 is again only sufficient for xk → 0 and can relaxed to Q = C⊤C when (C,A) is detectable.
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