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Learning Objectives

In this lesson we will

* Discuss the use of sum-of-squares SOS optimizations for
constructing Lyapunov and storage functions for uncertain

polynomial systems.

* Describe the generalization of the dissipation inequality / 1QC
conditions for uncertain systems with time-varying nominal
dynamics.

* Present the corresponding dissipation inequality / IQC results for
the discrete-time systems.




1.
2.
3.
4.

Outline

Sum-of-squares SOS
Time-varying results (LTV)
Nonlinear reachability analysis
Discrete-time results




Region of Attraction (ROA)

Consider the autonomous nonlinear dynamical system
z(t) = f(z(¢))

where x(t) € R" is the state at time t and f: R" — R". Assume:
* f(0) =0,i.e.x =0isan equilibrium point.
 x = 0is an asymptotically stable equilibrium point.
* f is a polynomial function of x.
Define the region of attraction (ROA) as:

R:={¢€R" : lim $(¢.1) =0}
where ¢ (&, t) denotes the solution at time t starting from the
initial condition ¢(&,0) = €.

Objective: Compute or estimate the ROA.

We will show how to perform this computation using sum-of-
squares (SOS) optimization.



Polynomials

 Given a € N", a monomial in n variables is a function

. a a a
Mmy: R® = Rdefinedas my(x):= x; " x,% -+ x,™.

* The degree of a monomial is defined as degm,:= Y. a;.

* A polynomial in n variables is a function p: R™ — R defined as
a finite linear combination of monomials:

D= Z CaMe = Z Ca "
acA acA
where A € N"isafinitesetandc, E RV a € A.

* The set of polynomials in n variables {x;, ..., x,} will be
denoted R|x4, ..., x| or, more compactly, R|x].

* The degree of a polynomial f is defined as

deg [ := maxacA -0 degm,.



Vector Representation

If p is a polynomial of degree < d in n variables then there exists
a coefficient vector c € RW such thatp = ¢ w(x) where

o 2 2 a1’

w(x) = [1, L1, T2y ovvy Tpy TYy T1T2, - ooy Ty onn, a:'n}

: : n+d

And [, denotes the length of w. Itis easy to verify [, = ( -cll_ )

[ O, 1]
Example: Using SOSTOOLs/Multipoly, - )
pvar x1 x2 [ o, x1°2]
[ O, x1*x2]
p = 2*x174 + 2*x173*x2 - x17"2*x2"2 + 5*x274; [ o, %2721
— . . [ O, x173]
x = [x1;x2]; [ 0, x172%x2]
w = monomials(x,0:4); [ 0, =x1*x272]
[ o, X2"3]
c = polyZbasis(p,w); [ 2, x1°4]
[ 2, x173*x2]
[C W] [ -1, x172*x272]
[ 0O, x1*x2"3]
[ 5, X2"4]



Gram Matrix Representation

If p is a polynomial of degree < 2d in n variables then there
existsaQ = Q7 € Rz suchthatp = zT Q z where

z = [1, T1, T2, ..., Tn, T], T1T2, ..., a;,,%, e a;,,‘,ﬂT
The dimension of z is 1, = (" -cll_ d). Equating coefficients of p and
z' Q z yields linear equality constraints on the entries of Q.

n;ll—d).

- There exists A € RW*% and ¢ € RWw such that p = zTQz is
equivalenttoAq = c.

* Definegq:=vec(Q)and l,, = (

* There are h: = 22D — [ linearly independent homogeneous

solutions {N;}; each of which satisfies zTN; z = 0.

Summary: All solutionstop = z" Q z can be expressed as the
sum of a particular solution and a homogeneous solution.



Gram Matrix Example

Polynomial p in two variables:
p = 2x{ + 2x3x, — x¥x% + 5x,
Gram matrix data:

22 ] 2 1 —05 0 0 —0.5
Z = |T1T2| , Q: 1 0 0 ,N: 0 1 0
x5 —05 0 5 | —05 0 0

Note thatp = z'Qzand z" Nz = 0.
Hencep = z'(Q + AN)z for all 1 € R.




Positive Semidefinite (PSD) Polynomials

p € R[x] is positive semi-definite (PSD) if p(x) = 0 Vx.

* If pisa(homogeneous) quadratic function then the Gram
matrix is unique. Moreover, p is PSD iff the Gram matrix is PSD.

* However, testing if p is PSD is NP-hard when the polynomial
degree is at least four.

* Our computational procedures will be based on constructing
polynomials which are PSD.

Objective: Given p € R]|x], we would like a polynomial-time
sufficient condition for testing if p is PSD.




Sum of Squares (SOS) Polynomials

p is a sum of squares (SOS) if there exist polynomials
{f;:}livzl such that D = Z?’:lf‘iz‘

* The set of SOS polynomials in n variables {x4, ..., x, }
will be denoted Z[x4, ..., x,,] or Z[x].
* If pisaSOS then pis PSD.

The Motzkin polynomial, p = x?y* + x*y%? + 1 — 3x%y?,is
PSD but not SOS.

Hilbert (1888) showed that the sets of PSD and SOS
polynomials are equal only for:a)n =1,b)d = 2,and c) d =
4 n=2.

* pisasoSiff 3Q = Q" = Osuchthatp = z'Qz.



SOS Example (Parrilo, PhD, 2000)

All possible Gram matrix representations of
p = 2x{ + 2x}x, — x%x5 + 5x5
are given by z' (Q + A N)z where:

22 | 2 1 —0.5] 0 0 —0.5]
Z = | XL1X2 ,QZ 1 0 0 ,NZ 0 1 0
x5 | —05 0 5 —05 0 0

pisSOSiff Q + AN = 0 forsome A € R.




SOS Example (Parrilo, PhD, 2000)

All possible Gram matrix representations of
p = 2x{ + 2x}x, — x%x5 + 5x5
Q+ AN = 0forsomeAd =5so0pisSOS.

1
' = =
- o
I I

mineig{ Q+ i N)




SOS Example (Parrilo, PhD, 2000)

All possible Gram matrix representations of
p = 2x{ + 2x}x, — x%x5 + 5x5
Q+ AN = 0forsomeAd =5so0pisSOS.

An SOS decomposition can be constructed from a Cholesky
factorization Q + 5N = L'L where:

Lo 121 -3
~ /20 3 1

Thus
p = 2x7 + 22 e — x5 + b

(Lz) ' (L2)
!

1
5 (227 — 323 + x1x2)2 + 5 (23 + 3:615132)2 € X|x]



Connection to LMls

Checking if a given polynomial p is a SOS can be done by solving a
linear matrix inequality (LMI) feasibility problem.

Primal (Image) Form:

* Find A € RW*X!Z and ¢ € RW such that p = z7Qz is equivalent
toAq = c whereq = vec(Q).

* pisaSOSifandonlyif there exists Q = 0 suchthat A q = c.
Dual (Kernel) Form:

e Let Q, be a particular solution of p = zTQz and let {N;}, be a
basis for the homogeneous solutions.

 pisaSOSifand only if there exists 2 € R" such that
h
Qo + ) AiNi 20,
i=1



SOS Feasibility

SOS Feasibility: Given polynomials {f; } =, does there exist a €
R™ such that fy + Y721 fk is a SOS?

The SOS feasibility problem can also be posed as an LMI feasibility
problem since a enters linearly.

Primal (Image) Form:

Find A € RW*Z and ¢, € RW such that f;, = z" Qz is equivalent to
Aq = ¢, where g = vec(Q).
Define C := —[cq, ¢y, ¢, | € RIWXT,
There is an @ € R™ such that f, + Y.y ax fx is a SOS iff there exists
a € R"and Q = 0OsuchthatAq + C a = c,.

Dual (Kernel) Form:

Let Q,, be particular solutions of f;, = z"Q z and let {Nl-}?=1 be a basis
for the homogeneous solutions.

There is an a € R™ such that f, + Y72, a) fi is a SOS iff there exists
a € R™and 1 € R"suchthat Qg + X7, ay Qx + X, A; N; = 0.



SOS Programming
SOS Programming: Given ¢ € R™ and polynomials {f; }1=,, solve:

m
a%;&% ¢' o subject to: fo + ; ar fr € X|x]

This SOS programming problem is an SDP.

The cost is a linear function of «.

The SOS constraint can be replaced with either the primal or dual form
LMI constraint.

A more general SOS program can have many SOS constraints.

There is freely available software (e.g. SOSTOOLS, YALMIP,
SOSOPT) that: (i) Converts the SOS program to an SDP, (ii) Solves

the SDP with available codes, and (iii) Converts the SDP results
back into polynomial solutions.



Complexity of SOS Feasiblity Problem

Let p be a degree 2d polynomial in n variables. The complexity of
the LMI to test if p is an SOS grows rapidly in (n, d).

For example, the Gram matrix Q = QT is [, X [, where the
dependence of [, on (n, d) is shown below.

12::(71§”i) 2d=4 | 6 | 8 10
n—2 6 | 10 | 15 | 21

5 51 | 56 | 126 | 252

9 55 | 220 | 715 | 2002

14 120 | 630 | 3060 | 11628

16 153 | 969 | 4845 | 20349




SOS Programming Example

Problem: Minimize a subject to f, + a f; € X|x]| where
folx) := —x] + 22 29 + 9xi25 — 225

fi(e) =t +a

For every a, A € R, the Gram Matrix Decomposition equality is:
fo+afi=z"(Qo+ Qi+ AN1)z

where
22 ~1 1 45 1 0 0 0 0 —05
2= |X1X2 ,QOZ 1 0 0 ,le 0O 0 O ,N1: 0 1 0
12 45 0 —2 0 0 1 —05 0 0

Thus the problem is equivalent to the SDP

n;\inRoz subject to: Qo + a1 + AN1 >0
a,AC



SOS Programming Example
Use SOSTOOLs to minimize a subject to fy + a f; € X|x].

% Define polynomials in the SOS optimization
pvar x1 x2 alpha;

fO = -x1M4 + 2*x17A3*x2 + 9*x112*x2/2 - 2*x274;
f1=x174 + x274;

% Solve the SOS optimization

prog = sosprogram([x1;x2]); % Define polynomial variables
prog = sosdecvar(prog,alpha); % Define decision variable
prog = sosineq(prog,fO+alpha*f1); % Define SOS constraint

prog = sossetobj(prog,alpha); % Define objective function
prog = sossolve(prog); % Solve optimization
alphaOPT = sosgetsol(prog,alpha) % Get optimal solution
alphaOPT = 2



Global Stability Conditions Using SOS

Revisit the autonomous nonlinear dynamical system
z(t) = f(z(¢))
where x(t) € R" is the state at time t and f: R" — R". Assume
f is a polynomial function of x and f(0) = 0
Theorem: Let [, [, € R[x] be given with [;(0) = 0 and [;(x) >
0 Vx (i = 1,2). The point x = 0 is a globally asymptotically
stable (GAS) equilibrium if 3V € R|[x] such that:
« V(0)=0
e V-1, € X[x]
e =V V- f—1, €Xlx]
Proof: The conditions imply that V is pos. def, decrescent, and

radially unbounded. Moreover, — V' V - f is a positive definite.
Hence V is a Lyapunov function that proves x = 0 is GAS.



Global Stability Example

The following example is sosdemo2 in SOSTOOLs. See Section 4.2

of SOSTOOLS User's Manual.

% Constructing the vector field dx/dt = f
pvar x1 x2 x3; vars = [x1; x2; x3];
f=[(-x1"3-x1*x372)*(x3"2+1); (-x2-x172*x2)*(x372+1); ...
(-x3+3*x172*x3)*(x372+1)-3*x3];
% SOS Program
prog = sosprogram(vars);
[prog,V] = sospolyvar(prog,[x172; x272; x3/2],'wscoeff');
prog = sosineq(prog,V-(x1"2+x272+x3/2));
expr = -(diff(V,x1)*f(1)+diff(V,x2)*f(2)+diff(V,x3)*f(3));
prog = sosineq(prog,expr);
solver_opt.solver = 'sedumi’;
prog = sossolve(prog,solver_opt);
SOLV = sosgetsol(prog,V)
SOLV = 6.6589*x1/2 + 4.6277*x272 + 2.0734*x3"2



Constructing Storage Functions With SOS & 1QC

We can combine SOS and IQC techniques. Consider an uncertain
system F; (M, A) where:

1. M is described by polynomial dynamics: ) LS T "
j::f(w,w,d)a vzgl(%wad) 6292(x7w’d) M ) d
2. A satisfies the QC defined by ] = J . ~] —




Constructing Storage Functions With SOS & 1QC

We can combine SOS and IQC techniques. Consider an uncertain
system F; (M, A) where:

1. M is described by polynomial dynamics: ) LS T .
= f(r,w,d), v=gi(z,w,d) e = go(x,w,d) IV
2. A satisfies the QC defined by ] = J . ~] —
Theorem: F; (M, A) has L, gain < y if 3V € R|x] such that:
V(0) =0
V € X[x]

— (\7 Vi f+(eTe—y?dTd) + [‘Z]T] [5}]) € X[x,w,d]

Comments:

The last condition is a dissipation ineq. with IQC. It is a polynomial in
(x,w, d) after substituting for (v, e) using the output equations of M.

These conditions can be checked as an SOS optimization.



Equilibrium Independent Dissipativity

Recall the Equilibrium Independent Dissipativity (EID) conditions
V(Eaj) — 07 VmV(CE,ZE)Tf(CIJ,’UJ) S s(u—ﬂ,y—gj) (1)
where 14,y are functions of T through f(Z,u) =0, ¥y = h(Z, a).

Assume system defined by polynomial f, h and the supply rate s is
also polynomial. Recall R[z] set of all polynomials and X[x]all SOS
polynomials in x. SOS formulation for EID:

—V.V(z,z)! f(z,u) + s(u — @, h(z,u) — h(Z,u))
+r(z,u,Z,u) f(Z,u) € X[z,u,Z, U]
r(z,u,z,u) € Rlx,u,Z, ul

To enforce V(Z,%) = 0 take V(z,%z) = (z — )1 Q(z, 2)(z — )
where Q(x, Z) is a pos.def. symmetric matrix of polynomials.

Note: Zz,u are independent variables in the SOS program, but the
termr(x,u,Z, ) f(Z,u)ensures (1) holds when f(z,u) = 0.



Delta Dissipativity
Recall the delta dissipativity conditions:
S(z,u) =0¢& f(x,u) =0
VeS(z,u)' f(z,u) + VuS(z,u) v < s(v,w) Vz,u,v
where w := Vg h(z,v) ' f(z,u) + Vyh(z,u) v.
SOS formulation:
s(v,w(z,u,v)) — (Vi S(z,u) " f(z,u) + VuS(z,u) ' v) € T[z,u,v]

where S(z,u) = ¢ (z,u) ' P(z,uw)y(x, u) with user-specified s s.t.
p(z,u) =0 f(z,u) =0

and P symmetric matrix of polynomials, enforced to be pos.def. by

" (P(z,u) — 6Dl € [z, u,l], 6§ >0



Generalizations

* Dynamic IQCs (W, ]) can be combined with the search
for polynomial storage functions.

* “Local” conditions can be constructed to estimate
regions of attraction or local input/output gains.

These conditions involve set containment constraints that can
be relaxed via Lagrange multipliers (S-procedure).

This typically leads to non-convex, bilinear SOS conditions.

Various heuristic iterations have been developed to
approximately solve these conditions.




Time-Varying Systems

Wind Turbine Flexible Aircraft Vega Launcher Robotics
Periodic / Parameter-Varying Time-Varying Time-Varying
Parameter-Varying (Source: ESA) (Source: ReWalk)

The IQC/DI results can be extended to assess
the robustness of time-varying systems.




(Robust) Finite-Horizon Analysis

Uncertain LTV System

w(t)] [A®) Bit) B®)] [=0] [ ] 2

o(t)| = |Ci(t) Di(t) Da(t)| |w(t)| ° w
e(t)|  |C2(t) O 0 | |d@®)] o
x(O):O € — «— (]

Uncertainty set A can be block-structured with
parametric / non-parametric uncertainties and nonlinearities.

Analysis Objective

Derive bound on ||e(T)||2 that holds for all disturbances
|d]|2,10,71 < 1 and uncertainties A € A on the horizon |0, 7.



Integral Quadratic Constraints (1QCs)

The robustness analysis uses constraints on the I/0 behavior of A
expressed as (time-domain) IQCs.

Definition: A satisfies the finite-horizon 1QC defined by a stable
filter ¥ and a matrix | = JT € RMw+mw)X(Mu+nw) if every v €
L,]0,T] and w = A(v) satisfies:

J 2T T2(t) dt > 0

Comments:

* The analysis that follows only requires the IQC to hold over the
finite horizon [O,T].

* The filter ¥ and matrix J can be time-varying with only

notational changes, e.g. we could have a QC with time-varying
sector bounds.



Robustness Analysis

>
v
—> <
with
-
Iy 20T J=(t)dt >0
(Y w
<—
M

e 4t < d

The robustness analysis is performed on the extended
(LTV) system of (J, ¥) using the constraint on z.

T (t)]  [A@) Bi(t) Ba(t)| [ze(t)
z(t) | = |Ci(t) Di(t) Dat)| |w(?)
) e o o | Lde.




Robust Finite Horizon Analysis

Theorem [1,2]

Assume A satisfies the IQC defined by (W, J).
If there exists P(-) = P(-)' such that

(Z) P(T) = CQ (T)TCQ (T), and
(1) V(z,t) := o' P(t)x satisfies

d
Ly (@,8) = 22d(0) T d(0)+2(0) T T2() <O V€ [0.T
then |e(T)|l2 < v||d||2,j0,1]

Proof
Integrate dissipation inequality from t =0to ¢t =T

V(z(T),T) - V(2(0),0) -~ /OT d(t) " d(t)dt + /OT 2(t) T Jz2(t)dt <0

Ve

—e(T) T e(T) —0 < y

~"

>0
[1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.

[2] Seiler, Moore, Meissen, Arcak, Packard, Finite Horizon Robustness Analysis of LTV Systems Using
IQCs, arXiv 2018 and Automatica 2019.



Robust Finite Horizon Analysis

Theorem [1,2]

Assume A satisfies the IQC defined by (W, J).
If there exists P(-) = P(-)' such that

(Z) P(T) = CQ (T)TCQ (T), and
(1) V(z,t) := o' P(t)x satisfies

d
Ly (@,8) = 22d(0) T d(0)+2(0) T T2() <O V€ [0.T
then |e(T)|l2 < v||d||2,j0,1]

Dissipation inequality can be recast as a differential LMI:

P+ A"P+PA PB, PBy
Bl P 0 0 |+ J[Ci D1 D3] =<0
. BP 0 -
vVt € [0,T]

[1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.

[2] Seiler, Moore, Meissen, Arcak, Packard, Finite Horizon Robustness Analysis of LTV Systems Using
IQCs, arXiv 2018 and Automatica 2019.



Numerical Algorithms and Software

* Robustness Algorithms

Differential LMI can be “solved” via convex optimization using
basis functions for P(-) and gridding on time [1].

A more efficient algorithm mixes the differential LMI and a
related Riccati Differential Equation condition [2].

Similar methods developed for LPV [4,5] and periodic systems [6].
* LTVTools Software [3]

Time-varying state space system objects, e.g. obtained from
Simulink snapshot linearizations.

Includes functions for nominal and robustness analyses.

[1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.

[2] Seiler, Moore, Meissen, Arcak, Packard, Finite Horizon Robustness Analysis of LTV Systems Using IQCs,
arXiv 2018 and Automatica 2019.

[3] https://z.umn.edu/LTVTools

[4] Pfifer & Seiler, Less Conservative Robustness Analysis of LPV Systems Using IQCs, IJRNC, 2016.

[5] Hjartarson, Packard, Seiler, LPVTools: A Toolbox for Modeling, Analysis, & Synthesis of LPV Systems, 2015.
[6] Fry, Farhood, Seiler, IQC-based robustness analysis of discrete-time LTV systems, IJRNC 2017.



https://z.umn.edul/LTVTools

Two-Link Robot Arm

Nonlinear dynamics [MZS]:

n=fmra)
where
n= [91» 61,0, HZ]T
T=[1y, 7, |"
d= [dp dz]T
rand d are control torques and
disturbances at the link joints.

Two-Link Diagram [1]

[1] R. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robot Manipulation, 1994.

34




Nominal Trajectory in Cartesian Coordinates




Analysis

Nonlinear dynamics:
n=fmrtd)
Linearize along the finite —horizon trajectory (77,7, d = 0)
x =At)x + B(t)u + B(t)d
Design finite-horizon state-feedback LQR gain.

dy -
Goal: Compute boundon 4 f |

: oL : —% g x
the final position accounting - X ?_’
for disturbances and LTI

O

Y
o

Y

uncertainty A at 2nd joint. K |




Monte-Carlo Simulations

Closed-Loop with ||d|| <=5

92 (rads)
o

2.5

3.5 L L L L I

61 (rads)

LTV simulations with randomly sampled disturbances and
uncertainties (overlaid on nominal trajectory).



92 (rads)
o

-3.5

Robustness Bound

Closed-Loop with ||d|| <=5

61 (rads)

Cyan disk is bound computed in 102 sec using IQC/DI method

Bound accounts for disturbances ||d||[<5 and ||A|[<0.8



Worst-Case Uncertainty / Disturbance

Closed-Loop with ||d|| <=5

0.5

92 (rads)
o

35 L L L L I
0 1 2 3 4 5

0, (rads)
1
Randomly sample A to find “bad” perturbation and compute corresponding worst-case

disturbance using method in [1].
[1] lannelli, Seiler, Marcos, Construction of worst-case disturbances for LTV systems..., 2019.



Intermezzo

Given two functions p, ¢ : R"” — R how can we show
{z :p(z) <0} C {z:q(x) <0} (1)
i.e., p(x) <0 = q(z) <07
If we can find A : R"™ — R such that
ANz)p(z) —q(z) >0 VzeR" (2)
then g(x) < A(z)p(x)and, since \(z) > 0,p(z) <0 = q(z) <O0.

The idea of using the nonnegativity property (2) to show the set
containment (1) is called the S-procedure in control theory.

When p, g are polynomials we can apply the S procedure with SOS
programming: find polynomial A(x) such that

AMzx) € Xlz]
Az)p(x) — q(z) € Xlz]



Nonlinear Reachability Analysis

1. Forward Reachability: Bounding trajectories from a set of initial
conditions in the presence disturbances and unmodeled dynamics

(:: nominal plant model
—_— A

:.UG — f(:cGHw)d)
v = h(zg,w,d) v w
d: disturbance N
G p q
A: unmodeled dynamics

characterized by I1QC:




Nonlinear Reachability Analysis

Goal: Given set of initial conditions X find an outer bound on
trajectories at time T for all A satisfying the IQC and for all d s.t.

Idlc, om) < R- —
Lump plant and filter into single ----n /T Z(t)f;\t;z(t)dt =0
model with state z = [z¢g; xy]: " A 0
t = F(z,w,d) of T w
z=H(z,w,d) ¢ T

If 3 storage function (¢, x) — V (¢, x) s.t.

V(t,z,w,d)+2"Mz<d"d Vtel0,T] &m
Xo x {03} € {z:V(0,2) <0}

then projection of {z : V(T,z) < R?} ontoz¢ subspace D FRS.

42




Nonlinear Reachability Analysis

Proof by integrating dissipation inequality from O to T":

V(T, z(T)) — V (0, 5(0)) + /O 2(1)T Ma(r)dr < /O d(t) T d(t)dt

N >4 N >4
WV WV

>0 <R?2
Then, zg(0) € Xo,z¢(0) =0 = V(0,2(0)) <0 = V(T,z(T)) < R?

SOS procedure to find V:

e Use semi-algebraic (sublevel set of polynomial) representation of
Xo and polynomial approximation of system model

* View dissipation inequality as a nonnegativity constraint

 Turn set containment condition X X {0,,} C {z: V(0,2) < 0}
to nonnegativity constraint with S-procedure

e SOS relaxation for nonnegativity; SOS then translated into SDP



Nonlinear Reachability Analysis

Example: Generic Transport Model (GTM)
 5.5% scale commercial aircraft

* State variables: airspeed (x{), angle of
attack (x,), pitch rate (x3), pitch angle (x,) :
* Controls: elevator deflection (upjey), |
engine throttle (u;y)

* Xp: ellipsoid around the equilibrium
e Disturbance and unmodeled dynamics in elevator control channel:

x1 — 4 plane

40 d +=O v + lUelev =V + W
A
+ 'TJF Uth = Ugn | GTM
20 » /A ma >

r4 [deg]

== samples of ¢ (1)
2030 40 50 € 70 ppe actimate for ||d|| z,,j0,77 < 0.004, [[All 2,2, < 0.4




Nonlinear Reachability Analysis

2. Backward Reachability: Given target set X1 find a set of initial
states (BRS) and a controller that drives states from BRS to X

(:: nominal plant model

TG = f(CUG,’UJ,d) + g(xGa wad)u
v = h(zg,w,d) v w

d: disturbance

A: unmodeled dynamics
characterized by IQC as before

Control design now part of
the formulation:

u(t) = k(t, z¢(t))




Nonlinear Reachability Analysis

If 3 storage function (¢, z) — V (¢, z) and control u(t) = k(t, z(t)):
0.V (t,x) + 0,V (t,x) - F(z,w,d, k(t,zg)) +2' Mz <d'd Vte[0,T]
{zq : V(T [z¢;zy]) < R? Fz¢} C Xp

then {zg : V(0, [zg; 0]) < 0} is a BRS inner approximation.

e (Can use SOS to search for V and k by restricting V, k, F, H to be
polynomials and X+ to be semi-algebraic

* The dissipation inequality is
bilinear in IV and k. Alternate the
search between the two.

* BRS inner-approximation is
useful even if we don’t commit
to using the control k obtained
along with the approximation.
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Nonlinear Reachability Analysis

Example: Six-state quadrotor model
jjl = I3,

fb2 — T4,

fB3 - ulK SiIl(CE5),

Credit: DJI

4 = u1 K cos(zs) — gn,
u; € [—1.5,1.5] + g,/ K: total trust

£b5 — Tg, .
, ug € [—7m/12,7/12]: desired roll angle
Te = —doTs — d1Te + NoU2 . , ,

Additive uncertainty A acting on us:

x1 : horizontal position

xo : vertical position T e
. . »O—>
x3 : horizontal velocity f+
x4 : vertical velocity e A Ta
x5 : roll 22
xe : roll velocity "




Nonlinear Reachability Analysis

Example: Six-state quadrotor model
BRS inner-approximation with
degree-2 and degree-4 polynomial
storage functions:

1 ' degree 2 1

-y _Xt |
—-—-degree 4|

Credit: DJI

& 0 &
 [|Allz,—e, 0.2
p * Computation times:
b o : 18 min. for degree-2;
N 60 min for degree-4
05 * Higher degree: tighter
§ 0 8

approximation but
longer computation




Nonlinear Reachability Analysis

Key take-aways:

* We can account for dynamic uncertainty in reachability analysis

Dissipation formulation played a key role:

to accommodate dynamic uncertainty (described by IQCs) and
disturbances simultaneously

to translate analysis/synthesis to optimization problems, via
S-procedure and SOS programming

No gridding of state space required (unlike Hamilton-Jacobi or
symbolic control methods, which suffer exponential growth in
complexity with state dimension).

However, scalability is still a challenge for the SOS procedures
mentioned




Discrete-Time 1QCs

We can define discrete-time IQCs analogously to their continuous-
time counterparts. In this case, “summation quadratic constraints”

(SQCs) would be more appropriate terminology but we’ll continue to
use “IQCs “

Definition: A discrete-time system A satisfies the IQC defined by a

stable filter ¥ and a matrix J = JT € RMw+w)X(Mw+1w) if every v € £,
and w = A(v) satisfies:

S oz(t) " Jz(t) >0VT >0

> Z
|\ —
—
(V) A w
. . —l >.
Most continuous-time IQCs have

similar discrete-time versions.

We'll briefly discuss a few cases on the next slides.



Example: Sector-bounded Nonlinearity

s A (w(t) — av(t)) - (Bo(t) —w(t)) = 0
Suppose A is a nonlinearity, I
w = f(v), whose graph lies T
o ; v(t) —2af a+ B |v(t)
the sector |a, f]. [w(t)] [Oé—l—ﬁ _2 ] [w(t)] > ()
N —

A satisfies the static QC
defined by J.




Example: Slope-Restricted Nonlinearity

o < wl)zwlta) < gy (4y) £ y(ts)

v W — U(tl)—’v(tz)

— A |—> I

Suppose A is a nonlinearity, (8 — aby) - (By — 8y) >0
w = f(v), whose slope lies where 0y, := w(ty) — w(tz)
in |a, 8] and f(0) = 0. and 0, := v(t1) — v(t2)

N I




Example: Slope-Restricted Nonlinearity

v w v — [ v
—> A —> —> v(t—1)
U 0
UQ_» A /Uigt) _w(t — 1)_
Suppose A is a nonlinearity,

w = f(v), whose slope lies +[-2a8 a+pB][1 -1 0 O
in [a, 5] and £(0) = 0. O s | PR

Define W as the system shown above. It contains delays to store
v(t — 1) and w(t — 1). Then, A satisfies the IQC defined by (¥, ]).

* This is called the “off-by-one” 1QC [Lessard, Recht, Packard, 2016].

* This leads to the more general Zames-Falb 1QC [Carrasco, et al, 2019;
Scherer, 2022; Zames, Falb, 1968].




Slope-Restricted Nonlinearity

Wake-up Problems

Suppose A is a nonlinearity, w = f(v), whose
slope liesin [a, 8] = [0,1] and f(0) = 0.

1) Write a quadratic constraints on [v(t), w(t)]" representing the
sector constraint at time t.

2) Write a quadratic constraints on [v(t — 1), w(t — 1)]7
representing the sector constraint attime t — 1.

3) Write a quadratic constraints on [v(t), v(t — 1), w(t), w(t — 1)]T
representing the slope constraint at times t and t — 1.

v w
— A —>

4) Write a general QC formed by the conic combination of the QCs
created in parts a)-c). Note that you can scale QC i by a non-
negative constant A; fori = 1,2,3.



Constructing storage functions using 1QCs

The analysis procedure consists of the following steps:
1. Express the uncertain system as an LFT F; (M, A)
with the uncertainty/nonlinearity in A.

(% w

A

e M d

2. Specify an I1QC (J, W) for A. This bounds the ) )
Input/output characteristics of A.




Constructing storage functions using 1QCs

The analysis procedure consists of the following steps: A

1. Express the uncertain system as an LFT Fy(M,A) w
with the uncertainty/nonlinearity in A. ] v
2. Specify an I1QC (J, W) for A. This bounds the D N

Input/output characteristics of A.
3. Append the IQC dynamics to the system. The

YL oz()TJz(t) >0

Y Y
N

appended system has the dynamics of M and .

Y

CEe(t + 1) ./4 Bl BQ ZCe(t)
Z(t) = Cl Dll Dlg w(t) v < w
€(t) CQ Dgl DQQ d(t) . M d

4. Write a dissipation inequality on the
appended system exploiting the 1QC. (See next slide.)

Note: Multiple uncertainties/nonlinearities can be combined into

A=diag(A4, ..., 4;) and each block can have multiple 1QCs.



Constructing storage functions using 1QCs

A Bl BQ:| |:$e(t):|
Cl Dll Dlg w(t)

C2 Dgl D22 d(t)

Te(t+1)
z(1)
e(t)
Suppose there is a storage function V(x,) = x2 P x, with P > 0 such

that the dissipation inequality (DI) holds along trajectories:

The appended system has the form:

Viwo(t+1)) = V(za(t)) + [dﬂr [I 0 ] [6“)] a8 Ta() <0

d(t)| [0 —~2I| |d(t)




Constructing storage functions using 1QCs

A Bl BQ:| |:$e(t):|
Cl Dll Dlg w(t)

Co Doy Doo| | d(t)

Te(t+1)
z(
e(
Suppose there is a storage function V(x,) = x2 P x, with P > 0 such
that the dissipation inequality (DI) holds along trajectories:

The appended system has the form:

t)
t)

Vet + 1)) — Vize(t)) + [‘;Eg] T [é e 1] [223] ()T T(t) <0

Summing fromt =0tot =T yields:
V(ze(T + 1)) =V(2:(0)) + Z{ge(t) "e(t) + Zig 2(t) " Jz(t) <28 d(t) " d(t)

A\ . 7 A\ . 7
~ ~

>0 >0

If x,(0) =0,d € £, thenwe can let T — oo to obtain ||e]], < v]|d]]>.

The DI + IQC verifies the uncertain system F;(M, A) has €, gain < .
With a few additional technical details, we can prove x,(t) — 0.



Constructing storage functions using 1QCs

A Bl BQ:| |:$e(t):|
Cl Dll Dlg w(t)

Co Doy Doo| | d(t)

Te(t+1)
z(1)
e(t)
Suppose there is a storage function V(x,) = x2 P x, with P > 0 such

that the dissipation inequality (DI) holds along trajectories:

The appended system has the form:

Vet + 1)) — Vize(t)) + [fz%] T [é e 1] [223] ()T T(t) <0

This DI can be expressed as an LMI:

P 0 0] e [1 0 ”(32 Doy D22]

N
() PA B Baf - 0 —2I||0 0 I

0 0 0
0 0 0

+()'J[C1 D11 Di2] X0




Summary

In this lesson:
 We introduced sum-of-squares (SOS) optimization.

* We merged SOS methods with our dissipation inequality/IQC
formalism to assess the stability and performance of polynomial
systems. This included results for nonlinear reachability.

* We generalized our dissipation inequality / 1QC results to systems
that are linear time-varying (LTV) or discrete-time.

Next lesson: Application of the methods to optimization algorithms
and games.
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Self-Study Problems

See Web site for problems and solutions.
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sites.google.com/berkeley.edu/dissipation-igc



https://sites.google.com/berkeley.edu/dissipation-iqc

