International Graduate School on Control, Stuttgart, May 2024

# Dissipation Inequalities and Quadratic Constraints for Control, Optimization, and Learning

# Lesson 7: Applications to Neural Networks and Differential-Algebraic Equations

Murat Arcak<sup>1</sup> and Peter Seiler<sup>2</sup>

<sup>1</sup> University of California, Berkeley <sup>2</sup> University of Michigan, Ann Arbor

# **Learning Objectives**

In this lesson you will learn to

- Represent a neural network as an LFT with the activation functions separate from the weights and biases.
- Define quadratic constraints for common activation functions.
- Use dissipation inequalities and quadratic constraints to analyze the stability and performance of feedback systems with neural network controllers.
- Design neural network controllers
- Use dissipation inequalities and quadratic constraints to analyze the stability and performance of differential-algebraic equations

# Outline

- 1. LFT Representations of Neural Networks
- 2. Quadratic Constraints for Activation Functions
- 3. Analysis of Neural Network Controllers
- 4. Synthesis of Neural Network Controllers
- 5. Differential-Algebraic Equations (DAEs)

# LFT Representations of Neural Networks

#### **Feedforward Neural Network**

Input x(k), output u(k) ,  $\ell$  layers.



$$\begin{split} w^{0}(k) &= x(k), \\ w^{i}(k) &= \phi^{i} \left( W^{i} w^{i-1}(k) + b^{i} \right), \ i = 1, \dots, \ell, \\ u(k) &= W^{\ell+1} w^{\ell}(k) + b^{\ell+1}, \end{split}$$

## **Feedforward Neural Network**

Isolate the nonlinear activation functions





## Implicit Neural Network (INN)

A typical INN formulation:

$$\hat{y}(u) = Cx + Du$$
$$x = \phi(Ax + Bu)$$

- x is defined as the fixed-point of the above equation.
- (A, B, C, D) are the trainable parameters.

Reference: El Ghaoui, et al., Implicit Deep Learning, SIAM, 2021.

## **Implicit Neural Network**

Modeling a dense feedforward NN with L layers:

$$\hat{y} = W_L x_L + b_L, \quad x_{l+1} = \phi_l (W_l x_l + b_l), \quad x_0 = u$$

First define 
$$x=(x_1,...,x_L)$$
 and  $\phi=(\phi_0,...,\phi_{L-1})$  Then,

$$\hat{y}(u) = \underbrace{\begin{bmatrix} 0 & \dots & 0 & W_L \end{bmatrix}}_{C} x + \underbrace{\begin{bmatrix} 0 & b_L \end{bmatrix}}_{D} \begin{bmatrix} u \\ 1 \end{bmatrix}$$
$$x = \phi \left( \underbrace{\begin{bmatrix} 0 & & & \\ W_1 & 0 & & \\ 0 & W_2 & 0 & \\ \vdots & \ddots & \ddots & \ddots & \\ 0 & \dots & 0 & W_{L-1} & 0 \end{bmatrix}}_{A} x + \underbrace{\begin{bmatrix} W_0 & b_0 \\ 0 & b_1 \\ \vdots & \vdots \\ 0 & b_{L-1} \end{bmatrix}}_{B} \begin{bmatrix} u \\ 1 \end{bmatrix} \right)$$

## **Well-Posedness of INNs**

$$x = \phi(Ax + Bu)$$

When does a fixed point exist, and when is it unique?

- Depends on structure of A; many conditions possible.
- A useful condition for our method [1]:
  - Search for diagonal  $\Lambda \succ 0$  such that  $\Lambda A + A^{\top} \Lambda 2\Lambda \prec 0$ .

[1] Revay, Wang, Manchester, Recurrent Equilibrium Networks:
 Flexible Dynamic Models With Guaranteed Stability and Robustness,
 TAC, 2024.

# Quadratic Constraints for Activation Functions

## **Example: Sector-bounded Nonlinearity**



Suppose  $\Delta$  is a nonlinearity, w = f(v), whose graph lies in the sector  $[\alpha, \beta]$ .



$$(w(t) - \alpha v(t)) \cdot (\beta v(t) - w(t)) \ge 0$$

$$\begin{bmatrix} v(t) \\ w(t) \end{bmatrix}^{\top} \begin{bmatrix} -2\alpha\beta & \alpha + \beta \\ \alpha + \beta & -2 \end{bmatrix} \begin{bmatrix} v(t) \\ w(t) \end{bmatrix} \ge 0$$

$$:=J$$

 $\Delta$  satisfies the static QC defined by J.

#### **Sector Bounds**

Local quadratic constraints on the activation function.



## Scalar Rectified Linear Unit (ReLU)

Scalar ReLU is 
$$\phi \colon \mathbb{R} \to \mathbb{R}_{\geq 0}$$
 is:  

$$\phi(v) = \begin{cases} 0 & \text{if } v < 0 \\ v & \text{if } v \geq 0 \end{cases}$$

 $\phi$  is sector and slope constrained to [0,1].



# Scalar Rectified Linear Unit (ReLU)

Scalar ReLU is  $\phi \colon \mathbb{R} \to \mathbb{R}_{\geq 0}$  is:  $\psi = \phi(v)$   $\phi(v) = \begin{cases} 0 & \text{if } v < 0 \\ v & \text{if } v \geq 0 \end{cases}$ 

 $\phi$  is sector and slope constrained to [0,1].

In addition, it satisfies (Richardson, et al.; Ebhihari, et al.; Drummond, et al.; Fazlyab, et al.):

- Positivity:  $\phi(v) \ge 0 \quad \forall v \in \mathbb{R}$ .
- Positive Complement:  $\phi(v) \ge v \ \forall v \in \mathbb{R}$ .
- Complementarity:  $\phi(v)(v \phi(v)) = 0 \quad \forall v \in \mathbb{R}.$
- Positive Homogeneity:  $\phi(\beta v) = \beta \phi(v) \ \forall v \in \mathbb{R} \text{ and } \forall \beta \ge 0$

The properties can be used to write QCs that are specific to ReLU (in addition to sector and slope constraints).

The repeated ReLU  $\Phi: \mathbb{R}^m \to \mathbb{R}^m$  maps elementwise:  $w_i = \phi(v_i)$  for i = 1, ..., m where  $\phi$  is the scalar ReLU.



The repeated ReLU  $\Phi: \mathbb{R}^m \to \mathbb{R}^m$  maps elementwise:  $w_i = \phi(v_i)$  for i = 1, ..., m where  $\phi$  is the scalar ReLU.



**Def:**  $M \in \mathbb{R}^{m \times m}$  is <u>doubly hyperdominant</u> if the off-diagonal elements are non-positive and the row / column sums are non-negative.

**QC 1:** If  $Q_0 \in \mathbb{R}^{m \times m}$  is doubly hyperdominant then

$$\begin{bmatrix} v \\ w \end{bmatrix}^{\top} \begin{bmatrix} 0 & Q_0^{\top} \\ Q_0 & -(Q_0 + Q_0^{\top}) \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} \ge 0 \ \forall v \in \mathbb{R}^m \text{ and } w = \Phi(v)$$

This QC holds for any repeated function that is slope-restricted in [0,1] and passes through the origin [Willems, Brocket, '68; Willems '71].

The repeated ReLU  $\Phi: \mathbb{R}^m \to \mathbb{R}^m$  maps elementwise:  $w_i = \phi(v_i)$  for i = 1, ..., m where  $\phi$  is the scalar ReLU.



**QC 2:** If  $Q_1 \in \mathbb{R}^{m \times m}$  is diagonal then

$$\begin{bmatrix} v \\ w \end{bmatrix}^{\top} \begin{bmatrix} 0 & Q_1 \\ Q_1 & -2Q_1 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = 0 \ \forall v \in \mathbb{R}^m \text{ and } w = \Phi(v)$$

This follows from complementarity of scalar ReLU:

$$\begin{bmatrix} v \\ w \end{bmatrix}^{\top} \begin{bmatrix} 0 & Q_1 \\ Q_1 & -2Q_1 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = \sum_{k=1}^m (Q_1)_{kk} w_k (v_k - w_k) = 0$$

The repeated ReLU  $\Phi: \mathbb{R}^m \to \mathbb{R}^m$  maps elementwise:  $w_i = \phi(v_i)$  for i = 1, ..., m where  $\phi$  is the scalar ReLU.



**QC 3:** If  $Q_2$ ,  $Q_3$ ,  $Q_4 \in \mathbb{R}_{\geq 0}^{m \times m}$  with  $Q_2 = Q_2^{\mathsf{T}}$  and  $Q_3 = Q_3^{\mathsf{T}}$  then  $\begin{bmatrix} v \\ w \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} Q_2 & -(Q_2 + Q_4^{\mathsf{T}}) \\ -(Q_2 + Q_4) & Q_2 + Q_3 + Q_4 + Q_4^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} \geq 0 \quad \forall v \in \mathbb{R}^m \text{ and } w = \Phi(v)$ 

This follows by taking combinations of the linear constraints implied by the positivity and positive complement properties:

$$(Q_2)_{kj} (w_k - v_k)(w_j - v_j) \ge 0, (Q_3)_{kj} w_k w_j \ge 0, (Q_4)_{kj} w_k (w_j - v_j) \ge 0$$

The repeated ReLU  $\Phi: \mathbb{R}^m \to \mathbb{R}^m$  maps elementwise:  $w_i = \phi(v_i)$  for i = 1, ..., m where  $\phi$  is the scalar ReLU.



**Def:**  $M \in \mathbb{R}^{m \times m}$  is <u>Metzler matrix</u> if the off-diag. elements are  $\geq 0$ .

**QC:** If  $Q_2 = Q_2^{\mathsf{T}}, Q_3 = Q_3^{\mathsf{T}} \in \mathbb{R}_{\geq 0}^{m \times m} \& \tilde{Q} \in \mathbb{R}^{m \times m}$  is Metzler matrix then  $\begin{bmatrix} v \\ w \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} Q_2 & -\tilde{Q}^{\mathsf{T}} - Q_2 \\ -\tilde{Q} - Q_2 & Q_2 + Q_3 + \tilde{Q} + \tilde{Q}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} \geq 0 \quad \forall v \in \mathbb{R}^m \text{ and } w = \Phi(v)$ 

This is the largest class of QCs for the known properties of scalar ReLU. Positive homogeneity does not increase the class of QCs (Vahedi-Noori, et al, arXiv, '24).

# Analysis of Neural Network Controllers



## **ROA Problem Formulation**

• Plant G is LTI & Neural Network  $\pi$  is a static, state-feedback.



• Neural-network has  $\ell$ -layers:

$$w^{0}(k) = x(k),$$
  

$$w^{i}(k) = \phi^{i} \left( W^{i} w^{i-1}(k) + b^{i} \right), \quad i = 1, \dots, \ell,$$
  

$$u(k) = W^{\ell+1} w^{\ell}(k) + b^{\ell+1},$$

where  $W^i$ ,  $b^i$ , and  $\phi^i$  are the weights, biases, & activation functions.

**Goal:** Compute an estimate of the region of attraction (ROA) of initial conditions that converge back to the equilibrium point.

# Approach:

- **1**. Isolate the nonlinear activation functions
- 2. Express local quadratic constraints on the activation function.
- **3**. Use Lyapunov theory, local quadratic constraints, and convex optimization to estimate the region of attraction.
  - Lyapunov condition also proves local region assumption used to derive quadratic constraints is valid.
- Comments:
- The framework can be extended to handle nonlinearities and uncertainties in the plant *G*.
- This extension can be used to compute disk margins for neural network-based controllers.

## **Region of Attraction Condition**

This is discrete time, but is analogous to continuous time.

$$\begin{split} R_V^{\top} \begin{bmatrix} A_G^{\top} P A_G - P & A_G^{\top} P B_G \\ B_G^{\top} P A_G & B_G^{\top} P B_G \end{bmatrix} R_V \\ &+ R_{\phi}^{\top} \Psi_{\phi}^{\top} J_{\phi}(\lambda) \Psi_{\phi} R_{\phi} < 0, \\ \begin{bmatrix} (\bar{v}_i^1 - v_{*,i}^1)^2 & W_i^1 \\ W_i^{1\top} & P \end{bmatrix} \ge 0, \ i = 1, \cdots, n_1, \end{split}$$

- $(A_G, B_G, C_G, D_G)$  are system matrices.
- $(\Psi_{\phi}, J_{\phi}(\lambda))$  are for NN activation function IQC.
- W terms are related to NN weights.

## **Robust Region of Attraction**

We can also estimate the region of attraction when the plant is uncertain and the controller is a neural network.



# **Robust Region of Attration Condition**

This is discrete time, but is analogous to continuous time.

$$\begin{split} R_{V}^{\top} \begin{bmatrix} \mathcal{A}^{\top} P \mathcal{A} - P & \mathcal{A}^{\top} P \mathcal{B} \\ \mathcal{B}^{\top} P \mathcal{A} & \mathcal{B}^{\top} P \mathcal{B} \end{bmatrix} R_{V} + R_{\phi}^{\top} \Psi_{\phi}^{\top} J_{\phi}(\lambda) \ \Psi_{\phi} R_{\phi} \\ + R_{V}^{\top} \begin{bmatrix} \mathcal{C} & \mathcal{D} \end{bmatrix}^{\top} J_{\Delta} \begin{bmatrix} \mathcal{C} & \mathcal{D} \end{bmatrix} R_{V} < 0 \\ \begin{bmatrix} (\bar{v}_{i}^{1})^{2} & \mathcal{W}_{i}^{1} \\ \mathcal{W}_{i}^{1\top} & P \end{bmatrix} \ge 0, \ i = 1, \dots, n_{1} \end{split}$$

- $(\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D})$  are system matrices.
- $(\Psi_{\phi}, J_{\phi}(\lambda))$  are for NN activation function IQC.
- $J_{\Delta}$  is for plant uncertainty IQC.
- *W* terms are related to NN weights.

# **ROA Experiments: Inverted Pendulum**

• Equations of Motion with angle  $\theta$  (rad):

$$\ddot{\theta}(t) = \frac{mgl\sin(\theta(t)) - \mu\dot{\theta}(t) + u(t)}{ml^2},$$

- mass m=0.15kg, length l = 0.5m, friction  $\mu$ =0.5 Nms/rad.
- Dynamics discretized with dt=0.02s.
- Trigonometric terms also bounded with sector constraints
- Neural network designed via reinforcement learning
  - 2 Layers
  - 32 neurons in each layer
  - tanh as the activation function
  - All biases set to zero

#### **ROA Experiments: Inverted Pendulum**



27

• Equations of Motion with perp. distance to lane edge e (m) and  $e_{\theta}$  is the angle between the car and lane (rad):

$$\begin{bmatrix} \dot{e} \\ \ddot{e} \\ \dot{e} \\ \dot{e} \\ \ddot{e} \\ \vec{e} & \vec{e} \\ \vec{e} & \vec{e}$$

- Parameters given the paper.
- Dynamics discretized with dt=0.02s.

- Equations of Motion with perp. distance to lane edge e (m) and  $e_{\theta}$  is the angle between the car and lane (rad):
  - Parameters given the paper.
  - Dynamics discretized with dt=0.02s.
  - Saturation and unmodeled dynamics included in analysis.





- Equations of Motion with perp. distance to lane edge e (m) and  $e_{\theta}$  is the angle between the car and lane (rad):
  - Parameters given the paper.
  - Dynamics discretized with dt=0.02s.
  - Saturation and unmodeled dynamics included in analysis.
- Neural network designed via reinforcement learning
  - 2 Layers
  - 32 neurons in each layer
  - tanh as the activation function



# **NN Controller Performance Analysis**

- Plant is interconnection of LTI system  $G_p$  and uncertainty  $\Delta_p$  .
- Controller K is recurrent implicit neural network.



**Goal:** Check dissipativity (d, e).

# Approach

- **1**. Model plant and controller alike:
  - Interconnections of LTI systems with uncertainties



- 2. Characterize NN activation functions with quadratic constraints
- 3. Characterize plant uncertainty with IQCs
- **4**. Construct dissipation inequality.

## **Plant Model**

$$\begin{bmatrix} \dot{\boldsymbol{x}}_{\boldsymbol{p}}(t) \\ \boldsymbol{v}_{\boldsymbol{p}}(t) \\ \boldsymbol{e}(t) \\ \boldsymbol{y}(t) \end{bmatrix} = \begin{bmatrix} A_p & B_{pw} & B_{pd} & B_{pu} \\ C_{pv} & D_{pvw} & D_{pvd} & D_{pvu} \\ C_{pe} & D_{pew} & D_{ped} & D_{peu} \\ C_{py} & D_{pyw} & D_{pyd} & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_{\boldsymbol{p}}(t) \\ \boldsymbol{w}_{\boldsymbol{p}}(t) \\ \boldsymbol{d}(t) \\ \boldsymbol{u}(t) \end{bmatrix}$$
$$\boldsymbol{w}_{\boldsymbol{p}}(t) = \Delta_{p}(\boldsymbol{v}_{\boldsymbol{p}})(t),$$

 $\Delta_p$  is an uncertainty, described by IQCs

### **Neural Network Controller Model**



•  $w_k(t)$  is defined implicitly  $\rightarrow$  implicit neural network

- We use unbiased implicit neural networks
- "Recurrent Implicit Neural Network (RINN)"

#### **Discrete-time Models**

Analogous conditions hold for discrete-time systems.
 Plant:

$$\begin{bmatrix} \boldsymbol{x}_{\boldsymbol{p}}[t+1] \\ \boldsymbol{v}_{\boldsymbol{p}}[t] \\ \boldsymbol{e}[t] \\ \boldsymbol{y}[t] \end{bmatrix} = \begin{bmatrix} A_{p} & B_{pw} & B_{pd} & B_{pu} \\ C_{pv} & D_{pvw} & D_{pvd} & D_{pvu} \\ C_{pe} & D_{pew} & D_{ped} & D_{peu} \\ C_{py} & D_{pyw} & D_{pyd} & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_{\boldsymbol{p}}[t] \\ \boldsymbol{w}_{\boldsymbol{p}}[t] \\ \boldsymbol{d}[t] \\ \boldsymbol{u}[t] \end{bmatrix}$$
$$\boldsymbol{w}_{\boldsymbol{p}}[t] = \Delta_{p}(\boldsymbol{v}_{\boldsymbol{p}})[t]$$

Controller:

$$\begin{bmatrix} \boldsymbol{x}_{\boldsymbol{k}}[t+1] \\ \boldsymbol{v}_{\boldsymbol{k}}[t] \\ \boldsymbol{u}[t] \end{bmatrix} = \begin{bmatrix} A_{k} & B_{kw} & B_{ky} \\ C_{kv} & D_{kvw} & D_{kvy} \\ C_{ku} & D_{kuw} & D_{kuy} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_{\boldsymbol{k}}[t] \\ \boldsymbol{w}_{\boldsymbol{k}}[t] \\ \boldsymbol{y}[t] \end{bmatrix}$$
$$\boldsymbol{w}_{\boldsymbol{k}}[t] = \phi(\boldsymbol{v}_{\boldsymbol{k}}[t])$$

## **Feedback System**

• Controller model of same form as plant model:

• Results in feedback system of same form:

$$\begin{bmatrix} \dot{\boldsymbol{x}}(t) \\ \boldsymbol{v}(t) \\ \boldsymbol{e}(t) \end{bmatrix} = \begin{bmatrix} A & B_w & B_d \\ C_v & D_{vw} & D_{vd} \\ C_e & D_{ew} & D_{ed} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}(t) \\ \boldsymbol{w}(t) \\ \boldsymbol{d}(t) \end{bmatrix}$$
$$\boldsymbol{w}(t) = \Delta(\boldsymbol{v})(t),$$

# **Dissipation Inequality**

- Assume  $\Delta$  satisfies a set of static IQCs:  $\{J\}$ .
- Assume supply rate is quadratic, parameterized by X.
- Search for  $\lambda \ge 0$ , a J, and a quadratic storage function  $x^\top P x, P \succcurlyeq 0$  such that:

$$\begin{bmatrix} A^{\top}P + PA \ PB_w \ PB_d \\ B_w^{\top}P & 0 & 0 \\ B_d^{\top}P & 0 & 0 \end{bmatrix} + \lambda(\star)^{\top}J \begin{bmatrix} C_v \ D_{vw} \ D_{vd} \\ 0 & I & 0 \end{bmatrix} - (\star)^{\top}X \begin{bmatrix} 0 & 0 & I \\ C_e \ D_{ew} \ D_{ed} \end{bmatrix} \preccurlyeq 0$$

# Synthesis of Neural Network Controllers



# **Neural Network Controller Synthesis**

- Plant is interconnection of LTI system  $G_p$  and uncertainty  $\Delta_p$  .
- Design controller K such that:
  - Supply rate on (d,e) is satisfied
  - Reward is maximized



$$K^* = \arg \max_{K} \quad \mathbb{E} \left[ \int_0^T r(x(t), u(t)) dt \right]$$
  
s.t.  $K$  makes closed-loop dissipative

Based on work by Junnarkar, Yin, Gu, Arcak, Seiler

# **Example Uses**

- Robustness to disturbances with minimal control effort:
  - Supply rate:  $L_2$  gain from disturbance to plant state
  - Reward:  $-\|u\|^2$
- Use simulator to optimize controller with:
  - More realistic disturbances
  - Higher fidelity plant model

# Approach

- **1**. Convexify dissipation inequality.
- 2. Train NN controller using reinforcement learning
  - Project into certified safe set as needed.

- Convexity important for tractable optimization.
- Previous dissipation inequality is not convex in both the controller parameters  $\theta$  and the storage function P .
- Change of variables (to new variables  $\hat{\theta}$  ) based on (Scherer, Gahinet, Chilali).
- Additional assumptions:
  - $X_{ee}$  negative semidefinite
  - $J_{\Delta_p vv}$  positive semidefinite
- Restriction to positive definite P.

• By Schur complement, dissipation inequality becomes:

$$\begin{bmatrix} F \\ \begin{bmatrix} C_v^\top L_\Delta^\top & C_e^\top L_X^\top \\ D_{vw}^\top L_\Delta^\top & D_{ew}^\top L_X^\top \\ D_{vw}^\top L_\Delta^\top & D_{ed}^\top L_X^\top \end{bmatrix} \\ \leq 0 \end{bmatrix} \leq 0 \qquad F = \begin{bmatrix} A^\top P + PA \ PB_w \ PB_d \\ B_w^\top P & 0 \ 0 \end{bmatrix} \\ + (\star)^\top \begin{bmatrix} 0 \ J_{vw} \\ J_{vw}^\top & J_{ww} \end{bmatrix} \begin{bmatrix} C_v \ D_{vw} \ D_{vd} \end{bmatrix} \\ = 0 \qquad + (\star)^\top \begin{bmatrix} 0 \ J_{vw} \\ J_{vw}^\top & J_{ww} \end{bmatrix} \begin{bmatrix} C_v \ D_{vw} \ D_{vd} \end{bmatrix} \\ = 0 \qquad - (\star)^\top \begin{bmatrix} X_{dd} \ X_{de} \\ X_{de}^\top & 0 \end{bmatrix} \begin{bmatrix} 0 \ 0 \ I \\ C_e \ D_{ew} \ D_{ed} \end{bmatrix}$$

This is bilinear in controller parameters and storage function parameter.

Change of variables based on (Scherer, Gahinet, Chilali).

• Introduce a partition of P and its inverse:

$$P = \begin{bmatrix} S & U \\ U^{\top} & \star \end{bmatrix} \quad P^{-1} = \begin{bmatrix} R & V \\ V^{\top} & \star \end{bmatrix}$$
$$Y \triangleq \begin{bmatrix} R & I \\ V^{\top} & 0 \end{bmatrix}$$

• Left and right multiply by  $Y^{ op}$  and Y:

$$\begin{bmatrix} \begin{bmatrix} Y^{\top} \\ I \end{bmatrix} F \begin{bmatrix} Y \\ I \end{bmatrix} \begin{bmatrix} Y^{\top} C_v^{\top} L_{\Delta}^{\top} & Y^{\top} C_e^{\top} L_X^{\top} \\ D_{vw}^{\top} L_{\Delta}^{\top} & D_{ew}^{\top} L_X^{\top} \\ D_{vd}^{\top} L_{\Delta}^{\top} & D_{ed}^{\top} L_X^{\top} \end{bmatrix} \preceq 0$$
$$\begin{bmatrix} L_{\Delta} C_v Y & L_{\Delta} D_{vw} & L_{\Delta} D_{vd} \\ L_X C_e Y & L_X D_{ew} & L_X D_{ed} \end{bmatrix} \qquad -I$$

$$A^{\top}P + PA \longrightarrow \begin{bmatrix} A_{p}R + B_{pu}N_{A21} & A_{p} + B_{pu}N_{A22}C_{py} \\ N_{A11} & SA_{p} + N_{A12}C_{py} \end{bmatrix}$$

• Terms in blue are some of the transformed variables making up  $\hat{\theta}$ .

# Projection

Let  $\hat{\Theta}(J_{\Delta_p}, X)$  be the set of  $\hat{\theta}$  which satisfy the LMI.

$$\begin{split} \min_{\hat{\theta}} \| \hat{\theta} - \hat{\theta}' \|_F \\ \text{s.t.} \hat{\theta} \in \hat{\Theta} \left( J_{\Delta_p}, X \right) \end{split}$$

Take any controller  $\hat{\theta}$  and find a similar one which guarantees closed-loop dissipativity.

# Training

$$K^* = \arg \max_{K} \quad \mathbb{E} \left[ \int_0^T r(x(t), u(t)) dt \right]$$
  
s.t.  $K$  makes closed-loop dissipative

#### **General Idea**

Alternate between:

- Reinforcement learning step to improve controller
- Projection step to ensure dissipativity

## **Training Alg #1**

Basic training in  $\hat{\theta}$  space.

 $\hat{\theta} \leftarrow \text{random in } \Theta$  **while** not converged **do**  $\hat{\theta}' \leftarrow \text{gradient step from } \hat{\theta}$   $\hat{\theta} \leftarrow \arg\min_{\hat{\theta}} \|\hat{\theta} - \hat{\theta}'\|_F \text{ s.t. } \text{LMI}(\hat{\theta})$  **end while**  $\tilde{\theta} \leftarrow f(\hat{\theta}) \qquad \triangleright \text{Recover } \tilde{\theta}$ 

# Training Alg #2

Training in  $\theta$  space.

• In practice, works better than training in  $\widehat{ heta}$  space.

```
1: \theta \leftarrow \text{arbitrary}
 2: P, \Lambda \leftarrow I
 3: for i = 1, ... do
      \triangleright Reinforcement learning step \triangleleft
            \theta' \leftarrow \text{ReinforcementLearningStep}(\theta)
 4:
      \triangleright Dissipativity-enforcing step \triangleleft
            if \exists P', \Lambda' : \theta' is dissipative then
 5:
                  \theta, P, \Lambda \leftarrow \theta', P', \Lambda'
 6:
 7: else
                  \hat{\theta}' \leftarrow \text{CONSTRUCT}\text{THETAHAT}(\theta', P, \Lambda)
 8:
                  \hat{\theta} \leftarrow \text{THETAHATPROJECT}(\hat{\theta}', \hat{\Theta}(J_{\Delta_{n}}, X))
 9:
                  P, \Lambda \leftarrow \text{EXTRACTFROM}(\hat{\theta})
10:
                  \theta \leftarrow \arg \min_{\theta} \|\theta - \theta'\| : \theta \in \Theta(J_{\Delta_n}, X, P, \Lambda)
11:
            end if
12:
13: end for
```

## **Experiment 1: Inverted Pendulum**

Stabilize inverted pendulum with minimal control effort.

$$\begin{aligned} \dot{x}_{1}(t) &= x_{2}(t) \\ \dot{x}_{2}(t) &= -\frac{\mu}{m\ell^{2}} x_{2}(t) + \frac{g}{\ell} \sin(x_{1}(t)) + \frac{1}{m\ell^{2}} u(t) \\ y(t) &= x_{1}(t) \end{aligned}$$

- Model this with  $\Delta_p(x_1) = \sin(x_1)$  and  $J_{\Delta_p} = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}$ .
  - This is a sector-bound of [0,1] which holds over  $[-\pi,\pi]$ .



- D-RINN: Our method.
- FCNN: Fully connected NN.
- S-RINN: RINN without dissipativity constraints.
- LTI: LTI controller with dissipativity constraints, trained with our method.

# **Experiment 2: Flexible Rod on a Cart**

- No joint; rod is flexible.
- Design with simplified model that assumes rod is rigid, with uncertainty to capture the difference between the rigid and flexible models.
- Train with flexible model to minimize state norm and control effort.

Bound uncertainty with  $\|\Delta(s)\|\leqslant 0.1.$ 





# **Experiment 2: Flexible Rod on a Cart**

- $L_2$  gain constraint.
- Train to minimize control effort and state norm.



- D-RINN: Our method.
- FCNN: Fully connected NN.
- S-RINN: RINN without dissipativity constraints.
- LTI: LTI controller with dissipativity constraints, trained with our method.

# **Training: Issues**

- Training recurrent policies
  - Vanishing gradients, slow training
- Conditioning of solution to projection

# **Training: Ill-Conditioned Solutions**

 $\theta$  is the set of controller parameters.  $\hat{\theta}$  is the set of variables in which the dissipation inequality is convex.

- Large gains in heta quickly result in nans in rollouts.
- Primary cause: Projection of  $\hat{\theta}'$  into safe set results in ill-conditioned P in  $\hat{\theta}$ .

$$\begin{bmatrix} R & I \\ I & S \end{bmatrix} \succ 0$$

 $\boldsymbol{R} \text{ and } \boldsymbol{S} \text{ parameterize } \boldsymbol{P}$ 

## **Training: Fixes to Ill-Conditioned Solutions**

1. Backoff: allow some suboptimality in solution.

$$\begin{split} \delta^* &\triangleq \min_{\hat{\theta}} \| \hat{\theta} - \hat{\theta}' \| \quad \text{s.t.} \ \begin{bmatrix} R & I \\ I & S \end{bmatrix} \succ 0, \dots \\ \hat{\theta} &\triangleq \arg \max_{\hat{\theta}, \epsilon} \epsilon \quad \text{s.t.} \ \begin{bmatrix} R & I \\ I & S \end{bmatrix} \succ \epsilon I, \| \hat{\theta} - \hat{\theta}' \| \leqslant \beta \delta^*, \dots \end{split}$$

2. Select t experimentally and use:  $\begin{bmatrix} R & tI \\ tI & S \end{bmatrix} \succ 0$ 

# **Training: Implementation Notes**

- PyTorch and RLLib for learning framework
- Proximal Policy Optimization (PPO) for the RL algorithm
- CVXPY and Mosek for solving SDPs

# Differential-Algebraic Equations (DAEs)



The dynamical model now has algebraic constraints:

$$y \leftarrow \begin{vmatrix} \dot{x} = f(x, u, z) \\ y = h(x, u, z) \leftarrow u \\ 0 = g(x, u, z) \end{vmatrix}$$

If we can solve for z as a function of x, u from g(x, u, z) = 0, we get an ODE, but this elimination may be impractical (e.g., implicit NNs) or undesirable if it destroys useful structure (e.g., power networks). Assume f, g, h vanish when  $(x, u, z) = (0, 0, \overline{z})$  for some  $\overline{z}$ . The system above is dissipative with supply rate s(u, y) if there exist  $\lambda \geq 0$  and positive semidefinite  $V : \mathbb{R}^n \to \mathbb{R}$  such that

$$\nabla V(x)^{\top} f(x, u, z) \leq s(u, h(x, u, z)) + \lambda \|g(x, u, z)\|^2 \quad \forall x, u, z$$
  
Note the algebraic constraint implies:  $\frac{d}{dt} V(x(t)) \leq s(u(t), y(t))$ 

Example: Linear system 
$$\dot{x} = Ax + B_u u + B_z z$$
  
 $y = Cx + D_u u + D_z z$   
 $0 = Fx + G_u u + G_z z$ 

Take quadratic storage function  $V(x) = x^{\top} P x$ :

$$\nabla V(x)^{\top} (Ax + B_u u + B_z z) = \begin{bmatrix} x \\ u \\ z \end{bmatrix}^{\top} \begin{bmatrix} A^{\top} P + PA & PB_u & PB_z \\ B_u^{\top} P & 0 & 0 \\ B_z^{\top} P & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ u \\ z \end{bmatrix}$$

and quadratic supply rate:

$$s(u,y) = \begin{bmatrix} u \\ y \end{bmatrix}^{\top} X \begin{bmatrix} u \\ y \end{bmatrix} = \begin{bmatrix} x \\ u \\ z \end{bmatrix}^{\top} \begin{bmatrix} 0 & I & 0 \\ C & D_u & D_z \end{bmatrix}^{\top} X \begin{bmatrix} 0 & I & 0 \\ C & D_u & D_z \end{bmatrix} \begin{bmatrix} x \\ u \\ z \end{bmatrix}$$

Then dissipation inequality becomes LMI:

$$-\begin{bmatrix} A^{\top}P + PA & PB_u & PB_z \\ B_u^{\top}P & 0 & 0 \\ B_z^{\top}P & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & C^{\top} \\ I & D_u^{\top} \\ 0 & D_z^{\top} \end{bmatrix} X \begin{bmatrix} 0 & I & 0 \\ C & D_u & D_z \end{bmatrix} + \lambda \begin{bmatrix} F^{\top} \\ G_u^{\top} \\ G_z^{\top} \end{bmatrix} \begin{bmatrix} F & G_u & G_z \end{bmatrix} \succeq 0$$

**SOS formulation:** For polynomial f, g, h, s look for polynomial V s.t.  $V(x) - \epsilon x^{\top} x \in \Sigma[x]$ 

 $s(u, h(x, u, z)) + \lambda g(x, u, z)^{\top} g(x, u, z) - \nabla V(x)^{\top} f(x, u, z) \in \Sigma[x, u, z]$ 

**Special case:** Take s(u, y) = 0 and  $\epsilon > 0$  to prove stability of the origin in the absence of input.

**Example:**  $\dot{x}_1 = -x_1 + z$  $\dot{x}_2 = -x_1 - x_2$  $0 = x_1^2 + (x_2^2 + 5)z$ When we allow V be polynomial of degree 4 and let  $\epsilon = 10^{-3}$ SOSTOOLS and SeDuMi find  $\lambda = 0.59504$  and  $V(x) = 0.00017634x_1^4 + 0.0012261x_1^2x_2^2 + 0.0027498x_1x_2^3$  $+ 0.0023039x_2^4 + 0.013246x_1^3 - 0.013733x_1^2x_2 - 0.055089x_1x_2^2$  $-0.056305x_2^3 + 0.40316x_1^2 + 0.67688x_1x_2 + 0.57717x_2^2$ 

#### **Robust Stability/Performance:**

#### **Performance objective:**

disipativity with supply rate  $\sigma(d, e)$ . Stability: special case with  $\sigma(d, e) = 0$  and positive definite, not just semidefinite, storage function.

If  $\Delta$  satisfies quadratic constraints

 $v \qquad \Delta \qquad w$   $\dot{x} = f(x, w, z, d)$  v = h(x, w, z, d) 0 = g(x, w, z, d)  $e = \eta(x, w, z, d)$ 

$$\begin{bmatrix} v \\ w \end{bmatrix}^{\top} J_k \begin{bmatrix} v \\ w \end{bmatrix} \ge 0, k = 1, 2, \dots$$

< 0

look for  $\lambda \geq 0, \ au_k \geq 0$  and positive semidef. V s.t. for all x, w, z, d

 $\nabla V(x)^{\top} f(x, w, z, d) \le \sigma(d, e) + \lambda \|g(x, w, z, d))\|^2 - \sum_k \tau_k \begin{bmatrix} v \\ w \end{bmatrix}^{\top} J_k \begin{bmatrix} v \\ w \end{bmatrix}$ 

#### **Example: Power Network**

Analyze performance of a wide-area controller under line failures

Swing equations and power flow equations linearized about power flow solution:

$$\frac{d}{dt} \begin{bmatrix} \tilde{\delta} \\ \tilde{\omega} \end{bmatrix} = \overline{A} \begin{bmatrix} \tilde{\delta} \\ \tilde{\omega} \end{bmatrix} + \overline{B}_z z + \begin{bmatrix} 0 \\ u+d \end{bmatrix}$$
$$0 = \overline{F} \begin{bmatrix} \tilde{\delta} \\ \tilde{\omega} \end{bmatrix} + Gz$$

 $\tilde{\delta}, \tilde{\omega}$ : deviation from set point of angle, angular velocity vectors u, d: control and disturbance



IEEE 39-Bus network. Blue dashed lines: potential line failures

DAE model avoids inversion of poorly conditioned G and retains the network structure embedded in G.

#### **Example: Power Network**

Define reduced state  $x = Q\begin{bmatrix} \tilde{\delta}\\ \tilde{\omega} \end{bmatrix}$  to eliminate rotational symmetry. Columns of Q form orthonormal basis  $\perp \begin{bmatrix} 1\\ 0 \end{bmatrix}$ 

Model incorporating state feedback controller:

$$\dot{x} = A_{cl}x + B_{z}z + B_{d}d$$
$$0 = Fx + Gz$$
$$e = Cx$$

A group of potential line failures (whose effect on power flow sol'n is negligible) can be captured with polytopic model replacing G with:

$$G_0 + \sum_i \theta_i K_i L_i^{\top}, \ \theta_i \in [-1, 1]$$

Low-rank perturbation from failure i $K_i$ ,  $L_i$ : tall matrices

#### **Example: Power Network**

Represent model as:

 $\Delta$  satisfies the quadratic constraint:

$$\begin{bmatrix} v \\ w \end{bmatrix}^\top \begin{bmatrix} X & Y \\ Y^\top & -X \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} \ge 0$$

for any block diagonal X, Y where the blocks  $X_i, Y_i$  conform to the sizes of identity multiplying  $\theta_i$ , and  $Y_i = -Y_i^{\top}, X_i = X_i^{\top} \succeq 0$ 

Dissipation inequality for performance:  $\nabla V(x)^{\top} f(x, w, z, d) \leq \sigma(d, e) + \lambda \|g(x, w, z, d))\|^2 - \sum_k \tau_k \begin{bmatrix} v \\ w \end{bmatrix}^{\top} J_k \begin{bmatrix} v \\ w \end{bmatrix}$  $\begin{array}{c} \mathbf{3} \quad \begin{bmatrix} v \\ w \end{bmatrix}^{\top} \begin{bmatrix} X & Y \\ Y^{\top} & -X \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} x \\ w \\ z \\ d \end{bmatrix}^{\top} \begin{bmatrix} 0 & 0 \\ 0 & I \\ L^{\top} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} X & Y \\ Y^{\top} & -X \end{bmatrix} \begin{bmatrix} 0 & 0 & L & 0 \\ 0 & I & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ w \\ z \\ d \end{bmatrix}$ 

If  $\sigma(d, e)$  quadratic, e.g.,  $\sigma(d, e) = \gamma^2 ||d||^2 - ||e||^2$  for  $L_2$  gain  $\gamma$ , we can write dissipation inequality above as LMI in decision variables  $P, \lambda, X, Y$ , where X, Y constrained as in previous slide. We can also let  $\gamma$  be a decision variable and make it the objective to minimize.

#### **Example: Power Network**

Analyze performance of a wide-area controller under line failures

Procedure in previous slide applied to the IEEE 39-bus with a wide-area controller. LMI finds  $L_2$  gain 2.31 over the uncertainty set related to failure of lines 30, 41, 42, 43.

Not a conservative estimate.  $L_2$  gains computed for individual line removals:

| Line removed                   | 30    | 41    | 42    | 43    |
|--------------------------------|-------|-------|-------|-------|
| Closed-loop $H_{\infty}$ -norm | 2.215 | 2.222 | 2.219 | 2.217 |

IEEE 39-Bus network. Blue dashed lines: potential line failures

For details see Jensen et. al, arXiv:2308.08471

# **Further Reading**

- Willems, Brockett, Some new rearrangement inequalities having application in stability analysis, IEEE TAC, 1968.
- Willems, The analysis of feedback systems, M.I.T. Press, 1971.
- Scherer, Gahinet, Chilali, Multiobjective output-feedback control via LMI optimization, TAC, 1997.
- Fazlyab, Robey, Hassani, Morari, Pappas, Efficient and accurate estimation of Lipschitz constants for deep neural networks, NeurIPS, 2019.
- Fazlyab, Morari, Pappas, Safety verification and robustness analysis of neural networks via quadratic constraints and semidefinite programming, TAC, 2020.
- Pauli, Koch, Berberich, Kohler, Allgöwer, Training robust neural networks using Lipschitz bounds, IEEE CSL, 2021.
- Yin, Seiler, Arcak, Stability analysis using quadratic constraints for systems with neural network controllers, TAC, 2021.
- Yin, Seiler, Jin, Arcak, Imitation learning with stability and safety guarantees, IEEE CSL, 2021.

# **Further Reading**

- Ebihara, Waki, Magron, Mai, Peaucelle, Tarbouriech, ℓ<sub>2</sub> induced norm analysis of discrete-time LTI systems for nonnegative input signals and its application to stability analysis of recurrent neural networks," EJC 2021.
- Pauli, Gramlich, Berberich, Allgöwer, Linear systems with neural network nonlinearities: Improved stability analysis via acausal ZamesFalb multipliers, CDC, 2021.
- Pauli, Funcke, Gramlich, Msalmi, Allgöwer, Neural network training under semidefinite constraints, CDC, 2022.
- Junnarkar, Yin, Gu, Arcak, Seiler, Synthesis of stabilizing recurrent equilibrium network controllers, CDC 2022.
- Gu, Yin, El Ghaoui, Arcak, Seiler, Jin, Recurrent neural network controllers synthesis with stability guarantees for partially observed systems, AAAI, 2022.
- Revay, Wang, Manchester, Recurrent equilibrium networks: Flexible dynamic models with guaranteed stability and robustness, IEEE TAC, 2023.
- Wang, Barbara, Revay, Manchester, Learning over all stabilizing nonlinear controllers for a partially-observed linear system, IEEE CSL, 2023.

# **Further Reading**

- Richardson, Turner, Gunn, Strengthened circle and Popov criteria for the stability analysis of feedback systems with ReLU neural networks, IEEE CSL, 2023.
- Junnarkar, Arcak, Seiler. Synthesizing Neural Network Controllers with Closed-Loop Dissipativity Guarantees, arXiv.
- Vahedi Noori, Hu, Dullerud, Seiler, Stability and Performance Analysis of Discrete-Time ReLU Recurrent Neural Networks, arXiv.
- Jensen, Junnarkar, Arcak, Wu, Gumussoy. Certifying Stability and Performance of Uncertain Differential-Algebraic Systems: A Dissipativity Framework, arXiv.