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Learning Objectives

In this lesson you will learn to

• Represent a neural network as an LFT with the activation functions 
separate from the weights and biases.

• Define quadratic constraints for common activation functions.

• Use dissipation inequalities and quadratic constraints to analyze 
the stability and performance of feedback systems with neural 
network controllers.

• Design neural network controllers

• Use dissipation inequalities and quadratic constraints to analyze 
the stability and performance of differential-algebraic equations
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Outline

1. LFT Representations of Neural Networks

2. Quadratic Constraints for Activation Functions

3. Analysis of Neural Network Controllers

4. Synthesis of Neural Network Controllers

5. Differential-Algebraic Equations (DAEs)

3



LFT Representations of Neural Networks
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Input , output , layers. 

Feedforward Neural Network
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Feedforward Neural Network

• Isolate the nonlinear activation functions
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Implicit Neural Network (INN)

A typical INN formulation:

• is defined as the fixed-point of the above equation.

• are the trainable parameters.
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Reference: El Ghaoui, et al., Implicit Deep Learning, SIAM, 2021.



Implicit Neural Network

Modeling a dense feedforward NN with layers:

First define and .

Then,
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Well-Posedness of INNs

When does a fixed point exist, and when is it unique?

• Depends on structure of ; many conditions possible.

• A useful condition for our method [1]:

• Search for diagonal such that .

[1] Revay, Wang, Manchester, Recurrent Equilibrium Networks: 
Flexible Dynamic Models With Guaranteed Stability and Robustness, 
TAC, 2024.
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Quadratic Constraints for 
Activation Functions
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Example: Sector-bounded Nonlinearity 
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Sector Bounds

Local quadratic constraints on the activation function.
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Scalar Rectified Linear Unit (ReLU)

Scalar ReLU is 𝜙:ℝ → ℝ≥0 is:

𝜙 is sector and slope constrained to [0,1]. 
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Scalar Rectified Linear Unit (ReLU)

Scalar ReLU is 𝜙:ℝ → ℝ≥0 is:

𝜙 is sector and slope constrained to [0,1]. 

In addition, it satisfies (Richardson, et al.; Ebhihari, et al.; 
Drummond, et al.; Fazlyab, et al.):

• Positivity: 𝜙 𝑣 ≥ 0 ∀𝑣 ∈ ℝ.

• Positive Complement: 𝜙 𝑣 ≥ 𝑣 ∀𝑣 ∈ ℝ.

• Complementarity: 𝜙 𝑣 𝑣 − 𝜙 𝑣 = 0 ∀𝑣 ∈ ℝ.

• Positive Homogeneity: 𝜙 𝛽𝑣 = 𝛽𝜙 𝑣 ∀𝑣 ∈ ℝ and ∀𝛽 ≥ 0

The properties can be used to write QCs that are specific to ReLU
(in addition to sector and slope constraints).
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Repeated ReLU

The repeated ReLU Φ:ℝ𝑚 → ℝ𝑚maps elementwise: 𝑤𝑖 = 𝜙(𝑣𝑖) for 
𝑖 = 1,… ,𝑚 where 𝜙 is the scalar ReLU.
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Repeated ReLU

The repeated ReLU Φ:ℝ𝑚 → ℝ𝑚maps elementwise: 𝑤𝑖 = 𝜙(𝑣𝑖) for 
𝑖 = 1,… ,𝑚 where 𝜙 is the scalar ReLU.

Def: 𝑀 ∈ ℝ𝑚×𝑚 is doubly hyperdominant if the off-diagonal elements 
are non-positive and the row / column sums are non-negative. 

QC 1: If 𝑄0 ∈ ℝ𝑚×𝑚 is doubly hyperdominant then

This QC holds for any repeated function that is slope-restricted in [0,1] 
and passes through the origin [Willems, Brocket, ’68; Willems ’71].
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Repeated ReLU

The repeated ReLU Φ:ℝ𝑚 → ℝ𝑚maps elementwise: 𝑤𝑖 = 𝜙(𝑣𝑖) for 
𝑖 = 1,… ,𝑚 where 𝜙 is the scalar ReLU.

QC 2: If 𝑄1 ∈ ℝ𝑚×𝑚 is diagonal then

This follows from complementarity of scalar ReLU:
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Repeated ReLU

The repeated ReLU Φ:ℝ𝑚 → ℝ𝑚maps elementwise: 𝑤𝑖 = 𝜙(𝑣𝑖) for 
𝑖 = 1,… ,𝑚 where 𝜙 is the scalar ReLU.

QC 3: If 𝑄2, 𝑄3, 𝑄4 ∈ ℝ≥0
𝑚×𝑚 with 𝑄2 = 𝑄2

⊤ and 𝑄3 = 𝑄3
⊤ then

This follows by taking combinations of  the linear constraints implied 
by the positivity and positive complement properties:
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Repeated ReLU

The repeated ReLU Φ:ℝ𝑚 → ℝ𝑚maps elementwise: 𝑤𝑖 = 𝜙(𝑣𝑖) for 
𝑖 = 1,… ,𝑚 where 𝜙 is the scalar ReLU.

Def: 𝑀 ∈ ℝ𝑚×𝑚 is Metzler matrix if the off-diag. elements are ≥ 0. 

QC: If 𝑄2 = 𝑄2
⊤, 𝑄3 = 𝑄3

⊤ ∈ ℝ≥0
𝑚×𝑚 & ෨𝑄 ∈ ℝ𝑚×𝑚 is Metzler matrix then

This is the largest class of QCs for the known properties of scalar ReLU. 
Positive homogeneity does not increase the class of QCs (Vahedi-Noori, 
et al, arXiv, ‘24).
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Analysis of Neural Network Controllers
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ROA Problem Formulation

• Plant G is LTI & Neural Network p is a static, state-feedback.

• Neural-network has ℓ-layers:

where Wi, bi, and fi are the weights, biases, & activation functions.

Goal: Compute an estimate of the region of attraction (ROA) of 
initial conditions that converge back to the equilibrium point.
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Approach:

1. Isolate the nonlinear activation functions

2. Express local quadratic constraints on the activation function.

3. Use Lyapunov theory, local quadratic constraints, and convex 
optimization to estimate the region of attraction.

• Lyapunov condition also proves local region assumption used to 
derive quadratic constraints is valid.

Comments:  

• The framework can be extended to handle nonlinearities and 
uncertainties in the plant G.

• This extension can be used to compute disk margins for neural 
network-based controllers.
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Region of Attraction Condition

This is discrete time, but is analogous to continuous time.

• are system matrices.

• are for NN activation function IQC.

• 𝑊 terms are related to NN weights.
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Robust Region of Attraction

We can also estimate the region of attraction when the 
plant is uncertain and the controller is a neural network.
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Robust Region of Attration Condition

This is discrete time, but is analogous to continuous time.

• are system matrices.

• are for NN activation function IQC.

• is for plant uncertainty IQC.

• 𝑊 terms are related to NN weights.
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ROA Experiments: Inverted Pendulum

• Equations of Motion with angle q (rad):

• mass m=0.15kg, length l = 0.5m, friction m=0.5 Nms/rad.  

• Dynamics discretized with dt=0.02s.

• Trigonometric terms also bounded with sector constraints

• Neural network designed via reinforcement learning

• 2 Layers

• 32 neurons in each layer 

• tanh as the activation function

• All biases set to zero
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ROA Experiments: Inverted Pendulum
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ROA Experiments: Lateral Vehicle Control

• Equations of Motion with perp. distance to lane edge e
(m) and eq is the angle between the car and lane (rad):

• Parameters given the paper.

• Dynamics discretized with dt=0.02s.
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ROA Experiments: Lateral Vehicle Control

• Equations of Motion with perp. distance to lane edge e 
(m) and eq is the angle between the car and lane (rad):

• Parameters given the paper.

• Dynamics discretized with dt=0.02s.

• Saturation and unmodeled dynamics included in analysis.
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ROA Experiments: Lateral Vehicle Control

• Equations of Motion with perp. distance to lane edge e 
(m) and eq is the angle between the car and lane (rad):

• Parameters given the paper.

• Dynamics discretized with dt=0.02s.

• Saturation and unmodeled dynamics included in analysis.

• Neural network designed via reinforcement learning

• 2 Layers

• 32 neurons in each layer 

• tanh as the activation function
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ROA Experiments: Lateral Vehicle Control
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• Plant is interconnection of LTI 
system and uncertainty .

• Controller is recurrent implicit 
neural network.

Goal: Check dissipativity .

NN Controller Performance Analysis
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Based on work by Junnarkar, Yin, Gu, Arcak, Seiler 



Approach

1. Model plant and controller alike:

• Interconnections of LTI systems with uncertainties

2. Characterize NN activation functions with quadratic 
constraints

3. Characterize plant uncertainty with IQCs

4. Construct dissipation inequality.
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Plant Model

is an uncertainty, described by IQCs
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Neural Network Controller Model

INN + state:

• is defined implicitly → implicit neural network

• We use unbiased implicit neural networks

• "Recurrent Implicit Neural Network (RINN)"
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Discrete-time Models

• Analogous conditions hold for discrete-time systems.

Plant:

Controller:
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Feedback System

• Controller model of same form as plant model:

• Results in feedback system of same form:
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Dissipation Inequality

• Assume satisfies a set of static IQCs: .

• Assume supply rate is quadratic, parameterized by .

• Search for , a , and a quadratic storage 
function such that:
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Synthesis of Neural Network Controllers

39



• Plant is interconnection of LTI 
system and uncertainty .

• Design controller such that: 

• Supply rate on is satisfied

• Reward is maximized

Neural Network Controller Synthesis
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Based on work by Junnarkar, Yin, Gu, Arcak, Seiler 



Example Uses

• Robustness to disturbances with minimal control effort:

• Supply rate: gain from disturbance to plant state

• Reward:

• Use simulator to optimize controller with:

• More realistic disturbances

• Higher fidelity plant model
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Approach

1. Convexify dissipation inequality.

2. Train NN controller using reinforcement learning

• Project into certified safe set as needed.
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Convexification

• Convexity important for tractable optimization.

• Previous dissipation inequality is not convex in both the 
controller parameters and the storage function .

• Change of variables (to new variables ) based on 
(Scherer, Gahinet, Chilali).

• Additional assumptions:

• negative semidefinite

• positive semidefinite

• Restriction to positive definite . 
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Convexification

• By Schur complement, dissipation inequality becomes:

This is bilinear in controller parameters and storage 
function parameter.
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Convexification

Change of variables based on (Scherer, Gahinet, Chilali).

• Introduce a partition of and its inverse:
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Convexification

• Left and right multiply by and : 

• Terms in blue are some of the transformed variables 
making up . 
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Projection

Let be the set of which satisfy the LMI.

Take any controller and find a similar one which 
guarantees closed-loop dissipativity. 
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Training

General Idea

Alternate between:

• Reinforcement learning step to improve controller

• Projection step to ensure dissipativity
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Training Alg #1

Basic training in space.
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Training Alg #2

Training in space.

• In practice, works better than training in space.
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Experiment 1: Inverted Pendulum

• Stabilize inverted pendulum with minimal control effort.

• Model this with and .

• This is a sector-bound of [0,1] which holds over . 
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• D-RINN: Our method.

• FCNN: Fully connected NN.

• S-RINN: RINN without dissipativity
constraints.

• LTI: LTI controller with dissipativity
constraints, trained with our method.



Experiment 2: Flexible Rod on a Cart

• No joint; rod is flexible.

• Design with simplified model that 
assumes rod is rigid, with uncertainty 
to capture the difference between 
the rigid and flexible models.

• Train with flexible model to minimize 
state norm and control effort.

Bound uncertainty 
with  . 
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• gain constraint.

• Train to minimize control effort and state norm.

Experiment 2: Flexible Rod on a Cart

• D-RINN: Our method.

• FCNN: Fully connected NN.

• S-RINN: RINN without 
dissipativity constraints.

• LTI: LTI controller with 
dissipativity constraints, 
trained with our method.
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Training: Issues

• Training recurrent policies

• Vanishing gradients, slow training

• Conditioning of solution to projection
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Training: Ill-Conditioned Solutions

is the set of controller parameters.

is the set of variables in which the dissipation 
inequality is convex.

• Large gains in quickly result in nans in rollouts.

• Primary cause: Projection of into safe set results in ill-
conditioned in . 
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Training: Fixes to Ill-Conditioned Solutions

1. Backoff: allow some suboptimality in solution.

2. Select experimentally and use:
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Training: Implementation Notes

• PyTorch and RLLib for learning framework

• Proximal Policy Optimization (PPO) for the RL algorithm

• CVXPY and Mosek for solving SDPs
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Differential-Algebraic Equations (DAEs)
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Dissipativity of DAEs
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The dynamical model now has algebraic constraints:

The system above is dissipative with supply rate               if there exist
and positive semidefinite                         such that 

Assume 𝑓, 𝑔, ℎ vanish when for some    .

Note the algebraic constraint implies:

If we can solve for 𝑧 as a function of 𝑥, 𝑢 from                           , we get
an ODE, but this elimination may be impractical (e.g., implicit NNs) 
or undesirable if it destroys useful structure (e.g., power networks).



Dissipativity of DAEs
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Example: Linear system

and quadratic supply rate:

Take quadratic storage function                             :

Then dissipation inequality becomes LMI:



Dissipativity of DAEs

61

SOS formulation: For polynomial 𝑓, 𝑔, ℎ, 𝑠 look for polynomial 𝑉 s.t.

Special case: Take                       and            to prove stability of the 
origin in the absence of input.

Example:

When we allow V be polynomial of degree 4 and let                   
SOSTOOLS and SeDuMi find                         and



Dissipativity of DAEs
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Robust Stability/Performance:

Performance objective: 
disipativity with supply 
rate .
Stability: special case 
with and positive 
definite, not just semidefinite, 
storage function.

look for                           and positive semidef. 𝑉 s.t. for all

If satisfies quadratic constraints



Dissipativity of DAEs
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Example: Power Network

Analyze performance of a wide-area controller under line failures 

Swing equations and power 
flow equations linearized 
about power flow solution:

deviation from set point of 
angle, angular velocity vectors

control and disturbance
IEEE 39-Bus network. Blue dashed lines:
potential line failures 

DAE model avoids inversion of poorly conditioned 𝐺 and retains the 
network structure embedded in 𝐺. 



Dissipativity of DAEs
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Example: Power Network

Define reduced state                     to eliminate rotational symmetry. 

Columns of 𝑄 form orthonormal basis

Model incorporating state feedback controller:

A group of potential line failures (whose effect on power flow sol’n
is negligible) can be captured with polytopic model replacing 𝐺 with:

Low-rank perturbation from failure 𝑖
𝐾𝑖, 𝐿𝑖 : tall matrices



Dissipativity of DAEs
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Example: Power Network

Represent model as:

satisfies the quadratic constraint:

for any block diagonal 𝑋, 𝑌 where the blocks 𝑋𝑖 , 𝑌𝑖 conform to the 
sizes of identity multiplying 𝜃𝑖, and



Dissipativity of DAEs
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①
③

②

②
①

③

If             quadratic, e.g.,                                             for 𝐿2 gain    , we 
can write dissipation inequality above as LMI in decision variables

, where          constrained as in previous slide. We can also 
let     be a decision variable and make it the objective to minimize.

Dissipation inequality for performance:



Dissipativity of DAEs
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Example: Power Network

Analyze performance of a wide-area controller under line failures 

IEEE 39-Bus network. Blue dashed lines:
potential line failures 

Procedure in previous slide
applied to the IEEE 39-bus
with a wide-area controller.
LMI finds 𝐿2 gain 2.31 over
the uncertainty set related to 
failure of lines 30, 41, 42, 43.

Not a conservative estimate.
𝐿2 gains computed for 
individual line removals:

For details see Jensen et. al, arXiv:2308.08471

https://arxiv.org/abs/2308.08471


Further Reading

68

• Willems, Brockett, Some new rearrangement inequalities having application in 
stability analysis, IEEE TAC, 1968.

• Willems, The analysis of feedback systems, M.I.T. Press, 1971.

• Scherer, Gahinet, Chilali, Multiobjective output-feedback control via LMI 
optimization, TAC, 1997.

• Fazlyab, Robey, Hassani, Morari, Pappas, Efficient and accurate estimation of 
Lipschitz constants for deep neural networks, NeurIPS, 2019.

• Fazlyab, Morari, Pappas, Safety verification and robustness analysis of neural 
networks via quadratic constraints and semidefinite programming, TAC, 2020.

• Pauli, Koch, Berberich, Kohler, Allgöwer, Training robust neural networks using 
Lipschitz bounds,  IEEE CSL, 2021.

• Yin, Seiler, Arcak, Stability analysis using quadratic constraints for systems with 
neural network controllers, TAC, 2021.

• Yin, Seiler, Jin, Arcak, Imitation learning with stability and safety guarantees, 
IEEE CSL, 2021.



Further Reading

69

• Ebihara, Waki, Magron, Mai, Peaucelle, Tarbouriech, ℓ2 induced norm analysis 
of discrete-time LTI systems for nonnegative input signals and its application to 
stability analysis of recurrent neural networks,” EJC 2021. 

• Pauli, Gramlich, Berberich, Allgöwer, Linear systems with neural network 
nonlinearities: Improved stability analysis via acausal ZamesFalb multipliers, 
CDC, 2021.

• Pauli, Funcke, Gramlich, Msalmi, Allgöwer, Neural network training under 
semidefinite constraints, CDC, 2022. 

• Junnarkar, Yin, Gu, Arcak, Seiler, Synthesis of stabilizing recurrent equilibrium 
network controllers, CDC 2022.

• Gu, Yin, El Ghaoui, Arcak, Seiler, Jin, Recurrent neural network controllers 
synthesis with stability guarantees for partially observed systems, AAAI, 2022. 

• Revay, Wang, Manchester,  Recurrent equilibrium networks: Flexible dynamic 
models with guaranteed stability and robustness, IEEE TAC, 2023.

• Wang, Barbara, Revay, Manchester, Learning over all stabilizing nonlinear 
controllers for a partially-observed linear system, IEEE CSL, 2023.



Further Reading

70

• Richardson, Turner, Gunn, Strengthened circle and Popov criteria for the 
stability analysis of feedback systems with ReLU neural networks, IEEE CSL, 
2023.

• Junnarkar, Arcak, Seiler. Synthesizing Neural Network Controllers with Closed-
Loop Dissipativity Guarantees, arXiv.

• Vahedi Noori, Hu, Dullerud, Seiler, Stability and Performance Analysis of 
Discrete-Time ReLU Recurrent Neural Networks, arXiv.

• Jensen, Junnarkar, Arcak, Wu, Gumussoy. Certifying Stability and Performance 
of Uncertain Differential-Algebraic Systems: A Dissipativity Framework, arXiv.


