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Learning Objectives

In this lesson you will learn to

Represent a neural network as an LFT with the activation functions
separate from the weights and biases.

Define quadratic constraints for common activation functions.

Use dissipation inequalities and quadratic constraints to analyze
the stability and performance of feedback systems with neural
network controllers.

Design neural network controllers

Use dissipation inequalities and quadratic constraints to analyze
the stability and performance of differential-algebraic equations
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LFT Representations of Neural Networks




Feedforward Neural Network

Input z(k), output u(k), ¢ layers.

u(k)




Feedforward Neural Network

e |solate the nonlinear activation functions
x(k)

Q50|  ulk)
— XSO0 >
00500
z(k) ——> —> u(k) 0|0 0 WL | pttt ]
— N WL 0 0 0 | b
2 2
we (k) vg(k) Ni=| 0 W (_’ 0 b
6 ' =
0 | 0 we 0 bt |




Implicit Neural Network (INN)

A typical INN formulation:
y(u) = Cx + Du
r = ¢(Ax + Bu)

* I is defined as the fixed-point of the above equation.
* (A, B,C,D) are the trainable parameters.

Reference: El Ghaoui, et al., Implicit Deep Learning, SIAM, 2021.



Implicit Neural Network

Modeling a dense feedforward NN with L layers:
y=Wrzy +by, z.1=¢, (W, +b), z75=u

First define £ = (o1, ..., T ) and¢p = (605> Pr—1)

Then, .
§u) = [0 . 0 Wylat [0 by] [}
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Well-Posedness of INNs

r = ¢(Ax + Bu)

When does a fixed point exist, and when is it unique?
e Depends on structure of A; many conditions possible.

* A useful condition for our method [1]:
Search for diagonal A > 0 suchthat AA+ ATA —2A < 0.

[1] Revay, Wang, Manchester, Recurrent Equilibrium Networks:
Flexible Dynamic Models With Guaranteed Stability and Robustness,
TAC, 2024.



Quadratic Constraints for
Activation Functions




Example: Sector-bounded Nonlinearity

— A — (w(t) — av(t)) - (Bu(t) —w(t)) =0
Suppose A is a nonlinearity, I
w = f(v), whose graph lies T
‘N - v(t) —2ab a+ B |v(t)
the sector |a, (]. [w(t)] [a 5 o ] [w(t)] > ()
N —

>V A satisfies the static QC
- defined by J.




Sector Bounds

Local quadratic constraints on the activation function.
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Scalar Rectified Linear Unit (ReLU)

Scalar ReLU is ¢: R — R, is: w

0 ifvo<O
gb(v)—{ v ifo>0

¢ is sector and slope constrained to [0,1].




Scalar Rectified Linear Unit (ReLU)

Scalar ReLU is ¢: R — R, is: w

0 ifvo<O
gb(v)—{ v ifo>0

¢ is sector and slope constrained to [0,1].

In addition, it satisfies (Richardson, et al.; Ebhihari, et al.;
Drummond, et al.; Fazlyab, et al.):

* Positivity: p(v) = 0 Vv € R.

* Positive Complement: ¢p(v) = v Vv € R,

* Complementarity: ¢ (v) (v — qb(v)) =0 VveR

* Positive Homogeneity: p(fv) = fp(v) Vv € Rand VS = 0

The properties can be used to write QCs that are specific to RelLU
(in addition to sector and slope constraints).



Repeated RelLU

The repeated ReLU ®@: R™ — R™maps elementwise: w; = ¢(v;) for
i =1,..,mwhere ¢ is the scalar RelLU.

¢
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Repeated RelLU

The repeated ReLU ®@: R™ — R™maps elementwise: w; = ¢(v;) for
i =1,..,mwhere ¢ is the scalar RelLU. b

¢
V—> .. }—w
¢

Def: M € R™*™ js doubly hyperdominant if the off-diagonal elements
are non-positive and the row / column sums are non-negative.

QC1:If Q, € R™ ™ js doubly hyperdominant then
T
vl [0 Qo v m _
{w] [Qo —(Q0+QJ)} [w] >0 Vv € R and w = ®(v)

This QC holds for any repeated function that is slope-restricted in [0,1]
and passes through the origin [Willems, Brocket, '68; Willems '71].




Repeated RelLU

The repeated ReLU ®@: R™ — R™maps elementwise: w; = ¢(v;) for
i =1,..,mwhere ¢ is the scalar RelLU. b

¢
V—> . |}—w

QC 2: If Q; € R™ ™ js diagonal then

(V) i 0 Q (% m
[w] [Q1 —2&21] [w] =0 Vv € R™ and w = ®(v)

This follows from complementarity of scalar RelLU:

B’] T {51 —gé)l] [ﬂ = i(@l)kk’wk(’vk —wi) =0

k=1



Repeated RelLU

The repeated ReLU ®@: R™ — R™maps elementwise: w; = ¢(v;) for
i =1,..,mwhere ¢ is the scalar RelLU. b

¢
V—> . |}—w

¢

QC 3: If Qz, Q3, Q4 (S me with Qz — Qz and Q3 Q;— then

HT [ Qs —(Q2 +Q7)
w —(Q2+Q4) Q2+ Q3+Qs+Q,

This follows by taking combinations of the linear constraints implied
by the positivity and positive complement properties:

(Q2)kj (wi — vi)(w; —vj) >0,

(Q3)kj wrw; >0,

(Qa)kj wr(wj —v;) =0

] [Z] >0 Vv € R™ and w = ®(v)



Repeated RelLU

The repeated ReLU ®@: R™ — R™maps elementwise: w; = ¢(v;) for
i =1,..,mwhere ¢ is the scalar RelLU. b

¢
V—> . |}—w

¢

Def: M € R™*™ js Metzler matrix if the off-diag. elements are > 0.

QC:If Q, = Q7,05 = Q1 € RIY™ & Q € R™ ™ js Metzler matrix then
—l_ ~
v Q? _QT _ QQ v m .
LU] [—Q—Qz Qz—i—Qg—l—QN—i—@T} LU]ZOV*UGR and w = ®(v)

This is the largest class of QCs for the known properties of scalar ReLU.
Positive homogeneity does not increase the class of QCs (Vahedi-Noori,
et al, arXiv, 24).



Analysis of Neural Network Controllers




ROA Problem Formulation

 Plant Gis LTI & Neural Network  is a static, state-feedback.
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* Neural-network has €-layers:

w’ (k) = x(k),
w'(k)=¢" ( W' Hk)+b" ), i=1,....,¢,
u(k) = W5t (k) + o1,

where W', b', and ¢ are the weights, biases, & activation functions.

Goal: Compute an estimate of the region of attraction (ROA) of
initial conditions that converge back to the equilibrium point.



Approach:

1. Isolate the nonlinear activation functions

2. Express local quadratic constraints on the activation function.

3. Use Lyapunov theory, local quadratic constraints, and convex
optimization to estimate the region of attraction.

Lyapunov condition also proves local region assumption used to
derive quadratic constraints is valid.

Comments:

e The framework can be extended to handle nonlinearities and
uncertainties in the plant G.

* This extension can be used to compute disk margins for neural

network-based controllers.



Region of Attraction Condition

This is discrete time, but is analogous to continuous time.

RT [A&PAc =P ALPBg)
V| BLPAg  BLPBg|

+R,U, J,(\) W4Ry < 0,

Fl — ul )2 H‘r-l -
|:( EI.i,,.-"Il—F!l) _F;::| EU 1:]--."' 5 15

* (Ag,Bg,Cq,Dg) are system matrices.
e (¥,,J,(N)are for NN activation function 1QC.
W terms are related to NN weights.




Robust Region of Attraction

We can also estimate the region of attraction when the
plant is uncertain and the controller is a neural network.
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Robust Region of Attration Condition

This is discrete time, but is analogous to continuous time.

ATPA—P A'"PB
B'PA B'PB

T

5 Rv + R, ¥, J,(A) ¥R,

]
+R}|c D| Ja|c D|Rv<0

T T

20, 'E.Il.....,ﬂl
WIT P * *

('/47 B, C, D) are system matrices.
(W4, J4(A)) are for NN activation function 1QC.
J A is for plant uncertainty I1QC.

W terms are related to NN weights.



ROA Experiments: Inverted Pendulum

* Equations of Motion with angle 0 (rad):

mglsin(6(t)) — pd(t) + u(t)

A(t) =

mil

mass m=0.15kg, length | = 0.5m, friction u=0.5 Nms/rad.
Dynamics discretized with dt=0.02s.
Trigonometric terms also bounded with sector constraints

* Neural network designed via reinforcement learning
2 Layers
32 neurons in each layer
tanh as the activation function
All biases set to zero



ROA Experiments: Inverted Pendulum




ROA Experiments: Lateral Vehicle Control

e Equations of Motion with perp. distance to lane edge e
(m) and e, is the angle between the car and lane (rad):

- 0 1 0 0 o]
. Caf+car chf_i_ccxr U*Co:f_bccxr o
€ — 0 mU o m mU €

éol =10 0 0 1 e
. o _ 2 2 .
_69_ 0 (ICQ§ ;Car . aco:fI bccx'r a Co:?"}_UE? Co:'r _69_

~ 0 0
- Caf aco:f_bcar _ UQ
+ ()TTL U _|_ m O C (35)
_ ﬂcaf QQCaf+b20aT
I, - i I. i

Parameters given the paper.

Dynamics discretized with dt=0.02s.




ROA Experiments: Lateral Vehicle Control

* Equations of Motion with perp. distance to lane edge e
(m) and e, is the angle between the car and lane (rad):
Parameters given the paper.
Dynamics discretized with dt=0.02s.
Saturation and unmodeled dynamics included in analysis.
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ROA Experiments: Lateral Vehicle Control

* Equations of Motion with perp. distance to lane edge e
(m) and e, is the angle between the car and lane (rad):
Parameters given the paper.
Dynamics discretized with dt=0.02s.
Saturation and unmodeled dynamics included in analysis.

* Neural network designed via reinforcement learning
2 Layers
32 neurons in each layer

tanh as the activation function




ROA Experiments: Lateral Vehicle Control




NN Controller Performance Analysis

 Plantis interconnection of LTI

_________________

. Plan
system G, and uncertainty A | t
- ler K i mplicit [, L20, ]
Controller ££ is recurrent implicit w, o, | !
neural network. e -
: > P !
W y
Kk

Goal: Check dissipativity (d, e).

Based on work by Junnarkar, Yin, Gu, Arcak, Seiler



Approach

1. Model plant and controller alike:

Interconnections of LTl systems with uncertainties

¢ «

y—: Gk > U

2. Characterize NN activation functions with quadratic
constraints

3. Characterize plant uncertainty with 1QCs

Construct dissipation inequality.




Plant Model

Tp(1) Ap Bpw Bpa Bpu Tp(l)
vp(t) | | Cpv Dpvw Dpvd Dpou| |wp(t)
e(t) - Cpe Dpew Dped Dpeu d(t)

_y(t) ] Cpy Dpyw Dpya 0 | | u(?) |

Ap is an uncertainty, described by IQCs




Neural Network Controller Model

A

INN + state: ¢

y—: Gk S— T

mk(t) Ak: Bkw Bk,y $k<t>
’U]c(t) — Ck-v Dktfvw Dszuy wk(t)
I ’U,(t) _Cku Do Dkuy_ L y(t) il

wi(t) = d(vk(t)).

« wg(t) is defined implicitly - implicit neural network

We use unbiased implicit neural networks

e "Recurrent Implicit Neural Network (RINN)"



Discrete-time Models

* Analogous conditions hold for discrete-time systemes.
Plant:

-ZBp[t + 1]- i Ap Bpw de Bpu - -mp[t]-
'Up[t] _ va Dp'vw Dp'ud mez. wp[t]
e[t] Ope D pew Dped D peu d|t]
y|t] | _pr Dp'yw D pyd 0 1L w|t] |
w,[t] = A (v, )[t]
Controller: P (V)
@t +1] [ A Bro Bry | [@l]]
Vi [t] = Ckm Dkfuw Dkvy wk[t]
U[t] Ck:u Dkuw Dk:'u,y_ | y[t] i




Feedback System

* Controller model of same form as plant model:

p Bpw Bpd Bpu Lp (1)

@ (t) Ay Brw By xr(t) p(t) A
|:’vk,(t) = | Cry Dryw Dkvy} wi(t) vp(t) _ Cpv Dpvw Dpvd Dpou | | wp(t)
e(t) Cpe Dpew Dped Dpen d(t)
u(t) Cisi D Disa| | 9(E) o0 Cov Doy Dopa 0 (e
el =4l wp(D) = By )0, o

e Results in feedback system of same form:

&(t)| | A B, Byl |x@t)
v(t)| = |Cy Dyw Dypa| |w(t)
e(t)| |Ce Dew Dea] |d(t)_
w(t) = A(v)(?)




Dissipation Inequality

« Assume A satisfies a set of static IQCs: {J}
* Assume supply rate is quadratic, parameterized by X.

e Searchfor A >0,a J, and a quadratic storage
function ' Pz, P = 0 such that:

ATP+ PA PB,, PB,]

BIP
Bl P

0
0

0
0




Synthesis of Neural Network Controllers




Neural Network Controller Synthesis

 Plantis interconnection of LTI

_________________

system G, and uncertainty A | Flant
AW
* Design controller K such that: P G, _H
Supply rate on (d, e) is satisfied PR @--J
Reward is maximized K

T
K*:argm}?}{ E /0 r(x(t), u(t))dt

s.t. K makes closed-loop dissipative

Based on work by Junnarkar, Yin, Gu, Arcak, Seiler



Example Uses

e Robustness to disturbances with minimal control effort:

Supply rate: L2 gain from disturbance to plant state
Reward: —|lu|?

* Use simulator to optimize controller with:
More realistic disturbances

Higher fidelity plant model




Approach

1. Convexify dissipation inequality.

2. Train NN controller using reinforcement learning

Project into certified safe set as needed.




Convexification

e Convexity important for tractable optimization.

* Previous dissipation inequality is not convex in both the
controller parameters € and the storage function P.

* Change of variables (to new variables § ) based on
(Scherer, Gahinet, Chilali).

* Additional assumptions:
Xee negative semidefinite
JAP’U’U positive semidefinite

e Restriction to positive definite P.




Convexification

* By Schur complement, dissipation inequality becomes:

ATP+ PA PB, PB,]
_ [CUTLX CETL)T{]- F: B,I)P 0 0

T 7T AT 7T
F D'”TwL$ D?UL%, <0 ng 0 0
D, LA DogLx -

LAC‘U LA-D'U'w LADUd _ [ 1 r e
iye isp s ] I _ +(%)T 0 Jw|[C, D,, D,y

‘]Jw wa _O I 0 ]

[ Xg0 Xage|TO 0 1]
Xc—il—e 0 _Ce D Ded_

This is bilinear in controller parameters and storage
function parameter.



Convexification

Change of variables based on (Scherer, Gahinet, Chilali).
* |ntroduce a partition of P and its inverse:

S U . |rRV
P = P —
_UT * _VT *
Yé_R I




Convexification

» Left and right multiply by Y " andY :

Tt T T szl it i 11
y ' Y V'O, Ly ¥ O, Ly
D,,LA D],Lx
Bop 0 T o1
I I DvdLA DedLX jO

[LACUY LA Doy LADvd] .
| L By LDy ExDeog

ApR -+ BpuNA21 Ap + BpuNA22pr
Nai1 SAp + Na12Cpy

A'P 1+ PA —>

e Terms in blue are some of the transformed variables
making up 4.



Projection

Let ©(Ja_, X) be the set of § which satisfy the LMI.

min |0 — 6’|
7,

5.t.0 € (:)(JA , )

Take any controller 6 and find a similar one which
guarantees closed-loop dissipativity.




Training

T
K*:argmf?x E /0 r(z(t),u(t))dt

s.t. K makes closed-loop dissipative

General Idea
Alternate between:

 Reinforcement learning step to improve controller

* Projection step to ensure dissipativity




Training Alg #1

Basic training in 0 space.

0 « random in ©
while not converged do

6” < gradient step from 0

0 « arg miny ||9 — 9fHF s.t. LNH(@)
end while

—~

0« f(0) > Recover 0




Training Alg #2

Training in @ space.
* |n practice, works better than training in éspace.

1: 0 < arbitrary

PA+1T

3: fori=1,... do
> Reinforcement learning step <

4: 0’ < REINFORCEMENTLEARNINGSTEP(f)
> Dissipativity-enforcing step <

Y

5: if 3P’, A’ : 0 is dissipative then

6: 0,P, A< 0, P N

7 else

8: ¢/ < CONSTRUCTTHETAHAT(#', P, A)

9: f < THETAHATPROJECT(H,O( J, , X))
10: P, A < EXTRACTFROM(6)
11: 0 < argming [0 —¢'|| : 0 € O( Ja , X, P, A)
12: end if
13: end for



Experiment 1: Inverted Pendulum

Stabilize inverted pendulum with minimal control effort.

a:l(t) — CBz(t)
ba(t) = —Lsa(t) + L sinaa (1)) + ﬁu(t)
y(t) = z1(1)

Model this with A, (21) = sin(z1) and /s, = [0 %].

This is a sector-bound of [0,1] which holds over |-, 7|.

Performance on Inverted Pendulum

200

 D-RINN: Our method.
* FCNN: Fully connected NN.

* S-RINN: RINN without dissipativity
constraints.

e LTI: LTI controller with dissipativity
constraints, trained with our method.




Experiment 2: Flexible Rod on a Cart

* No joint; rod is flexible. . r o, h

N 7N\ /|

e Design with simplified model that
assumes rod is rigid, with uncertainty
to capture the difference between
the rigid and flexible models.

 Train with flexible model to minimize my,
state norm and control effort.

Bound uncertainty
with |A(s)| < 0.1.

Magnitude (dB)
N ) N
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T T T T
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y E
/
/
/
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a
i
9=z
/ ERR A E
/| =
5=
= S =2

Frequency (rad/s)




Experiment 2: Flexible Rod on a Cart

L, gain constraint.

 Train to minimize control effort and state norm.

Performance on Flexible Rod on a Cart
4000

o0 — Fo » D-RINN: Our method.
5 T | | e FCNN: Fully connected NN.
| N M,W,M‘M . * S-RINN: RINN without
L% W‘"ﬂ 44l dissipativity constraints.
i e LTI: LTI controller with
o . .. . dissipativity constraints,

trained with our method.




Training: Issues

* Training recurrent policies

Vanishing gradients, slow training

* Conditioning of solution to projection




Training: llI-Conditioned Solutions

0 is the set of controller parameters.

0 is the set of variables in which the dissipation
inequality is convex.

* Large gains in 6 quickly result in nans in rollouts.

* Primary cause: Projection of 9 into safe set results in ill-
conditioned P in 4.

BT
I S.

R and S parameterize P

> 0




Training: Fixes to Ill-Conditioned Solutions

1. Backoff: allow some suboptimality in solution.

-~ R I
5 £ ming|§— 0] st |7 S] 0, ...

02 argmax; ¢ st | ;] = el,|6— 0| < B, ...

2. Select T experimentally and use:

[R t1

¢ S]>O




Training: Implementation Notes

* PyTorch and RLLib for learning framework

* Proximal Policy Optimization (PPO) for the RL algorithm
* CVXPY and Mosek for solving SDPs




Differential-Algebraic Equations (DAES)




Dissipativity of DAEs

The dynamical model now has algebraic constraints:

j::f(mauaz)

Y <« y=h(z,u,z) < u

0=g(x,u,z)

If we can solve for z as a function of x, u from g(z, u, z) = 0, we get
an ODE, but this elimination may be impractical (e.g., implicit NNs)
or undesirable if it destroys useful structure (e.g., power networks).

Assume f, g, h vanish when (z, u, 2) = (0,0, Z) for some Z.

The system above is dissipative with supply rate s(u, y) if there exist
A > 0 and positive semidefinite V : R"” — R such that

VV(z)' f(z,u,2) < s(u, h(z,u,2)) + Mgz, u, 2)[|* Ve, u,2
Note the algebraic constraint implies: %V(m(t)) < s(u(t),y(t))



Dissipativity of DAEs

Example: Linear system z = Az + B,u+ B,z
y=Czx+Dyu+ D,z
O=Fzr+Guu+ G,z

Take quadratic storage function V(z) = 2 ' Pz:
- o T

| [A"P+PA PB, PB,]| [z
VV(z)' (Ax + Byu+ B,z) = |u B! P 0 0 U
1z | BZTP 0 0 | |2z
and quadratic supply rate:

- =T - -

T x T x

U U 0 I 0 0 I 0

wo=[ xGl= 1 e o o) *[o o nl|:

Then dissipation inequaliiy-becomes LMI:

A'P+PA PB, PB, 0o CT o 7 0 FT
- | B.P 0 0 |+ (I D, X[ ]+)\ G, | [F G. G.]=0
B! P 0 0 0 D] ¢ Du D G




Dissipativity of DAEs

SOS formulation: For polynomial f, g, h, s look for polynomial V s.t.
V(z) —ex'z € X[x]
s(u, h(z,u, 2)) + Ag(z,u, 2) ' g(z,u,2) — VV(z)' f(z,u,z) € L[z, u, 2]
Special case: Take s(u,y) = 0 and € > 0 to prove stability of the
origin in the absence of input.
Example: 1 =—-x1+ 2
i‘g = —I1 — T2
0=z} + (25 +5)z
When we allow V be polynomial of degree 4 and let e = 1073
SOSTOOLS and SeDuMi find A = 0.59504 and

V(z) = 0.00017634x7 + 0.00122612222 + 0.0027498z =
+0.002303925 + 0.013246z° — 0.013733z3z2 — 0.055089z; 2

— 0.05630523 + 0.4031623 + 0.6768821 22 + 0.57717x2



Dissipativity of DAEs

Robust Stability/Performance:

vI— A w

Performance objective:
disipativity with supply _

rate o(d,e). t=fl@wz d).b
Stability: special case v = h(z,w, z,d)
with o(d,e) = 0 and positive ¢ < |0=g(z,w,z,d)[— d

definite, not just semidefinite, e =n(z,w,z,d)
storage function. 1T T
If A satisfies quadratic constraints lw] Ji [w] >0,k=1,2,...

look for A > 0, 7, > 0 and positive semidef. V s.t. for all z,w, z,d

VV(x)' f(z,w,z,d) < o(d,e) + Mgz, w, z,d))|I* = 3, & [ ] TJk m

U
w




Dissipativity of DAEs

Example: Power Network
Analyze performance of a wide-area controller under line failures

Swing equations and power T
flow equations linearized ¥ - = - l
about power flow solution: o T —
d [8] _ 4[] .5
— || =A|_|+B,z+ (G1) - | —
dt |w (W | “ u+d y Ll 17
=[] |
O0=F|.|+G=z T
@) 11 l Il

d,w : deviation from set point of @l 1T & @
angle' angUIar VeIOCity vectors IEEE 39-Bus netwc‘)\F‘k. Blue dashed lines:
u, d : control and disturbance potential line failures

DAE model avoids inversion of poorly conditioned ¢ and retains the
network structure embedded in G.



Dissipativity of DAEs

Example: Power Network

~

Define reduced state z = @ E’] to eliminate rotational symmetry.

: 1
Columns of Q form orthonormal basis L [0]

Model incorporating state feedback controller:
r = Aqx + B,z + Bgd
0=Fzx+ Gz
e=Cx

A group of potential line failures (whose effect on power flow sol’n
is negligible) can be captured with polytopic model replacing G with:

Go+>.,0:K;L}, 6; € [-1,1]
\_Y_)

Low-rank perturbation from failure i
K;, L; : tall matrices



Dissipativity of DAEs

Example: Power Network

Represent model as: A
0.1 }
R 01
v > | w
t=A,x+ B,z + Bad
0=Fz+ Gyz <
_|_[K1’K2,...]w
e<___fv=[L1,L2,---]Tz —d
e=Cz

A satisfies the quadratic constraint:

MR

for any block diagonal X, Y where the blocks X;, Y; conform to the
sizes of identity multiplying 8;, andY; = -Y,', X; = X.' >0



Dissipativity of DAEs

Dissipation inequality for performance:

.
VV(2) " f(z,w,2,d) < o(d,e) + Mg(@,w, 2, d)|* = Ly 7 [:;] & [LJ,]

® @ !
®
21 ' TATP+PA 0 PB, PB;| [z 2] [FTT (2]
W 0 0 0 0 w W KT w
@ |z BI[P 0 0 0 ||z DI, eT | [F K Go 0]\
d| | B,P 0 0 0 d d| [0 d
N 2] T 0 O] [
@ v X Y vl |w 0o I X Y 0O 0 L 0| lw
wl YT —-X||lw| |z LT ol |Yy" —=X||o I 0 0| |z
d| [0 o d
If o(d, €) quadratic, e.g., o(d,e) = v?||d||* — ||e|]|* for L, gain v, we

can write dissipation inequality above as LMI in decision variables
P, )\, X,Y,where X,Y constrained as in previous slide. We can also
let 7 be a decision variable and make it the objective to minimize.



Dissipativity of DAEs

Example: Power Network
Analyze performance of a wide-area controller under line failures
Procedure in previous slide @

applied to the IEEE 39-bus e T -
with a wide-area controller. |
LMI finds L, gain 2.31 over

the uncertainty set related to

failure of lines 30, 41, 42, 43.

Not a conservative estimate.
L, gains computed for Jr L

[\ o

N
—t{ @)

.

individual line removals: @l L @) (e

(Ga)
Line removed | 30 | 41 | 42 | 43 &
Closed-loop
H_ ., -norm

-/

IEEE 39-Bus network. Blue dashed lines:

‘ 2215 ‘ 2.222 ‘ 2.219 ‘ 2.217 potential line failures

For details see Jensen et. al, arXiv:2308.08471



https://arxiv.org/abs/2308.08471
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