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Learning Objectives

In this lesson you will learn to:

• Apply dissipation inequality and IQC techniques to analyze the 
stability and convergence rates of optimization algorithms

• Identify Nash equilibria in a class of games, called population 
games

• Apply dissipation and IQC techniques to analyze convergence to 
Nash equilibria when agents continually revise their strategies
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Outline

• Part I: Optimization
• Review of first-order methods for convex optimization

• Feedback perspective for optimization algorithms

• 𝜌-hard IQCs

• Convergence rate bounds using dissipation inequalities and IQCs

• Example analysis of the heavy-ball algorithm

• Extensions to stochastic gradient algorithms.

• Part 2: Population Games
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Optimization

Goal: Minimize 𝑓:ℝ𝑛 → ℝ:
min
𝑥∈ℝ𝑛

𝑓(𝑥)

Let 𝑆(𝑚, 𝐿) with 0 < 𝑚 < 𝐿 < ∞ denote functions 𝑓 such that:

• 𝑓 is continuously differentiable so the gradient ∇ 𝑓(𝑥) exists 
for all 𝑥 ∈ ℝ𝑛.

• 𝑓 is 𝑚-strongly convex with 𝐿-Lipschitz gradients:

See the following for details:
• Boyd, Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

• Nesterov, Introductory lectures on convex optimization: A basic course. 
Springer, 2013.

• Lessard, Recht, Packard, “Analysis and design of optimization algorithms via 
integral quadratic constraints,” SIAM Journal on Optimization, 2016.
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Optimization

Goal: Minimize 𝑓:ℝ𝑛 → ℝ:
min
𝑥∈ℝ𝑛

𝑓(𝑥)

If 𝑓 ∈ 𝑆(𝑚, 𝐿) then there is a unique minimizer 𝑥∗ ∈ ℝ𝑛.

We’ll consider first-order methods that seek to iterate toward the 
minimizer from an initial condition 𝑥0 ∈ ℝ𝑛, e.g.

• Gradient descent: 

• Heavy ball:

• Nesterov’s method:
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Optimization

Goal: Minimize 𝑓:ℝ𝑛 → ℝ:
min
𝑥∈ℝ𝑛

𝑓(𝑥)

If 𝑓 ∈ 𝑆(𝑚, 𝐿) then there is a unique minimizer 𝑥∗ ∈ ℝ𝑛.

Definition: Given a function 𝑓 ∈ 𝑆(𝑚, 𝐿), the iterates converge to 
𝑥∗ with rate 𝜌 ∈ (0,1) if there exists a constant 𝑐 > 0 such that

||𝑥𝑘 − 𝑥∗|| ≤ 𝑐 ||𝑥0 − 𝑥∗|| 𝜌
𝑘 ∀𝑥0 ∈ ℝ𝑛

Questions: Do the iterates converge for all functions 𝑓 ∈ 𝑆(𝑚, 𝐿)? 
If yes, then what is the worst-case convergence rate:

sup
𝑓∈𝑆(𝑚,𝐿)

𝜌(𝑓)

where 𝜌(𝑓) denotes the converge rate for a specific 𝑓 ∈ 𝑆 𝑚, 𝐿 ?
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Optimization

Goal: Minimize 𝑓:ℝ𝑛 → ℝ:
min
𝑥∈ℝ𝑛

𝑓(𝑥)

If 𝑓 ∈ 𝑆(𝑚, 𝐿) then there is a unique minimizer 𝑥∗ ∈ ℝ𝑛.

Definition: Given a function 𝑓 ∈ 𝑆(𝑚, 𝐿), the iterates converge to 
𝑥∗ with rate 𝜌 ∈ (0,1) if there exists a constant 𝑐 > 0 such that

||𝑥𝑘 − 𝑥∗|| ≤ 𝑐 ||𝑥0 − 𝑥∗|| 𝜌
𝑘 ∀𝑥0 ∈ ℝ𝑛

Questions: Do the iterates converge for all functions 𝑓 ∈ 𝑆(𝑚, 𝐿)? 
If yes, then what is the worst-case convergence rate:

sup
𝑓∈𝑆(𝑚,𝐿)

𝜌(𝑓)

where 𝜌(𝑓) denotes the converge rate for a specific 𝑓 ∈ 𝑆 𝑚, 𝐿 ?

To simplify notation, we’ll assume 𝑥∗ = 0 going forward. This 
assumption is satisfied using an (unknown) coordinate translation.
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Feedback Perspective [1]

Separate the gradient computation from the algorithm update:

Example: Gradient Descent

8
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[1] Lessard, Recht, Packard, Analysis and Design of Optimization Algorithms via IQCs, SIAM, 2015



Feedback Perspective [1]

Separate the gradient computation from the algorithm update:

Example: Heavy-ball
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[1] Lessard, Recht, Packard, Analysis and Design of Optimization Algorithms via IQCs, SIAM, 2015



Feedback Perspective for Optimization

Wake-up Problem
Nesterov’s method is:

Write this algorithm with the gradient computation separated from 
the algorithm update:
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𝜌-Hard IQCs

We can adapt IQCs to analyze convergence rates as in [1]. We’ll 
focus on functions 𝑓:ℝ𝑛 → ℝ with in 𝑓 ∈ 𝑆(𝑚, 𝐿).

If 𝑦 ∈ ℓ2 then define 𝑢 = ∇𝑓(𝑦) by the sequence 𝑢𝑘 = ∇𝑓(𝑦𝑘). 

Definition: The gradient of 𝑓 ∈ 𝑆(𝑚, 𝐿) satisfies the 𝜌-Hard IQC 

defined by a stable filter Ψ and a matrix 𝐽 = 𝐽⊤ ∈ ℝ 2𝑛 ×(2𝑛) if 
every 𝑦 ∈ ℓ2 and 𝑢 = ∇𝑓(𝑦) satisfies:
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[1] Lessard, Recht, Packard, Analysis and Design of Optimization Algorithms via IQCs, SIAM, 2015



Sector-bound on Gradient 
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Dissipation/IQC Condition

Suppose there is a 𝜆 ≥ 0 and a storage function 𝑉(𝜂) = 𝜂⊤ 𝑃 𝜂 with 
𝑃 > 0 such that the dissipation inequality (DI) holds along trajectories:

Then 𝜂𝑘 → 0 with rate ≤ 𝜌 for all 𝑓 ∈ 𝑆(𝑚, 𝐿). 
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Dissipation/IQC Condition

Suppose there is a 𝜆 ≥ 0 and a storage function 𝑉(𝜂) = 𝜂⊤ 𝑃 𝜂 with 
𝑃 > 0 such that the dissipation inequality (DI) holds along trajectories:

Then 𝜂𝑘 → 0 with rate ≤ 𝜌 for all 𝑓 ∈ 𝑆(𝑚, 𝐿). 

Proof Sketch:

14



Dissipation/IQC Condition

Suppose there is a 𝜆 ≥ 0 and a storage function 𝑉(𝜂) = 𝜂⊤ 𝑃 𝜂 with 
𝑃 > 0 such that the dissipation inequality (DI) holds along trajectories:

Then 𝜂𝑘 → 0 with rate ≤ 𝜌 for all 𝑓 ∈ 𝑆(𝑚, 𝐿). 

Proof Sketch:
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Dissipation/IQC Condition

Suppose there is a 𝜆 ≥ 0 and a storage function 𝑉(𝜂) = 𝜂⊤ 𝑃 𝜂 with 
𝑃 > 0 such that the dissipation inequality (DI) holds along trajectories:

Then 𝜂𝑘 → 0 with rate ≤ 𝜌 for all 𝑓 ∈ 𝑆(𝑚, 𝐿). 

Proof Sketch:
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Dissipation/IQC Condition

Suppose there is a 𝜆 ≥ 0 and a storage function 𝑉(𝜂) = 𝜂⊤ 𝑃 𝜂 with 
𝑃 > 0 such that the dissipation inequality (DI) holds along trajectories:

Then 𝜂𝑘 → 0 with rate ≤ 𝜌 for all 𝑓 ∈ 𝑆(𝑚, 𝐿). 

Proof Sketch:

Finally, use 𝜆𝑚𝑖𝑛 𝑃 |𝜂||2 ≤ 𝜂⊤𝑃𝜂 ≤ 𝜆𝑚𝑎𝑥 𝑃 |𝜂||2 to show:
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Dissipation/IQC Condition

Wake-up Problem
The Disspation/IQC condition with the sector bound is:

Write the LMI corresponding to this condition. How would you find 
the best (smallest) convergence rate bound using this condition?

18
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Analysis of Heavy-ball Algorithm

The Heavy-ball algorithm is:

The Heavy-ball parameters (𝛼, 𝛽) can be tuned to achieve the 
optimal rate on quadratic functions in 𝑆(𝑚, 𝐿):

where 𝜅 ≔ 𝐿

𝑚
is the condition ratio.  These parameters give the 

following rate on quadratic functions in 𝑆(𝑚, 𝐿):

This is Nesterov’s lower bound for the general class 𝑆(𝑚, 𝐿).
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Analysis of Heavy-ball Algorithm

Use the dissipation/IQC condition to find upper bound on the worst-
case rate for Heavy-ball with (𝛼0, 𝛽0) over all functions in 𝑆(𝑚, 𝐿). 

20

a) We can prove Heavy-
ball is convergent up to 
𝜅 ≈ 6. See [1] for details.

b) Nestorov’s lower 
bound is equal to the 
rate achieved by Heavy-
ball on quadratic 
functions in 𝑆(𝑚, 𝐿).

[1] Lessard, Recht, Packard, Analysis and Design of Optimization Algorithms via IQCs, SIAM, 2015



Off-by-1 𝜌-Hard IQC [1]

For any ℎ1 ∈ [0, 𝜌] the gradient of 𝑓 ∈ 𝑆(𝑚, 𝐿) satisfies the 
𝜌-Hard IQC defined by 

Comments:

• This can be combined with the sector 𝜌-hard IQC in the 
LMI condition.

• The sector and off-by-1 IQCs are special cases of a larger 
family of Zames-Falb 𝜌-hard IQCs.
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[1] Lessard, Recht, Packard, Analysis and Design of Optimization Algorithms via IQCs, SIAM, 2015



Analysis of Heavy-ball Algorithm

Use the dissipation/IQC condition to find upper bound on the worst-
case rate for Heavy-ball with (𝛼0, 𝛽0) over all functions in 𝑆(𝑚, 𝐿). 
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a) The Weighted off-
by-1 IQC improves the 
bound compared to 
the sector IQC.

b) We can prove 
Heavy-ball is 
convergent up to 𝜅 ≈
18. See [1] for details.

[1] Lessard, Recht, Packard, Analysis and Design of Optimization Algorithms via IQCs, SIAM, 2015



Analysis of Heavy-ball Algorithm

The LMI is feasible iff 𝜅 < 9 + 4 5 ≈ 18 and ∃𝑓 ∈ 𝑆 𝑚, 9 + 4 5 𝑚

such that Heavy-ball with (𝛼0, 𝛽0) has a limit cycle [1].
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[1] Badithela, Seiler, Analysis of the Heavy-ball Algorithm using IQCs, ACC 2019.



Extension to Stochastic Optimization

Finite Sum Minimization

• Certain convexity/Lipschitz assumptions

• Application to empirical risk minimization

Stochastic Gradient (SG) is widely used

• Fixed stepsize: Convergence to tolerance of optimal

• Decreasing stepsize: Sublinear convergence

Many recent methods (SAGA, Finito, SDCA) with linear 
convergence and similar iteration cost as SG.

24

SAGA

Randomly 
sample ik at 
each step 



Extension to Stochastic Optimization [1,2]

Express stochastic optimization 

algorithms with:

• Gradient, ∇𝑓

• Markov Jump System representation 

for optimization algorithm 

Automated Analysis with IQC/SDP

• Characterize ∇𝑓 with IQCs 

• “Small” SDPs to certify convergence-rate

• Analytical proofs guided by SDP solutions.
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[1] Hu, Seiler, Rantzer, A Unified Analysis of Stochastic Optimization Methods Using Jump System 
Theory and Quadratic Constraints, COLT 2017.

[2] Hu, A Robust Control Perspective on Optimization of Strongly-Convex Functions, Ph.D. , 2016.



Additional Extensions

There are a variety of additional extensions including:

• Van Scoy, Freeman, Lynch, The fastest known globally convergent 
first-order method for minimizing strongly convex functions,” IEEE 
Control Systems Letters, 2018.

• Drori, Teboulle, Performance of first-order methods for smooth 
convex minimization: A novel approach, Mathematical 
Programming, 2014.

• Taylor, Hendrickx, Glineur, Smooth strongly convex interpolation 
and exact worst-case performance of first-order methods, 
Mathematical Programming, 2017.

• Mohammadi, Razaviyayn, Jovanovic, Robustness of accelerated 
first-order algorithms for strongly convex optimization problems, 
IEEE TAC, 2021.

• Scherer, Ebenbauer, Holicki. Optimization Algorithm Synthesis based 
on Integral Quadratic Constraints: A Tutorial, CDC, 2023.
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Outline

• Part I: Optimization

• Part 2: Population Games
• What are population games?

• Best response and Nash equilibria

• Monotone games

• Learning rules and evolutionary dynamics

• Recalling relevant dissipativity notions

• Convergence to Nash equilibria from dissipativity
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What are Population Games?

28

Continuum model for large numbers of anonymous agents, playing 
one of a finite number of strategies. 

For 𝑝 > 1 populations (e.g., different origin-destination pairs):

𝑛𝑟: # of strategies available to population 𝑟,

called  “social state” and                         “demand”

Example:
Congestion 
Games

:  flow using route state space     is a simplex



What are Population Games?
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Example: Congestion games with multiple origin-destination pairs

Population 1:

a

b

c

d
Population 2:



What are Population Games?

30

Payoff of each strategy depends on social state through the function

Example: payoff for a route in congestion games is the negation of 
travel time on that route:

For the network on the previous slide,  
the payoff for, say, route 3 is:

Delay
functions

Routing 
matrix



What are Population Games? 

Wake-up Problems
1)  Consider the simple network below and draw the state space on 
the (𝑥1, 𝑥2) plane, assuming the demand is normalized to 𝑚 = 1.

2)  Next, write the payoff function 𝐹 𝑥 assuming delay functions

i.e., link 𝑎 is a wide road where travel time doesn’t depend on the 
flow, but link 𝑏 takes longer when there is more flow on it.

Note each link is a route, so 𝑅 = 𝐼 in this simple example.

3)  Which road would you take?

31

a

b



Best Response and Nash Equilibria

32

Best Response:  given vector               of payoffs for each strategy,  
is said to be a best response to     if  

Example: Suppose             
and  Then,

every point on this edge
is a best response to    

State               is a Nash Equilibrium if it is a best response to the
payoff at that state:

If 𝐹 is continuous, the set of Nash Equilibria, 𝑁𝐸(𝐹), is nonempty by 
Kakutani’s Fixed Point Theorem for set-valued maps. 



Best Response and Nash Equilibria

33

1Assuming single population for simplicity

Equivalent characterizations1 of Nash Equilibria:  

“At equilibrium, a strategy with inferior payoff can’t be in use.” 

“Every strategy in use must earn maximal payoff.” 

Corollary to Characterization #2:  

A point                       is Nash iff

More generally, if we define



Best Response and Nash Equilibria
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Example: Pigou network a

b

is a best response to                                       →  Nash ✓

No interior Nash, because 

not best response to →  not Nash

This example shows that Nash equilibria may be inefficient:  the 
social optimum is                             , which reduces average travel 
time to          , but this is not a Nash equilibrium.  



Best Response and Nash Equilibria
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Example: Rock-Paper-Scissors

Can also show no Nash on the boundary of the simplex. Thus, 

unique Nash equilibrium.

First, look for Nash equilibria in the interior of the simplex.

By Characterization 2, this means                                   for some 

Null space of                    spanned by                , i.e., 

Since                                     , unique solution



Best Response and Nash Equilibria

Caption Contest (from the New Yorker magazine)

• Listen you guys, I just went through this with Eenie, Meenie, Minie and Moe.

• This place was so much nicer when you were a priest, a rabbi and an Irishman.

• Pay up front. I know how this ends.
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Monotone Games

37

Theorem:               is a convex set when      is monotone, and a 

single point when      is strictly monotone.

Population game defined by payoff                          is monotone if

and strictly monotone if the inequality is strict when 

Suppose      is defined on        and continuously differentiable, so the

Then      is monotone iff

where         is tangent space of     . Strictly monotone if

Jacobian matrix                defined as                                       exists.



Monotone Games
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Example: Rock-Paper-Scissors

Schur decomposition:

where orthonormal eigenvectors            span         and                   .  

Thus, for                ,

Monotone for             ; strictly monotone for



Monotone Games
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Example: Congestion Games

Delay
functions

Routing 
matrix

monotone

otherwise
if route    uses link  

(strictly monotone) if for each

link 𝑖, and null space of      is 

If              then

for any     , because



Monotone Games

Wake-up Problem
True or False?  A congestion game where the routing matrix has 
trivial null space admits a unique Nash equilibrium.
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Learning Rules and Evolutionary Dynamics

41

How do agents update their strategies?

Given current social state     and payoff    , the function

represents the switch rate from strategy    to strategy   .  

The form of this function describes a “rule” by which agents switch 

to more favorable strategies with limited information.

Learning by Imitation:

MJ Smith Rule:

Brown-von Neumann-Nash (BNN) Rule:

Examples:



Learning Rules and Evolutionary Dynamics

42

Evolutionary Dynamics Model (EDM)

Given the switch rate defined by learning rule

the mass of agents playing strategy 𝑖 evolves according to

or                         in concise notation.

Example:  For imitation learning, where                                  

tangent    
cones

Note:  lies in the tangent cone to     at     
for each           . Therefore,      is invariant under
the EDM.  



Learning Rules and Evolutionary Dynamics
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For multiple populations                         :

Evolutionary Dynamics Model (EDM)

where



Learning Rules and Evolutionary Dynamics

44

Not necessarily. Periodic orbits and chaotic attractors possible:

Do trajectories of the EDM converge to Nash equilibria?

Sandholm (2010)

Convergence guarantees, when possible, justify the assumption that 
players are at equilibrium, common in game theory literature.

Convergence with myopic learning rules relaxes global information 
requirements associated with the equilibrium assumption.

We will prove convergence in monotone games for several learning 
rules using dissipativity.



Learning Rules and Evolutionary Dynamics

Origins of Congestion Games
Equilibrium concepts in route choices 

were explored by Wardrop (1952) and

Beckmann et al. (1956). No explicit

reference to game theory (which was just 

emerging then) but many game theoretic 

notions implicit in these publications.

Connection to game theory and work of 

Nash was made later by others. 

Transportation literature still uses the 

term “Wardrop equilibrium” rather than

“Nash equilibrium.” 
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Recalling Relevant Dissipativity Notions

46

is Equilibrium Independent Dissipative (EID) if ∃ a storage function                                    
s.t.

where         are functions of     through                                              ;

Delta Dissipative if ∃ a storage function                                      s.t.

where

The system:



Recalling Relevant Dissipativity Notions
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Stability Criteria

Assume: 1)      is a static map and the 
interconnection is well posed; that is,

has sol’n ; 
2) interconnection has equilibrium     .                 

then       is stable and                 is a Lyapunov function.

If the system                    , is EID with supply rate 𝑠 and 
storage function such that                                  , and      satisfies

If, instead, the system is delta dissipative with supply rate 𝑠 and 
storage function 𝑆, and      satisfies

then      is stable and a Lyapunov function is                                    .



Recalling Relevant Dissipativity Notions
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Example:  If the system 

is equilibrium independent passive
(EIP), the complementary condition 
to be satisfied by                    is:

✓ ❌

i.e., 𝐹 is “monotone.”



Recalling Relevant Dissipativity Notions
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Example:  If the system 

is delta passive, the new condition 
is:

Differentiate                             :

Then,

is equivalent to:

Same complementary condition as the one for EIP:  monotone 𝐹.



Recalling Relevant Dissipativity Notions

Wake-up Problem
Consider the system                   , which can be decomposed as

and              is delta passive with storage function:

Suppose 𝐹 satisfies the monotonicity condition and an equilibrium 
exists.  What is a Lyapunov function that proves its stability?
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Convergence to Nash Equilibria

51

Case 1: Monotone payoff + Equilibrium Independent Passive EDM

Imitation learning leads to EIP (but not delta passive1) EDM:

equilibrium candidates for any . 

well defined in              , nonnegative, zero only when            , and 

iff it is a Nash eq.  Asymptotically stable if      is strictly monotone:

is an equilibrium for EDM in feedback with 

1 shown in (Park, Shamma, Martins, 2018)

(EIP)



Convergence to Nash Equilibria
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Case 2: Monotone payoff + Delta Passive EDM

EDM with BNN and Smith learning rules has the “Nash stationarity”
property:

is a best response to 

Since equilibria of EDM satisfy                              , they correspond to
Nash equilibria of the game defined by 𝐹.

EDM with BNN and Smith learning rules is delta passive:

In each case:



Convergence to Nash Equilibria
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Case 2: Monotone payoff + Delta Passive EDM

and

everywhere and

Strictness of passivity guarantees asymptotic stability when      is
monotone, even if monotonicity is not strict.

Delta passivity shown for broader learning rules encompassing 

BNN and Smith (see tutorial by Park, Martins, Shamma, CDC’19).

Conclusion: For BNN and Smith learning rules, trajectories of the 

EDM in feedback with  converge to Nash equilibria if 



Convergence to Nash Equilibria
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Example: Rock-Paper-Scissors

When                                                                                        ,  thus BNN 

and Smith learning rules guarantee convergence to Nash equilibria

BNN                        Smith BNN                        Smith
Sandholm (2010)



Convergence to Nash Equilibria
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Multiple Populations

If each EDM has Nash Stationarity and delta passivity properties,

then the monotonicity requirement on 𝐹 can be relaxed as:

for some



Convergence to Nash Equilibria
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Example: Congestion Game with Mixed Autonomy

Autonomous vehicles can maintain shorter headway than regular 
vehicles. Payoff model below treats them as a separate population 
and discounts their externality by a factor of 

Delay
functions



Convergence to Nash Equilibria
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Example: Congestion Game with Mixed Autonomy

When              payoff loses the structure that ensures monotonicity:

This guarantees convergence to Nash equilibria for learning rules that 
have Nash Stationarity and delta passivity properties, such as BNN 
and Smith rules. See (Arcak, Martins, TCNS’21) for further results.

but           with is monotone:



Convergence to Nash Equilibria

An Invitation to Population Games
Population games are harmonious with control theory and many 
research opportunities exist: combining evolutionary dynamics with 
physical dynamics, influencing equilibria and transients with 
feedback (“mechanism design”), applications to networks, etc.

Further Reading:
• Sandholm, Population Games and Evolutionary Dynamics, MIT Press, 2010

• Quijano et al., The role of population games and evolutionary dynamics in 
distributed control systems, Control Systems, pp. 70-97, February 2017

• Park, Shamma, Martins, Passivity and evolutionary game dynamics, IEEE CDC 
2018

• Park, Martins, Shamma, From population games to payoff dynamics models: a 
passivity-based approach, IEEE CDC 2019

• Arcak and Martins, Dissipativity tools for convergence to Nash equilibria in 
population games, IEEE Trans. Control of Network Systs., pp. 39-50, vol.8, 2021
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Summary

This lesson demonstrated applications of dissipativity in optimization 
and game theory, proving convergence to optima and Nash equilibria.

Part 1:

• Introduced a feedback systems perspective for a class of first-order 
optimization algorithms.

• Used dissipation inequality and IQC techniques to analyze the 
stability and convergence rates of these algorithms.

Part 2: 

• Introduced population games, and notions of Nash equilibria and 
monotone games.

• Revealed classes of learning rules that ensure convergence to Nash 
equilibria in monotone games. Equilibrium independent and delta 
passivity played key roles.
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Self-Study Problems

60

See Web site for problems and solutions.

sites.google.com/berkeley.edu/dissipation-iqc

https://sites.google.com/berkeley.edu/dissipation-iqc

