International Graduate School on Control, Stuttgart, May 2024

Dissipation Inequalities and Quadratic Constraints for Control, Optimization, and Learning

Lesson 5: Polynomial and Time-Varying Dynamics

Murat Arcak¹ and Peter Seiler²

- ¹ University of California, Berkeley
- ² University of Michigan, Ann Arbor

Learning Objectives

In this lesson we will

- Discuss the use of sum-of-squares SOS optimizations for constructing Lyapunov and storage functions for uncertain polynomial systems.
- Describe the generalization of the dissipation inequality / IQC conditions for uncertain systems with time-varying nominal dynamics.
- Present the corresponding dissipation inequality / IQC results for the discrete-time systems.

Outline

- 1. Sum-of-squares SOS
- 2. Time-varying results (LTV)
- 3. Nonlinear reachability analysis
- 4. Discrete-time results

Region of Attraction (ROA)

Consider the autonomous nonlinear dynamical system

$$\dot{x}(t) = f(x(t))$$

where $x(t) \in \mathbb{R}^n$ is the state at time t and $f: \mathbb{R}^n \to \mathbb{R}^n$. Assume:

- f(0) = 0, i.e. x = 0 is an equilibrium point.
- x = 0 is an asymptotically stable equilibrium point.
- f is a polynomial function of x.

Define the region of attraction (ROA) as:

$$\mathcal{R} := \{ \xi \in \mathbb{R}^n : \lim_{t \to \infty} \phi(\xi, t) = 0 \}$$

where $\phi(\xi, t)$ denotes the solution at time t starting from the initial condition $\phi(\xi, 0) = \xi$.

Objective: Compute or estimate the ROA.

We will show how to perform this computation using sum-of-squares (SOS) optimization.

Polynomials

- Given $\alpha \in \mathbb{N}^n$, a monomial in n variables is a function $m_{\alpha} \colon \mathbb{R}^n \to \mathbb{R}$ defined as $m_{\alpha}(x) \colon = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$.
- The degree of a monomial is defined as $\deg m_{\alpha} := \sum_{i=1}^{n} \alpha_{i}$.
- A <u>polynomial</u> in n variables is a function $p: \mathbb{R}^n \to \mathbb{R}$ defined as a finite linear combination of monomials:

$$p := \sum_{\alpha \in \mathcal{A}} c_{\alpha} m_{\alpha} = \sum_{\alpha \in \mathcal{A}} c_{\alpha} x^{\alpha}$$

where $\mathcal{A} \subset \mathbb{N}^n$ is a finite set and $c_{\alpha} \in \mathbb{R} \ \forall \ \alpha \in \mathcal{A}$.

- The set of polynomials in n variables $\{x_1, ..., x_n\}$ will be denoted $\mathbb{R}[x_1, ..., x_n]$ or, more compactly, $\mathbb{R}[x]$.
- The degree of a polynomial f is defined as

$$\deg f := \max_{\alpha \in \mathcal{A}, c_{\alpha} \neq 0} \deg m_{\alpha}.$$

Vector Representation

If p is a polynomial of degree $\leq d$ in n variables then there exists a coefficient vector $c \in \mathbb{R}^{l_w}$ such that $p = c^{\top} w(x)$ where

$$w(x) := [1, x_1, x_2, \dots, x_n, x_1^2, x_1x_2, \dots, x_n^2, \dots, x_n^d]^{\top}$$

And l_w denotes the length of w. It is easy to verify $l_w = \binom{n+d}{d}$.

Example: Using SOSTOOLs/Multipoly,

```
pvar x1 x2
p = 2*x1^4 + 2*x1^3*x2 - x1^2*x2^2 + 5*x2^4;
x = [x1;x2];
w = monomials(x,0:4);
c = poly2basis(p,w);
[c w]
```

```
[ 0,
     1]
         x1]
         x2]
[0, x1^2]
[0, x1*x2]
[0, x2^2]
[0, x1^3]
[0, x1^2*x2]
[0, x1*x2^2]
[0, x2^3]
[ 2, x1<sup>4</sup>]
[ 2, x1^3*x2]
[-1, x1^2*x2^2]
[0, x1*x2^3]
[5, x2^4]
```

Gram Matrix Representation

If p is a polynomial of degree $\leq 2d$ in n variables then there exists a $Q=Q^{\top}\in\mathbb{R}^{l_Z}$ such that $p=z^{\top}$ Q z where

$$z := \begin{bmatrix} 1, & x_1, & x_2, & \dots, & x_n, & x_1^2, & x_1 x_2, & \dots, & x_n^2, & \dots, & x_n^d \end{bmatrix}^\top$$

The dimension of z is $l_z = \binom{n+d}{d}$. Equating coefficients of p and $z^T Q z$ yields linear equality constraints on the entries of Q.

- Define q := vec(Q) and $l_w = \binom{n+d}{d}$.
- There exists $A \in \mathbb{R}^{l_W \times l_Z^2}$ and $c \in \mathbb{R}^{l_W}$ such that $p = z^T Q z$ is equivalent to A q = c.
- There are $h:=\frac{l_Z(l_Z+1)}{2}-l_W$ linearly independent homogeneous solutions $\{N_i\}_{i=1}^h$ each of which satisfies z^TN_i z=0.

Summary: All solutions to $p = z^T Q z$ can be expressed as the sum of a particular solution and a homogeneous solution.

Gram Matrix Example

Polynomial p in two variables:

$$p = 2x_1^4 + 2x_1^3x_2 - x_1^2x_2^2 + 5x_2^4$$

Gram matrix data:

$$z = \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}, \ Q = \begin{bmatrix} 2 & 1 & -0.5 \\ 1 & 0 & 0 \\ -0.5 & 0 & 5 \end{bmatrix}, \ N = \begin{bmatrix} 0 & 0 & -0.5 \\ 0 & 1 & 0 \\ -0.5 & 0 & 0 \end{bmatrix}$$

Note that $p = z^T Q z$ and $z^T N z = 0$.

Hence $p = z^{\top}(Q + \lambda N)z$ for all $\lambda \in \mathbb{R}$.

Positive Semidefinite (PSD) Polynomials

 $p \in \mathbb{R}[x]$ is positive semi-definite (PSD) if $p(x) \geq 0 \ \forall x$.

- If p is a (homogeneous) quadratic function then the Gram matrix is unique. Moreover, p is PSD iff the Gram matrix is PSD.
- However, testing if p is PSD is NP-hard when the polynomial degree is at least four.
- Our computational procedures will be based on constructing polynomials which are PSD.

Objective: Given $p \in \mathbb{R}[x]$, we would like a polynomial-time sufficient condition for testing if p is PSD.

Sum of Squares (SOS) Polynomials

p is a <u>sum of squares (SOS)</u> if there exist polynomials $\{f_i\}_{i=1}^N$ such that $p = \sum_{i=1}^N f_i^2$.

- The set of SOS polynomials in n variables $\{x_1, ..., x_n\}$ will be denoted $\Sigma[x_1, ..., x_n]$ or $\Sigma[x]$.
- If p is a SOS then p is PSD.
 - The Motzkin polynomial, $p = x^2y^4 + x^4y^2 + 1 3x^2y^2$, is PSD but not SOS.
 - Hilbert (1888) showed that the sets of PSD and SOS polynomials are equal only for: a) n=1, b) d=2, and c) d=4, n=2.
- p is a SOS iff $\exists Q = Q^{\top} \geq 0$ such that $p = z^{\top}Qz$.

SOS Example (Parrilo, PhD, 2000)

All possible Gram matrix representations of

$$p = 2x_1^4 + 2x_1^3x_2 - x_1^2x_2^2 + 5x_2^4$$

are given by $z^{T}(Q + \lambda N)z$ where:

$$z = \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}, \ Q = \begin{bmatrix} 2 & 1 & -0.5 \\ 1 & 0 & 0 \\ -0.5 & 0 & 5 \end{bmatrix}, \ N = \begin{bmatrix} 0 & 0 & -0.5 \\ 0 & 1 & 0 \\ -0.5 & 0 & 0 \end{bmatrix}$$

p is SOS iff $Q + \lambda N \ge 0$ for some $\lambda \in \mathbb{R}$.

SOS Example (Parrilo, PhD, 2000)

All possible Gram matrix representations of

$$p = 2x_1^4 + 2x_1^3x_2 - x_1^2x_2^2 + 5x_2^4$$

 $Q + \lambda N \ge 0$ for some $\lambda = 5$ so p is SOS.

SOS Example (Parrilo, PhD, 2000)

All possible Gram matrix representations of

$$p = 2x_1^4 + 2x_1^3x_2 - x_1^2x_2^2 + 5x_2^4$$

 $Q + \lambda N \ge 0$ for some $\lambda = 5$ so p is SOS.

An SOS decomposition can be constructed from a Cholesky factorization $Q + 5N = L^{T}L$ where:

$$L = \frac{1}{\sqrt{2}} \begin{bmatrix} 2 & 1 & -3 \\ 0 & 3 & 1 \end{bmatrix}$$

Thus

$$p = 2x_1^4 + 2x_1^3x_2 - x_1^2x_2^2 + 5x_2^4$$

$$= (Lz)^{\top}(Lz)$$

$$= \frac{1}{2} (2x_1^2 - 3x_2^2 + x_1x_2)^2 + \frac{1}{2} (x_2^2 + 3x_1x_2)^2 \in \Sigma[x]$$

Connection to LMIs

Checking if a given polynomial p is a SOS can be done by solving a linear matrix inequality (LMI) feasibility problem.

Primal (Image) Form:

- Find $A \in \mathbb{R}^{l_W \times l_Z^2}$ and $c \in \mathbb{R}^{l_W}$ such that $p = z^\top Qz$ is equivalent to Aq = c where q = vec(Q).
- p is a SOS if and only if there exists $Q \ge 0$ such that A q = c.

Dual (Kernel) Form:

- Let Q_0 be a particular solution of $p = z^T Q z$ and let $\{N_i\}_{i=1}^h$ be a basis for the homogeneous solutions.
- p is a SOS if and only if there exists $\lambda \in \mathbb{R}^h$ such that

$$Q_0 + \sum_{i=1}^{h} \lambda_i N_i \ge 0.$$

SOS Feasibility

SOS Feasibility: Given polynomials $\{f_k\}_{k=0}^m$, does there exist $\alpha \in \mathbb{R}^m$ such that $f_0 + \sum_{k=1}^m \alpha_k f_k$ is a SOS?

The SOS feasibility problem can also be posed as an LMI feasibility problem since α enters linearly.

Primal (Image) Form:

- Find $A \in \mathbb{R}^{l_W \times l_Z^2}$ and $c_k \in \mathbb{R}^{l_W}$ such that $f_k = z^\top Qz$ is equivalent to $A \ q = c_k$ where q = vec(Q).
- Define $C := -[c_1, c_2, \cdots c_n] \in \mathbb{R}^{l_w \times n}$.
- There is an $\alpha \in \mathbb{R}^m$ such that $f_0 + \sum_{k=1}^m \alpha_k f_k$ is a SOS iff there exists $\alpha \in \mathbb{R}^m$ and $Q \ge 0$ such that $A \ q + C \ \alpha = c_0$.

Dual (Kernel) Form:

- Let Q_k be particular solutions of $f_k = z^T Q z$ and let $\{N_i\}_{i=1}^h$ be a basis for the homogeneous solutions.
- There is an $\alpha \in \mathbb{R}^m$ such that $f_0 + \sum_{k=1}^m \alpha_k f_k$ is a SOS iff there exists $\alpha \in \mathbb{R}^m$ and $\lambda \in \mathbb{R}^h$ such that $Q_0 + \sum_{k=1}^m \alpha_k Q_k + \sum_{i=1}^h \lambda_i N_i \geq 0$.

SOS Programming

SOS Programming: Given $c \in \mathbb{R}^m$ and polynomials $\{f_k\}_{k=0}^m$, solve:

$$\min_{\alpha \in \mathbb{R}^m} c^{\top} \alpha \text{ subject to: } f_0 + \sum_{k=1}^m \alpha_k f_k \in \Sigma[x]$$

This SOS programming problem is an SDP.

- The cost is a linear function of α .
- The SOS constraint can be replaced with either the primal or dual form LMI constraint.
- A more general SOS program can have many SOS constraints.

There is freely available software (e.g. SOSTOOLS, YALMIP, SOSOPT) that: (i) Converts the SOS program to an SDP, (ii) Solves the SDP with available codes, and (iii) Converts the SDP results back into polynomial solutions.

Complexity of SOS Feasiblity Problem

Let p be a degree 2d polynomial in n variables. The complexity of the LMI to test if p is an SOS grows rapidly in (n, d).

For example, the Gram matrix $Q = Q^{T}$ is $l_z \times l_z$ where the dependence of l_z on (n,d) is shown below.

$ l_z = \left(\begin{array}{c} n+d \\ d \end{array} \right) $	2d=4	6	8	10
n=2	6	10	15	21
5	21	56	126	252
9	55	220	715	2002
14	120	680	3060	11628
16	153	969	4845	20349

SOS Programming Example

Problem: Minimize α subject to $f_0 + \alpha f_1 \in \Sigma[x]$ where

$$f_0(x) := -x_1^4 + 2x_1^3x_2 + 9x_1^2x_2^2 - 2x_2^4$$

$$f_1(x) := x_1^4 + x_2^4$$

For every $\alpha, \lambda \in \mathbb{R}$, the Gram Matrix Decomposition equality is:

$$f_0 + \alpha f_1 = z^{\top} (Q_0 + \alpha Q_1 + \lambda N_1) z$$

where

$$z := \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}, Q_0 = \begin{bmatrix} -1 & 1 & 4.5 \\ 1 & 0 & 0 \\ 4.5 & 0 & -2 \end{bmatrix}, Q_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, N_1 = \begin{bmatrix} 0 & 0 & -0.5 \\ 0 & 1 & 0 \\ -0.5 & 0 & 0 \end{bmatrix}$$

Thus the problem is equivalent to the SDP

$$\min_{\alpha,\lambda\in\mathbb{R}} \alpha$$
 subject to: $Q_0 + \alpha Q_1 + \lambda N_1 \geq 0$

SOS Programming Example

Use SOSTOOLs to minimize α subject to $f_0 + \alpha f_1 \in \Sigma[x]$.

```
% Define polynomials in the SOS optimization
pvar x1 x2 alpha;
f0 = -x1^4 + 2*x1^3*x2 + 9*x1^2*x2^2 - 2*x2^4;
f1 = x1^4 + x2^4:
% Solve the SOS optimization
                                           % Define polynomial variables
prog = sosprogram([x1;x2]);
prog = sosdecvar(prog,alpha);
                                           % Define decision variable
prog = sosineq(prog,f0+alpha*f1);
                                           % Define SOS constraint
prog = sossetobj(prog,alpha);
                                           % Define objective function
prog = sossolve(prog);
                                           % Solve optimization
alphaOPT = sosgetsol(prog,alpha)
                                           % Get optimal solution
alphaOPT = 2
```

Global Stability Conditions Using SOS

Revisit the autonomous nonlinear dynamical system

$$\dot{x}(t) = f(x(t))$$

where $x(t) \in \mathbb{R}^n$ is the state at time t and $f: \mathbb{R}^n \to \mathbb{R}^n$. Assume f is a polynomial function of x and f(0) = 0

Theorem: Let $l_1, l_2 \in \mathbb{R}[x]$ be given with $l_i(0) = 0$ and $l_i(x) > 0$ $\forall x \ (i = 1,2)$. The point x = 0 is a globally asymptotically stable (GAS) equilibrium if $\exists V \in \mathbb{R}[x]$ such that:

- V(0) = 0
- $V l_1 \in \Sigma[x]$
- $-\nabla V \cdot f l_2 \in \Sigma[x]$

Proof: The conditions imply that V is pos. def, decrescent, and radially unbounded. Moreover, $-\nabla V \cdot f$ is a positive definite. Hence V is a Lyapunov function that proves x=0 is GAS.

Global Stability Example

The following example is sosdemo2 in SOSTOOLs. See Section 4.2 of SOSTOOLS User's Manual.

```
% Constructing the vector field dx/dt = f
pvar x1 x2 x3; vars = [x1; x2; x3];
f = [(-x1^3-x1^*x3^2)^*(x3^2+1); (-x2-x1^2*x2)^*(x3^2+1); ...
  (-x3+3*x1^2*x3)*(x3^2+1)-3*x3;
% SOS Program
prog = sosprogram(vars);
[prog,V] = sospolyvar(prog,[x1^2; x2^2; x3^2],'wscoeff');
prog = sosineq(prog,V-(x1^2+x2^2+x3^2));
expr = -(diff(V,x1)*f(1)+diff(V,x2)*f(2)+diff(V,x3)*f(3));
prog = sosineq(prog,expr);
solver opt.solver = 'sedumi';
prog = sossolve(prog,solver opt);
SOLV = sosgetsol(prog,V)
  SOLV = 6.6589*x1^2 + 4.6277*x2^2 + 2.0734*x3^2
```

Constructing Storage Functions With SOS & IQC

We can combine SOS and IQC techniques. Consider an uncertain system $F_U(M, \Delta)$ where:

1. *M* is described by polynomial dynamics:

$$\dot{x} = f(x, w, d), \quad v = g_1(x, w, d) \quad e = g_2(x, w, d)$$

2. Δ satisfies the QC defined by $J = J^{\mathsf{T}}$.

Constructing Storage Functions With SOS & IQC

We can combine SOS and IQC techniques. Consider an uncertain system $F_U(M, \Delta)$ where:

M

1. *M* is described by polynomial dynamics:

$$\dot{x} = f(x, w, d), \quad v = g_1(x, w, d) \quad e = g_2(x, w, d)$$

2. Δ satisfies the QC defined by $J = J^{\mathsf{T}}$.

Theorem: $F_U(M, \Delta)$ has L_2 gain $\leq \gamma$ if $\exists V \in \mathbb{R}[x]$ such that:

- V(0) = 0
- $V \in \Sigma[x]$

$$-\left(\nabla V^{\top} f + (e^{\top} e - \gamma^2 d^{\top} d) + \begin{bmatrix} v \\ w \end{bmatrix}^{\top} J \begin{bmatrix} v \\ w \end{bmatrix}\right) \in \Sigma[x, w, d]$$

Comments:

- The last condition is a dissipation ineq. with IQC. It is a polynomial in (x, w, d) after substituting for (v, e) using the output equations of M.
- These conditions can be checked as an SOS optimization.

Equilibrium Independent Dissipativity

Recall the Equilibrium Independent Dissipativity (EID) conditions

$$V(\bar{x},\bar{x}) = 0, \quad \nabla_x V(x,\bar{x})^{\top} f(x,u) \le s(u-\bar{u},y-\bar{y})$$
 (1)

where \bar{u}, \bar{y} are functions of \bar{x} through $f(\bar{x}, \bar{u}) = 0, \ \bar{y} = h(\bar{x}, \bar{u}).$

Assume system defined by polynomial f, h and the supply rate s is also polynomial. Recall $\mathbb{R}[x]$ set of all polynomials and $\Sigma[x]$ all SOS polynomials in x. SOS formulation for EID:

$$-\nabla_x V(x,\bar{x})^T f(x,u) + s(u - \bar{u}, h(x,u) - h(\bar{x},\bar{u}))$$

$$+ r(x,u,\bar{x},\bar{u}) f(\bar{x},\bar{u}) \in \Sigma[x,u,\bar{x},\bar{u}]$$

$$r(x,u,\bar{x},\bar{u}) \in \mathbb{R}[x,u,\bar{x},\bar{u}]$$

To enforce $V(\bar x,\bar x)=0$ take $V(x,\bar x)=(x-\bar x)^TQ(x,\bar x)(x-\bar x)$ where $Q(x,\bar x)$ is a pos.def. symmetric matrix of polynomials.

Note: \bar{x}, \bar{u} are independent variables in the SOS program, but the term $r(x, u, \bar{x}, \bar{u}) f(\bar{x}, \bar{u})$ ensures (1) holds when $f(\bar{x}, \bar{u}) = 0$.

Delta Dissipativity

Recall the delta dissipativity conditions:

$$S(x,u) = 0 \Leftrightarrow f(x,u) = 0$$

$$\nabla_x S(x,u)^{\top} f(x,u) + \nabla_u S(x,u)^{\top} v \le s(v,w) \quad \forall x, u, v$$

where $w := \nabla_x h(x, u)^{\top} f(x, u) + \nabla_u h(x, u)^{\top} v$.

SOS formulation:

$$s(v, w(x, u, v)) - \left(\nabla_x S(x, u)^{\top} f(x, u) + \nabla_u S(x, u)^{\top} v\right) \in \Sigma[x, u, v]$$

where $S(x,u) = \psi(x,u)^{\top} P(x,u) \psi(x,u)$ with user-specified ψ s.t.

$$\psi(x,u) = 0 \Leftrightarrow f(x,u) = 0$$

and P symmetric matrix of polynomials, enforced to be pos.def. by

$$l^{\top}(P(x,u)-\delta I)l \in \Sigma[x,u,l], \ \delta > 0$$

Generalizations

- Dynamic IQCs (Ψ, J) can be combined with the search for polynomial storage functions.
- "Local" conditions can be constructed to estimate regions of attraction or local input/output gains.
 - These conditions involve set containment constraints that can be relaxed via Lagrange multipliers (S-procedure).
 - This typically leads to non-convex, bilinear SOS conditions.
 - Various heuristic iterations have been developed to approximately solve these conditions.

Time-Varying Systems

Wind Turbine
Periodic /
Parameter-Varying

Flexible Aircraft
Parameter-Varying

Vega Launcher Time-Varying (Source: ESA)

Robotics
Time-Varying
(Source: ReWalk)

The IQC/DI results can be extended to assess the robustness of time-varying systems.

(Robust) Finite-Horizon Analysis

Uncertain LTV System

$$\begin{bmatrix} \dot{x}(t) \\ v(t) \\ e(t) \end{bmatrix} = \begin{bmatrix} A(t) & B_1(t) & B_2(t) \\ C_1(t) & D_1(t) & D_2(t) \\ C_2(t) & 0 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ w(t) \\ d(t) \end{bmatrix} \quad v \quad M$$

$$x(0) = 0$$

Uncertainty set Δ can be block-structured with parametric / non-parametric uncertainties and nonlinearities.

Analysis Objective

Derive bound on $||e(T)||_2$ that holds for all disturbances $||d||_{2,[0,T]} \leq 1$ and uncertainties $\Delta \in \Delta$ on the horizon [0,T].

Integral Quadratic Constraints (IQCs)

The robustness analysis uses constraints on the I/O behavior of Δ expressed as (time-domain) IQCs.

Definition: Δ satisfies the finite-horizon IQC defined by a stable filter Ψ and a matrix $J = J^{\top} \in \mathbb{R}^{(n_v + n_w) \times (n_v + n_w)}$ if every $v \in L_2[0,T]$ and $w = \Delta(v)$ satisfies:

$$\int_0^T z(t)^\top J z(t) \, dt \ge 0$$

Comments:

- The analysis that follows only requires the IQC to hold over the finite horizon [0,T].
- The filter Ψ and matrix J can be time-varying with only notational changes, e.g. we could have a QC with time-varying sector bounds.

Robustness Analysis

The robustness analysis is performed on the extended (LTV) system of (J, Ψ) using the constraint on z.

$$\begin{bmatrix} \dot{x}_e(t) \\ z(t) \\ e(t) \end{bmatrix} = \begin{bmatrix} \mathcal{A}(t) & \mathcal{B}_1(t) & \mathcal{B}_2(t) \\ \mathcal{C}_1(t) & \mathcal{D}_1(t) & \mathcal{D}_2(t) \\ \mathcal{C}_2(t) & 0 & 0 \end{bmatrix} \begin{bmatrix} x_e(t) \\ w(t) \\ d(t) \end{bmatrix}$$

Robust Finite Horizon Analysis

Theorem [1,2]

Assume Δ satisfies the IQC defined by (Ψ, J) .

If there exists $P(\cdot) = P(\cdot)^{\top}$ such that

$$(i) P(T) = \mathcal{C}_2(T)^{\top} \mathcal{C}_2(T), \text{ and}$$

(ii)
$$V(x,t) := x^{\top} P(t) x$$
 satisfies
$$\frac{d}{dt} V(x,t) - \gamma^2 d(t)^{\top} d(t) + z(t)^{\top} J z(t) \le 0 \ \forall t \in [0,T]$$

then
$$||e(T)||_2 \le \gamma ||d||_{2,[0,T]}$$

Proof

Integrate dissipation inequality from t = 0 to t = T:

$$\underbrace{V(x(T),T)}_{=e(T)^{\top}e(T)} - \underbrace{V(x(0),0)}_{=0} - \gamma^2 \int_0^T d(t)^{\top} d(t) dt + \underbrace{\int_0^T z(t)^{\top} Jz(t) dt}_{>0} \leq 0$$

[1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.

[2] Seiler, Moore, Meissen, Arcak, Packard, Finite Horizon Robustness Analysis of LTV Systems Using IQCs, arXiv 2018 and Automatica 2019.

Robust Finite Horizon Analysis

Theorem [1,2]

Assume Δ satisfies the IQC defined by (Ψ, J) .

If there exists $P(\cdot) = P(\cdot)^{\top}$ such that

$$(i) P(T) = \mathcal{C}_2(T)^{\top} \mathcal{C}_2(T), \text{ and}$$

(ii)
$$V(x,t) := x^{\top} P(t) x$$
 satisfies
$$\frac{d}{dt} V(x,t) - \gamma^2 d(t)^{\top} d(t) + z(t)^{\top} J z(t) \le 0 \ \forall t \in [0,T]$$

then
$$||e(T)||_2 \le \gamma ||d||_{2,[0,T]}$$

Dissipation inequality can be recast as a differential LMI:

$$\begin{bmatrix} \dot{P} + \mathcal{A}^{\top} P + P \mathcal{A} & P \mathcal{B}_1 & P \mathcal{B}_2 \\ \mathcal{B}_1^{\top} P & 0 & 0 \\ \mathcal{B}_2^{\top} P & 0 & -\gamma^2 I \end{bmatrix} + (\cdot)^{\top} J \begin{bmatrix} \mathcal{C}_1 & \mathcal{D}_1 & \mathcal{D}_2 \end{bmatrix} \leq 0$$

$$\forall t \in [0, T]$$

- [1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.
- [2] Seiler, Moore, Meissen, Arcak, Packard, Finite Horizon Robustness Analysis of LTV Systems Using IQCs, arXiv 2018 and Automatica 2019.

Numerical Algorithms and Software

Robustness Algorithms

- Differential LMI can be "solved" via convex optimization using basis functions for $P(\cdot)$ and gridding on time [1].
- A more efficient algorithm mixes the differential LMI and a related Riccati Differential Equation condition [2].
- Similar methods developed for LPV [4,5] and periodic systems [6].

LTVTools Software [3]

- Time-varying state space system objects, e.g. obtained from Simulink snapshot linearizations.
- Includes functions for nominal and robustness analyses.
- [1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.
- [2] Seiler, Moore, Meissen, Arcak, Packard, Finite Horizon Robustness Analysis of LTV Systems Using IQCs, arXiv 2018 and Automatica 2019.
- [3] https://z.umn.edu/LTVTools
- [4] Pfifer & Seiler, Less Conservative Robustness Analysis of LPV Systems Using IQCs, IJRNC, 2016.
- [5] Hjartarson, Packard, Seiler, LPVTools: A Toolbox for Modeling, Analysis, & Synthesis of LPV Systems, 2015.
- [6] Fry, Farhood, Seiler, IQC-based robustness analysis of discrete-time LTV systems, IJRNC 2017.

Two-Link Robot Arm

Two-Link Diagram [1]

Nonlinear dynamics [MZS]:

$$\dot{\eta} = f(\eta, \tau, d)$$

where

$$\eta = [\theta_1, \dot{\theta}_1, \theta_2, \dot{\theta}_2]^T$$

$$\tau = [\tau_1, \tau_2]^T$$

$$d = [d_1, d_2]^T$$

 τ and d are control torques and disturbances at the link joints.

[1] R. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robot Manipulation, 1994.

Nominal Trajectory in Cartesian Coordinates

Analysis

Nonlinear dynamics:

$$\dot{\eta} = f(\eta, \tau, d)$$

Linearize along the finite –horizon trajectory $(\bar{\eta}, \bar{\tau}, d = 0)$ $\dot{x} = A(t)x + B(t)u + B(t)d$

Design finite-horizon state-feedback LQR gain.

Goal: Compute bound on the final position accounting for disturbances and LTI uncertainty Δ at 2nd joint.

Monte-Carlo Simulations

LTV simulations with randomly sampled disturbances and uncertainties (overlaid on nominal trajectory).

Robustness Bound

Cyan disk is bound computed in 102 sec using IQC/DI method Bound accounts for disturbances $\|d\| \le 5$ and $\|\Delta\| \le 0.8$

Worst-Case Uncertainty / Disturbance

Randomly sample Δ to find "bad" perturbation and compute corresponding worst-case disturbance using method in [1].

[1] Iannelli, Seiler, Marcos, Construction of worst-case disturbances for LTV systems..., 2019.

Intermezzo

Given two functions $p,q:\mathbb{R}^n\to\mathbb{R}$ how can we show

$$\{x : p(x) \le 0\} \subseteq \{x : q(x) \le 0\}$$
 (1)

i.e., $p(x) \le 0 \Rightarrow q(x) \le 0$?

If we can find $\lambda:\mathbb{R}^n \to \mathbb{R}_{\geq 0}$ such that

$$\lambda(x)p(x) - q(x) \ge 0 \quad \forall x \in \mathbb{R}^n$$
 (2)

then $q(x) \le \lambda(x)p(x)$ and, since $\lambda(x) \ge 0$, $p(x) \le 0 \implies q(x) \le 0$.

The idea of using the nonnegativity property (2) to show the set containment (1) is called the **S-procedure** in control theory.

When p,q are polynomials we can apply the S procedure with SOS programming: find polynomial $\lambda(x)$ such that

$$\lambda(x) \in \Sigma[x]$$

$$\lambda(x)p(x) - q(x) \in \Sigma[x]$$

1. Forward Reachability: Bounding trajectories from a set of initial conditions in the presence disturbances and unmodeled dynamics

G: nominal plant model

$$\dot{x}_G = f(x_G, w, d)$$
$$v = h(x_G, w, d)$$

d: disturbance

Δ: unmodeled dynamics characterized by IQC:

Goal: Given set of initial conditions X_0 find an outer bound on trajectories at time T for all Δ satisfying the IQC and for all d s.t.

$$||d||_{\mathcal{L}_2,[0,T]} \leq R.$$

Lump plant and filter into single model with state $x = [x_G; x_{\Psi}]$:

$$\dot{x} = F(x, w, d)$$

$$z = H(x, w, d)$$

If \exists storage function $(t, x) \mapsto V(t, x)$ s.t.

$$\dot{V}(t, x, w, d) + z^{\top} M z \le d^{\top} d \quad \forall t \in [0, T]$$

$$X_0 \times \{0_{n_{\Psi}}\} \subseteq \{x : V(0, x) \le 0\}$$

then projection of $\{x: V(T,x) \leq R^2\}$ onto x_G subspace \supset FRS.

Proof by integrating dissipation inequality from 0 to T:

$$V(T, x(T)) - V(0, x(0)) + \underbrace{\int_0^T z(\tau)^\top M z(\tau) d\tau}_{\geq 0} \leq \underbrace{\int_0^T d(t)^\top d(t) dt}_{\leq R^2}$$

Then,
$$x_G(0) \in X_0, x_{\Psi}(0) = 0 \Rightarrow V(0, x(0)) \le 0 \Rightarrow V(T, x(T)) \le R^2$$

SOS procedure to find *V*:

- Use semi-algebraic (sublevel set of polynomial) representation of X_0 and polynomial approximation of system model
- View dissipation inequality as a nonnegativity constraint
- Turn set containment condition $X_0 \times \{0_{n_\Psi}\} \subseteq \{x: V(0,x) \le 0\}$ to nonnegativity constraint with S-procedure
- SOS relaxation for nonnegativity; SOS then translated into SDP

Example: Generic Transport Model (GTM)

- 5.5% scale commercial aircraft
- State variables: airspeed (x_1) , angle of attack (x_2) , pitch rate (x_3) , pitch angle (x_4)
- Controls: elevator deflection (u_{elev}) , engine throttle (u_{th})
- X_0 : ellipsoid around the equilibrium
- Disturbance and unmodeled dynamics in elevator control channel:

GTM

K

 \mathcal{X}

2. Backward Reachability: Given target set X_T find a set of initial states (BRS) and a controller that drives states from BRS to X_T

G: nominal plant model

$$\dot{x}_G = f(x_G, w, d) + g(x_G, w, d)u$$
$$v = h(x_G, w, d)$$

d: disturbance

Δ: unmodeled dynamics characterized by IQC as before

Control design now part of the formulation:

$$u(t) = k(t, x_G(t))$$

If \exists storage function $(t,x) \mapsto V(t,x)$ and control $u(t) = k(t,x_G(t))$: $\partial_t V(t,x) + \partial_x V(t,x) \cdot F(x,w,d,k(t,x_G)) + z^\top Mz \leq d^\top d \quad \forall t \in [0,T]$ $\{x_G : V(T,[x_G;x_\Psi]) \leq R^2 \; \exists x_\Psi\} \subseteq X_T$

then $\{x_G: V(0, [x_G; 0]) \leq 0\}$ is a BRS inner approximation.

- Can use SOS to search for V and k by restricting V, k, F, H to be polynomials and X_T to be semi-algebraic
- The dissipation inequality is bilinear in V and k. Alternate the search between the two.
- BRS inner-approximation is useful even if we don't commit to using the control k obtained along with the approximation.

Example: Six-state quadrotor model

$$\dot{x}_1 = x_3,$$

$$\dot{x}_2 = x_4,$$

$$\dot{x}_3 = u_1 K \sin(x_5),$$

$$\dot{x}_4 = u_1 K \cos(x_5) - g_n,$$

$$\dot{x}_5 = x_6,$$

$$\dot{x}_6 = -d_0 x_5 - d_1 x_6 + n_0 u_2$$

 x_1 : horizontal position

 x_2 : vertical position

 x_3 : horizontal velocity

 x_4 : vertical velocity

 x_5 : roll

 x_6 : roll velocity

 $u_1 \in [-1.5, 1.5] + g_n/K$: total trust $u_2 \in [-\pi/12, \pi/12]$: desired roll angle

Additive uncertainty Δ acting on u_2 :

Example: Six-state quadrotor model BRS inner-approximation with degree-2 and degree-4 polynomial storage functions:

- $\|\Delta\|_{\mathcal{L}_2 \to \mathcal{L}_2} \le 0.2$
- Computation times:
 18 min. for degree-2;
 60 min for degree-4
- Higher degree: tighter approximation but longer computation

Key take-aways:

- We can account for dynamic uncertainty in reachability analysis
- Dissipation formulation played a key role:
 - to accommodate dynamic uncertainty (described by IQCs) and disturbances simultaneously
 - to translate analysis/synthesis to optimization problems, via
 S-procedure and SOS programming
- No gridding of state space required (unlike Hamilton-Jacobi or symbolic control methods, which suffer exponential growth in complexity with state dimension).
- However, scalability is still a challenge for the SOS procedures mentioned

Discrete-Time IQCs

We can define discrete-time IQCs analogously to their continuous-time counterparts. In this case, "summation quadratic constraints" (SQCs) would be more appropriate terminology but we'll continue to use "IQCs".

Definition: A discrete-time system Δ satisfies the IQC defined by a stable filter Ψ and a matrix $J = J^{\top} \in \mathbb{R}^{(n_v + n_w) \times (n_v + n_w)}$ if every $v \in \ell_2$ and $w = \Delta(v)$ satisfies:

$$\Sigma_{t=0}^T z(t)^\top J z(t) \ge 0 \ \forall T \ge 0$$

Most continuous-time IQCs have similar discrete-time versions.

We'll briefly discuss a few cases on the next slides.

Example: Sector-bounded Nonlinearity

Suppose Δ is a nonlinearity, w = f(v), whose graph lies in the sector $[\alpha, \beta]$.

$$(w(t) - \alpha v(t)) \cdot (\beta v(t) - w(t)) \ge 0$$

$$\begin{bmatrix} v(t) \\ w(t) \end{bmatrix}^{\top} \underbrace{\begin{bmatrix} -2\alpha\beta & \alpha+\beta \\ \alpha+\beta & -2 \end{bmatrix}}_{:=J} \begin{bmatrix} v(t) \\ w(t) \end{bmatrix} \ge 0$$

 Δ satisfies the static QC defined by J.

Example: Slope-Restricted Nonlinearity

Suppose Δ is a nonlinearity, w = f(v), whose slope lies in $[\alpha, \beta]$ and f(0) = 0.

$$\alpha \le \frac{w(t_1) - w(t_2)}{v(t_1) - v(t_2)} \le \beta \quad \forall v(t_1) \ne v(t_2)$$

$$(\delta_w - \alpha \delta_v) \cdot (\beta \delta_v - \delta_w) \ge 0$$

where $\delta_w := w(t_1) - w(t_2)$
and $\delta_v := v(t_1) - v(t_2)$

$$J := (\cdot)^{\top} \begin{bmatrix} -2\alpha\beta & \alpha + \beta \\ \alpha + \beta & -2 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Example: Slope-Restricted Nonlinearity

Suppose Δ is a nonlinearity, w = f(v), whose slope lies in $[\alpha, \beta]$ and f(0) = 0.

$$J := (\cdot)^{\top} \begin{bmatrix} -2\alpha\beta & \alpha + \beta \\ \alpha + \beta & -2 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Define Ψ as the system shown above. It contains delays to store v(t-1) and w(t-1). Then, Δ satisfies the IQC defined by (Ψ, J) .

- This is called the "off-by-one" IQC [Lessard, Recht, Packard, 2016].
- This leads to the more general Zames-Falb IQC [Carrasco, et al, 2019;
 Scherer, 2022; Zames, Falb, 1968].

Slope-Restricted Nonlinearity

Wake-up Problems

Suppose Δ is a nonlinearity, w = f(v), whose slope lies in $[\alpha, \beta] \coloneqq [0,1]$ and f(0) = 0.

- 1) Write a quadratic constraints on $[v(t), w(t)]^T$ representing the sector constraint at time t.
- 2) Write a quadratic constraints on $[v(t-1), w(t-1)]^T$ representing the sector constraint at time t-1.
- 3) Write a quadratic constraints on $[v(t), v(t-1), w(t), w(t-1)]^T$ representing the slope constraint at times t and t-1.
- 4) Write a general QC formed by the conic combination of the QCs created in parts a)-c). Note that you can scale QC i by a nonnegative constant λ_i for i=1,2,3.

The analysis procedure consists of the following steps:

- **1.** Express the uncertain system as an LFT $F_U(M, \Delta)$ with the uncertainty/nonlinearity in Δ .
- **2.** Specify an IQC (J, Ψ) for Δ . This bounds the Input/output characteristics of Δ .

The analysis procedure consists of the following steps:

- **1.** Express the uncertain system as an LFT $F_U(M, \Delta)$ with the uncertainty/nonlinearity in Δ .
- **2.** Specify an IQC (J, Ψ) for Δ . This bounds the Input/output characteristics of Δ .

 $\sum_{t=0}^{T} z(t)^{\top} J z(t) > 0$

3. Append the IQC dynamics to the system. The appended system has the dynamics of M and Ψ .

$$\begin{bmatrix} x_e(t+1) \\ z(t) \\ e(t) \end{bmatrix} = \begin{bmatrix} \mathcal{A} & \mathcal{B}_1 & \mathcal{B}_2 \\ \mathcal{C}_1 & \mathcal{D}_{11} & \mathcal{D}_{12} \\ \mathcal{C}_2 & \mathcal{D}_{21} & \mathcal{D}_{22} \end{bmatrix} \begin{bmatrix} x_e(t) \\ w(t) \\ d(t) \end{bmatrix}_e^{v}$$

4. Write a dissipation inequality on the appended system exploiting the IQC. (See next slide.)

Note: Multiple uncertainties/nonlinearities can be combined into Δ =diag($\Delta_1, ..., \Delta_n$) and each block can have multiple IQCs.

The appended system has the form: $\begin{bmatrix} x_e(t+1) \\ z(t) \\ e(t) \end{bmatrix} = \begin{bmatrix} \mathcal{A} & \mathcal{B}_1 & \mathcal{B}_2 \\ \mathcal{C}_1 & \mathcal{D}_{11} & \mathcal{D}_{12} \\ \mathcal{C}_2 & \mathcal{D}_{21} & \mathcal{D}_{22} \end{bmatrix} \begin{bmatrix} x_e(t) \\ w(t) \\ d(t) \end{bmatrix}$

Suppose there is a storage function $V(x_e) = x_e^T P x_e$ with $P \ge 0$ such that the dissipation inequality (DI) holds along trajectories:

$$V(x_e(t+1)) - V(x_e(t)) + \begin{bmatrix} e(t) \\ d(t) \end{bmatrix}^{\top} \begin{bmatrix} I & 0 \\ 0 & -\gamma^2 I \end{bmatrix} \begin{bmatrix} e(t) \\ d(t) \end{bmatrix} + z(t)^{\top} J z(t) \le 0$$

The appended system has the form: $\begin{bmatrix} x_e(t+1) \\ z(t) \\ e(t) \end{bmatrix} = \begin{bmatrix} \mathcal{A} & \mathcal{B}_1 & \mathcal{B}_2 \\ \mathcal{C}_1 & \mathcal{D}_{11} & \mathcal{D}_{12} \\ \mathcal{C}_2 & \mathcal{D}_{21} & \mathcal{D}_{22} \end{bmatrix} \begin{bmatrix} x_e(t) \\ w(t) \\ d(t) \end{bmatrix}$

Suppose there is a storage function $V(x_e) = x_e^T P x_e$ with $P \ge 0$ such that the dissipation inequality (DI) holds along trajectories:

$$V(x_e(t+1)) - V(x_e(t)) + \begin{bmatrix} e(t) \\ d(t) \end{bmatrix}^{\top} \begin{bmatrix} I & 0 \\ 0 & -\gamma^2 I \end{bmatrix} \begin{bmatrix} e(t) \\ d(t) \end{bmatrix} + z(t)^{\top} J z(t) \le 0$$

Summing from t = 0 to t = T yields:

$$\underbrace{V(x_e(T+1))}_{\geq 0} - V(x_e(0)) + \sum_{t=0}^{T} e(t)^{\top} e(t) + \underbrace{\sum_{t=0}^{T} z(t)^{\top} J z(t)}_{\geq 0} \leq \gamma^2 \sum_{t=0}^{T} d(t)^{\top} d(t)$$

If $x_e(0) = 0$, $d \in \ell_2$ then we can let $T \to \infty$ to obtain $||e||_2 \le \gamma ||d||_2$. The DI + IQC verifies the uncertain system $F_U(M, \Delta)$ has ℓ_2 gain $\le \gamma$. With a few additional technical details, we can prove $x_e(t) \to 0$.

The appended system has the form: $\begin{bmatrix} x_e(t+1) \\ z(t) \\ e(t) \end{bmatrix} = \begin{bmatrix} \mathcal{A} & \mathcal{B}_1 & \mathcal{B}_2 \\ \mathcal{C}_1 & \mathcal{D}_{11} & \mathcal{D}_{12} \\ \mathcal{C}_2 & \mathcal{D}_{21} & \mathcal{D}_{22} \end{bmatrix} \begin{bmatrix} x_e(t) \\ w(t) \\ d(t) \end{bmatrix}$

Suppose there is a storage function $V(x_e) = x_e^T P x_e$ with $P \ge 0$ such that the dissipation inequality (DI) holds along trajectories:

$$V(x_e(t+1)) - V(x_e(t)) + \begin{bmatrix} e(t) \\ d(t) \end{bmatrix}^{\top} \begin{bmatrix} I & 0 \\ 0 & -\gamma^2 I \end{bmatrix} \begin{bmatrix} e(t) \\ d(t) \end{bmatrix} + z(t)^{\top} J z(t) \le 0$$

This DI can be expressed as an LMI:

$$(\cdot)^{\top} P \begin{bmatrix} \mathcal{A} & \mathcal{B}_1 & \mathcal{B}_2 \end{bmatrix} - \begin{bmatrix} P & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + (\cdot)^{\top} \begin{bmatrix} I & 0 \\ 0 & -\gamma^2 I \end{bmatrix} \begin{bmatrix} \mathcal{C}_2 & \mathcal{D}_{21} & \mathcal{D}_{22} \\ 0 & 0 & I \end{bmatrix}$$

$$+ (\cdot)^{\top} J \begin{bmatrix} \mathcal{C}_1 & \mathcal{D}_{11} & \mathcal{D}_{12} \end{bmatrix} \preceq 0$$

Summary

In this lesson:

- We introduced sum-of-squares (SOS) optimization.
- We merged SOS methods with our dissipation inequality/IQC formalism to assess the stability and performance of polynomial systems. This included results for nonlinear reachability.
- We generalized our dissipation inequality / IQC results to systems that are linear time-varying (LTV) or discrete-time.

Next lesson: Application of the methods to optimization algorithms and games.

Sum of Squares

- Lasserre, Global optimization with polynomials and the problem of moments, SIAM Journal on optimization, 2001.
- Parrilo, Semidefinite programming relaxations for semialgebraic problems,
 Mathematical programming, 2003.
- Balas, Packard, Seiler, Topcu, Robustness analysis of nonlinear systems, ACC Workshop, 2009.
- Summers, Chakraborty, Tan, Topcu, Seiler, Balas, Packard, Quantitative local L2-gain and Reachability analysis for nonlinear systems, IJRNC, 2013.
- Iannelli, Seiler, Marcos, Region of attraction analysis with integral quadratic constraints, Automatica, 2019.
- Papachristodoulou, Anderson, Valmorbida, Prajna, Seiler, Parrilo, Peet, Jagt, SOSTOOLS: Sum of squares optimization toolbox for MATLAB, 2013.

IQCs for LTV Systems

- Jönsson, Robustness of trajectories with finite time extent, Automatica,
 2002.
- Petersen, Ugrinovskii, Savkin, Robust control design using H_{∞} methods, Springer, 2012.
- Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.
- Seiler, Moore, Meissen, Arcak, Packard, Finite Horizon Robustness Analysis
 of LTV Systems Using IQCs, Automatica, 2019.
- Biertümpfel, Theis, Pfifer, Robustness analysis of nonlinear systems along uncertain trajectories, IFAC, 2023.
- Biertümpfel, Pholdee, Bennani, Pfifer, Finite Horizon Worst Case Analysis of Linear Time-Varying Systems Applied to Launch Vehicle, TCST, 2023.
- Seiler, Venkataraman, Trajectory-based robustness analysis for nonlinear systems, IJRNC, 2024.

Nonlinear Reachability Analysis

- Yin, Arcak, Packard, Seiler, Backward reachability for polynomial systems on a finite horizon, IEEE Trans. Automatic Control, vol.66, no.12, pp. 6025-6032, 2021.
- Yin, Seiler, Arcak, Backward reachability using integral quadratic constraints for uncertain nonlinear systems, IEEE L-CSS, vol.5, no.2, pp. 707-712, 2021.
- Yin, Packard, Arcak, Seiler. Reachability analysis using dissipation inequalities for uncertain nonlinear dynamical systems, Systems and Control Letters, vol.142, pp. 104736, 2020.

Discrete-Time IQCs

- Hu, Lacerda, Seiler, Robustness analysis of uncertain discrete-time systems with dissipation inequalities and integral quadratic constraints, IJRNC, 2017.
- Jaoude, Farhood, Customized analytic center cutting plane methods for the discrete-time integral quadratic constraint problem, 2022.
- Fry, Farhood, Seiler, IQC-based robustness analysis of discrete-time linear timevarying systems, IJRNC, 2017.
- Palframan, Fry, Farhood, Robustness analysis of flight controllers for fixed-wing unmanned aircraft systems using integral quadratic constraints, TCST, 2017.
- Lessard, Recht, Packard, Analysis and Design of Optimization Algorithms via Integral Quadratic Constraints, SIAM, 2016.
- Carrasco, Heath, Zhang, Ahmad, Wang. Convex searches for discrete-time Zames—Falb multipliers. IEEE Transactions on Automatic Control, 2019.
- Zames, Falb, Stability conditions for systems with monotone and sloperestricted nonlinearities, SIAM, 1968.
- Scherer, Dissipativity, convexity and tight O'Shea-Zames-Falb multipliers for safety guarantees, IFAC, 2022.

Self-Study Problems

See Web site for problems and solutions.

sites.google.com/berkeley.edu/dissipation-iqc