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Learning Objectives

In this lesson we will

• Briefly review theory of convex optimization with a focus on the 
special class of semidefinite programs (SDPs).

• Discuss software tools for solving SDPs and related computational 
issues that arise when using these tools.

• Present numerical examples that that demonstrate the use of 
dissipation inequalities and QCs/IQCs.
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Outline

1. Brief review of convex optimization and SDPs
2. Computational issues
3. Numerical examples
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Finite-Dimensional Optimization
We will consider a finite-dimensional optimization of the form:

where:
• 𝑥 ∈ ℝ! is the vector of optimization (decision) variables.
• 𝑓": ℝ! → ℝ is the objective function
• 𝑆 is the set of feasible decision variables. This is often described by a 

collection of (possibly nonlinear) inequality and equality constraints.

Definition: 𝑥∗ ∈ ℝ"   is (globally) optimal if 𝑥∗ ∈ 𝑆 and 𝑓#(𝑥∗) ≤
𝑓#(𝑥)	for any other 𝑥 ∈ 𝑆. The optimal cost is 𝑝∗ = 𝑓#(𝑥∗).

Definition: 𝑥̅ ∈ ℝ"   is locally optimal if for some 𝑅 > 0, 
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Finite-Dimensional Optimization
We will consider a finite-dimensional optimization of the form:

where:
• 𝑥 ∈ ℝ! is the vector of optimization (decision) variables.
• 𝑓": ℝ! → ℝ is the objective function
• 𝑆 is the set of feasible decision variables. This is often described by a 

collection of (possibly nonlinear) inequality and equality constraints.

Comments:
• We define 𝑝∗ = +∞ if there are no feasible values (𝑆 = ∅).
• An optimization can have zero, one, or many optimal points.
• We will show that our DI+IQC conditions can be formulated as a 

special type of (convex) optimization: a semidefinite program.
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Convex Sets
Definition: A set 𝑆 ⊆ ℝ! is convex if

holds for all 𝑥", 𝑥# ∈ 𝑆 and all 𝜆 ∈ 0,1 .

In other words, a convex set is one that contains the line 
segment that connects any two points in the set.

               Convex                                             Not Convex
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Convex Functions
Definition: A function 𝑓:ℝ! → ℝ is convex if

holds for all 𝑥", 𝑥# ∈ ℝ! and all 𝜆 ∈ 0,1 . 
f is concave if -f is convex.

              Convex                                          Not Convex
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Convex Functions
There are many conditions to verify convexity of a function 
𝑓:ℝ" → ℝ including:
1. First-order condition: The function 𝑓 is differentiable and

where 𝛻𝑓 𝑥̅ = !"
!#!

𝑥̅ … !"
!#"

𝑥̅
$

.  

Convex functions are lower bounded by first-order (linear) 
approximations.
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Convex Functions
There are many conditions to verify convexity of a function 
𝑓:ℝ" → ℝ including:
1. First-order condition: The function 𝑓 is differentiable and

2. Second-order condition: The function 𝑓 is twice differentiable 
and the Hessian 𝛻$𝑓(𝑥) is an 𝑣×𝑣 positive semidefinite matrix 
for all 𝑥 ∈ ℝ".  The (𝑖, 𝑗) entry of the Hessian is %&'

%()%(*
(&).
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Convex Functions
There are many conditions to verify convexity of a function 
𝑓:ℝ" → ℝ including:
1. First-order condition: The function 𝑓 is differentiable and

2. Second-order condition: The function 𝑓 is twice differentiable 
and the Hessian 𝛻$𝑓(𝑥) is an 𝑣×𝑣 positive semidefinite matrix 
for all 𝑥 ∈ ℝ".  The (𝑖, 𝑗) entry of the Hessian is %&'

%()%(*
(&).

3. 1D Restriction: The function 𝑓 is convex when restricted to any 
line:  if 𝑔:ℝ → ℝ is defined by 𝑔 𝑡 ≔ 𝑓(𝑥( + 𝑡𝑥$) for any 
𝑥(, 𝑥$ ∈ ℝ"  then 𝑔 is a convex function of 𝑡.

There are many other similar conditions, e.g. functions with a 
restricted domain, conditions for strict convexity, etc.
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Convex Sets and Functions
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Wake-up Problems
1) Which of the following functions is convex?
a)  ReLU, 𝑤 = 𝑓 𝑣 :=	max 	𝑣, 0	
b)  𝑤 = 𝑓 𝑣 = −𝑣$

c)  𝑤 = trace(𝑀𝑉) where M = 1 2
2 3  and 𝑉 = 𝑉)

2) Which of the following sets is convex?
a)  𝑆 ≔ {𝑧 ∈ ℂ ∶ 𝑧 ≤ 1}
b)  𝑆 ≔ {𝑧 ∈ ℂ ∶ 𝑧 = 1}
c)  𝑆 ≔ {𝑥 ∈ ℝ$ ∶ 𝑥($ + 𝑥$$ ≤ 1}

d)  𝑆 ≔ 𝑣
𝑟 ∈ ℝ" ∶ 𝑣" ≤ 𝑟



Convex Optimization
Again, consider a finite-dimensional optimization of the form:

Definition: This is a convex optimization if the objective 𝑓#: ℝ" →
ℝ is a convex function and the feasible set 𝑆 is convex.

A key property is that every locally optimal point of a convex 
optimization is also globally optimal. 
• Any algorithm that computes a local optima, e.g. gradient 

descent, computes a global optima.
• There are fast and reliable software for certain classes of 

convex optimizations.
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Linear Matrix Inequalities (LMIs)
Definition: Let symmetric matrices 𝐹* *+#" ⊂ ℝ,×, be given. An 
LMI is a constraint on 𝑥 ∈ ℝ"  of the form:

𝐹 𝑥 ≔ 𝐹# + 𝑥(𝐹( +⋯+ 𝑥"𝐹" ≤ 0
In other words, 𝐹(𝑥) is negative semidefinite.

Fact: The set 𝑆 ≔ 𝑥 ∈ ℝ" ∶ 𝐹 𝑥 ≤ 0  is convex.
Proof: Take any 𝑥(, 𝑥$ ∈ 𝑆 so that 𝐹 𝑥( ≤ 0 and 𝐹 𝑥$ ≤ 0.
Define 𝑥 = 𝜆𝑥( + 1 − 𝜆 𝑥$ where 𝜆 ∈ 0,1 . Then,

𝐹 𝑥 = 𝜆	𝐹 𝑥( + 1 − 𝜆 	𝐹 𝑥$ ≤ 0	 ⟹ 	 𝑥 ∈ 𝑆

Fact: Two LMI constraints 𝐺 𝑥 ≤ 0 and 𝐻 𝑥 ≤ 	0 can be 
combined into a single, equivalent LMI constraint:

𝐹 𝑥 ≔ 𝐺 𝑥 0
0 𝐻 𝑥 ≤ 0
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Linear Matrix Inequalities (LMIs)
Example: Let a 2-by-2 matrix 𝐴 be given.  Consider the following 
set of 2-by-2 symmetric matrices:

𝑆 ≔ {𝑃 = 𝑃) ∶ 𝑃 ≥ 𝐼	and	𝐴)𝑃 + 𝑃𝐴 ≤ 0}
This set can be expressed by an LMI as follows:

1. Express 𝑃 =
𝑥% 𝑥&
𝑥& 𝑥'  where 𝑥(, 𝑥$, 𝑥. are scalar variables.

2. Combine the two LMIs as: 𝐴
$𝑃 + 𝑃𝐴 0
0 𝐼 − 𝑃

≤ 0

3. Define a basis for 2-by-2 symmetric matrices:
𝐸%: =

1 0
0 0 , 𝐸&: =

0 1
1 0 , 𝐸': =

0 0
0 1

4. Expand the single LMI in step 2 using the basis in step 3:
0 0
0 𝐼 + 𝑥!

𝐴"𝐸! + 𝐸!𝐴 0
0 −𝐸!

+ 𝑥#
𝐴"𝐸# + 𝐸#𝐴 0

0 −𝐸#
+ 𝑥$

𝐴"𝐸$ + 𝐸$𝐴 0
0 −𝐸$

≤ 0
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Linear Matrix Inequalities (LMIs)
Example: Let a 2-by-2 matrix 𝐴 be given.  Consider the following 
set of 2-by-2 symmetric matrices:

𝑆 ≔ {𝑃 = 𝑃) ∶ 𝑃 ≥ 𝐼	and	𝐴)𝑃 + 𝑃𝐴 ≤ 0}
This set can be expressed by an LMI as follows:

𝑆 ≔ {𝑥 ∈ ℝ. ∶ 	𝐹 𝑥 ≔ 𝐹# + 𝑥(𝐹( + 𝑥$𝐹$ + 𝑥.𝐹. ≤ 0}
where:

𝐹# ≔
0 0
0 𝐼

𝐹$ ≔
𝐴!𝐸$ + 𝐸$𝐴 0

0 −𝐸$
𝐹" ≔

𝐴!𝐸" + 𝐸"𝐴 0
0 −𝐸"

𝐹% ≔
𝐴!𝐸% + 𝐸%𝐴 0

0 −𝐸%
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Semidefinite Programs (SDPs)
Definition: A semidefinite program is an optimization with a linear 
objective function and an LMI constraint:

where 𝑐 ∈ ℝ" and symmetric matrices  𝐹* *+#" ⊂ ℝ,×, are given.

Comments:
1. The linear objective function is convex and the LMI constraint 
defines a convex feasible set ⟹ An SDP is a convex optimization.
2. Equality constraints Ax=b can also be added to the problem.
3. There are many parsers and solvers that can efficiently solve 
this class of problems (with “moderate” size). The most common 
algorithms use primal-dual formulations.
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Semidefinite Programs (SDPs)
Example: Let a 2-by-2 matrix 𝐴 be given. Define the optimization:

This can be expressed as an SDP as follows:

1. Express 𝑃 =
𝑥% 𝑥&
𝑥& 𝑥'  where 𝑥(, 𝑥$, 𝑥. are scalar variables.

2. Combine the two LMIs as: 𝐴
$𝑃 + 𝑃𝐴 0
0 𝐼 − 𝑃

≤ 0

3. Define a basis for 2-by-2 symmetric matrices:
𝐸%: =

1 0
0 0 , 𝐸&: =

0 1
1 0 , 𝐸': =

0 0
0 1

4. Expand the single LMI in step 2 using the basis in step 3:
0 0
0 𝐼 + 𝑥!

𝐴"𝐸! + 𝐸!𝐴 0
0 −𝐸!

+ 𝑥#
𝐴"𝐸# + 𝐸#𝐴 0

0 −𝐸#
+ 𝑥$

𝐴"𝐸$ + 𝐸$𝐴 0
0 −𝐸$

≤ 0

5. Rewrite the objective as trace 𝑃 = 𝑐$𝑥 where 𝑐 = 1, 0, 1 $.
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Semidefinite Programs (SDPs)
Example: Let a 2-by-2 matrix 𝐴 be given. Define the optimization:

This can be expressed as an SDP as follows:

where:
𝑐 = 1, 0, 1 $

𝐹( ≔
0 0
0 𝐼

𝐹% ≔
𝐴$𝐸% + 𝐸%𝐴 0

0 −𝐸%
𝐹& ≔

𝐴$𝐸& + 𝐸&𝐴 0
0 −𝐸&

𝐹' ≔
𝐴$𝐸' + 𝐸'𝐴 0

0 −𝐸'
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Convex Optimization / SDPs
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Wake-up Problem
Consider the following nonlinear system:
𝑥̇ 𝑡 = −3𝑥(𝑡) + 𝜙(𝑥(𝑡)) where 𝜙:ℝ → ℝ is in the sector −2,2 .

The system can be expressed as:
       𝑥̇ 𝑡 = −3𝑥(𝑡) + 𝑤(𝑡) and 𝑤(𝑡) = 𝜙(𝑥(𝑡))

A) Define a matrix 𝐽 = 𝐽) such that:
B) If ∃ 𝜆 ≥ 0 and 𝛼 > 0 such that 𝑉(𝑥) = 𝑥$ satisfies the following 
along all trajectories:

then 𝑥 𝑡 → 	0 exponentially with rate 𝛼.      
Write an SDP to find the maximal 𝛼 subject to this condition.
C) Solve this SDP analytically for the maximal 𝛼∗.



Computational Issues
There are many available solvers for SDPs including Mosek, 
Sedumi, SDPT3, and LMILab.

We often express the LMI constraints using matrix variables, e.g. 
𝑃 ≥ 	𝐼 or 𝐴)𝑃	 + 	𝑃𝐴 ≤ 	0. However, solvers often require the 
SDP to have a single LMI expressed in standard form:

𝐹 𝑥 ≔ 𝐹# + 𝑥(𝐹( +⋯+ 𝑥"𝐹" ≤ 0

It can be cumbersome and time-consuming to convert this to 
standard form. Numerous parsers have been developed to aid in 
this conversion process, e.g. CVX or YALMIP. 

There is a vast literature on numerical algorithms. The next few 
slides will highlight a few key issues with these tools.
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User Interface / Parsers
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To make this concrete, consider the following SDP with A given:

The constraint 𝐴)	𝑃	 + 	𝑃	𝐴 ≤ 	0 is called a Lyapunov inequality. 



User Interface / Parsers
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To make this concrete, consider the following SDP with A given:

CVX code to implement this in Matlab is:
 cvx_begin sdp

  variable P(n,n) symmetric;

  P >= eye(n);

  (A'*P+P*A ) <= 0;

  minimize( trace(P) );
 cvx_end

The code almost exactly matches the SDP at the top of the page. 
This can also be implemented in Python using CVXPY.
CVX converts this to a standard form for an SDP solver (selected 
by the user), calls the solver, and transforms the solution back.



User Interface / Parsers
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To make this concrete, consider the following SDP with A given:

Contrast this with the code to efficiently implement this SDP 
using a typical solver, e.g. Matlab code for Sedumi is: 
 K.s = [n n];
 lidx = find( tril( ones(n,n) ) );
 bs = A’+A; 
 bs = bs(lidx);
 I = eye(n);  
 At = A’;
 tmp = kron(A',eye(n))+kron(eye(n),A’);
 As = [-reshape(tmp,[n^2,n^2]) -speye(n^2)]; 
 As = As(lidx,:);
 cs = speye(n); 
 cs = [cs(:); sparse(n^2,1)];
 [xs,ys,infos] = sedumi(As,bs,cs,K);



User Interface / Parsers
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To make this concrete, consider the following SDP with A given:

Comments:
• User interfaces make it very easy to implement and solve SDPs. 
• However,  the conversion may not yield the best 

implementation in terms of computational cost, memory, and 
numerical conditioning.

User interfaces, e.g. CVX and Yalmip, are useful tools for 
prototyping or “one-off” implementations. A direct solver 
implementation should be used when high re-use or high 
efficiency is required.



Computational Complexity
Consider an SDP in standard form with 𝑣 variables and an 𝑚×	𝑚 
LMI constraint:

Section 11.8.3 of Boyd & Vandeberghe estimate that the number 
of floating point operations for a general primal/dual algorithm 
to solve this problem is (order of magnitude):

max(𝑣𝑚., 	𝑣$𝑚$, 	𝑣. )

Specialized solvers can be faster for problems with sparsity or 
structure but this provides a good estimate for general problems. 
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Computational Complexity
Consider again the following SDP with A given:

This problem has 𝑣 = +(+-.)
' = 𝑂 𝑛$  scalar decision variables 

corresponding to the entries of 𝑃. The two constraints can be 
stacked into a single LMI of dimension 𝑚 = 2𝑛 = 𝑂 𝑛 . 

The number of floating point operations to solve this SDP scales 
roughly as follows (neglecting constants):

max 𝑣𝑚., 	𝑣$𝑚$,	𝑣. 	~max 𝑛7, 𝑛8, 𝑛8 ~	𝑂(𝑛8)
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Computational Complexity
Consider again the following SDP with A given:

The number of floating point operations scales as 𝑂(𝑛8).

For comparison, consider the Lyapunov equation with A given:
𝐴)𝑃 + 𝑃𝐴 = −𝐼

If A is Hurwitz then P>0. 

Note: The solution of the Lyapunov equation is not necessarily 
the same as the min trace solution (even after accounting for a 
constant scaling). However, it does provide a useful comparison.
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Computational Complexity
Consider again the following SDP with A given:

The number of floating point operations scales as 𝑂(𝑛8).

For comparison, consider the Lyapunov equation with A given:
𝐴)𝑃 + 𝑃𝐴 = −𝐼

If A is Hurwitz then P>0. This is a linear equation in P and the 
algorithm by Bartels & Stewart (‘72 ACM) scales as 𝑂(𝑛.).

SDPs are much more expensive to solve than typical equations 
that arise in control problems (Lyapunov, Riccati, etc).  However, 
they are still relatively efficient and can be used to solve 
problems even as the dimension grows to a few hundred.
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Computational Complexity
Computation time vs. problem size n on a standard laptop. 
The Lyapunov equation can be solved in <100 seconds for 𝑛 =
	6000 while the SDP solve time is >1000 seconds for 𝑛 = 	200.

 Lyapunov Equation                      Lyapunov SDP with CVX+SDPT3 
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Computational Complexity
Computation time vs. problem size n on a standard laptop. 
The plots below compare CVX with both Mosek and SDPT3. The 
scaling is similar for both solvers.

 Lyapunov SDP with CVX+Mosek Lyapunov SDP with CVX+SDPT3 
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Strict vs. Non-strict Inequalities
We posed SDPs in standard form with non-strict inequalities:

𝑥 is feasible if 𝐹(𝑥) is a negative semidefinite matrix.
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Strict vs. Non-strict Inequalities
We posed SDPs in standard form with non-strict inequalities:

Issue:
• Most solvers enforce LMIs using non-strict inequalities. LMILab is one 

exception which enforces LMIs with strict constraints.
• However, Lyapunov conditions typically require strict inequalities, e.g. 
𝑃 > 0 and 𝐴!	𝑃	 + 	𝑃	𝐴	 < 	0.

• This may appear to be a minor technical issue.  However, numerical 
errors can cause solvers to return slightly infeasible solutions, e.g. a 
Lyapunov matrix P with a slightly negative eigenvalue.

• These errors can lead to incorrect stability/performance conclusions.

Solutions:
• Enforce constraints as 𝐹 𝑥 ≤ −𝜖	𝐼 for some “small” 𝜖 > 0.
• Use a solver that strictly enforces constraints, e.g. LMILab.
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History: Numerical Algorithms
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Convex Optimization / SDPs
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Wake-up Problem
Download and install CVX if you don’t already have it installed.
Run the following test example:

A = [-2 20; 0 -2];

n = size(A,1);

cvx_begin sdp

 variable P(n,n) symmetric;

 P >= eye(n);

 (A'*P+P*A ) <= 0;

 minimize( trace(P) );
cvx_end

Your optimal P should be (up to numerical errors):
P =    1.0000    0.0001

       0.0001   25.0000



Numerical Example 1: Sector-Bounded NL
Consider the feedback system below with:

𝐾9 = 20 and 𝐺 𝑠 = 0
1'-21-3

Assume Δ is a static, memoryless nonlinearity in the sector [1	 −
	𝑝, 1	 + 	𝑝] where 𝑝 represents the level of nonlinearity.

We will study the effect of the nonlinearity on the gain from 
reference r to error e.
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Numerical Example 1: Sector-Bounded NL
Step 1: Express the uncertain system as an 
LFT 𝐹:(𝑀, Δ) with the nonlinearity in  Δ.
• 𝑤	 = Δ(𝑣) and Δ is the nonlinearity.

•                         and
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Numerical Example 1: Sector-Bounded NL
Step 1: Express the uncertain system as an 
LFT 𝐹:(𝑀, Δ) with the nonlinearity in  Δ.
• 𝑤	 = Δ(𝑣) and Δ is the nonlinearity.

•                         and

Sanity check: If Δ = 1 then the 
closed-loop from 𝑟 to 𝑒 is the 

sensitivity 𝑆 𝑠 = (
(;< = >4

.
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Numerical Example 1: Sector-Bounded NL
Step 1: Express the uncertain system as an 
LFT 𝐹:(𝑀, Δ) with the nonlinearity in  Δ.
• 𝑤	 = Δ(𝑣) and Δ is the nonlinearity.

•                         and

Sanity check: If Δ = 1 then the 
closed-loop from 𝑟 to 𝑒 is the 

sensitivity 𝑆 𝑠 = (
(;< = >4

.

𝐹:(𝑀, 1) matches 𝑆(𝑠) thus
verifying our construction. Note
that ||𝑆||? = 1.53.
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Numerical Example 1: Sector-Bounded NL
Step 1: Express the uncertain system as an 
LFT 𝐹:(𝑀, Δ) with the nonlinearity in  Δ.
• 𝑤	 = Δ(𝑣) and Δ is the nonlinearity.

•                         and

Step 2: Specify a static QC 𝐽 for Δ in the sector [1 − 𝑝, 1 + 𝑝].
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Numerical Example 1: Sector-Bounded NL
Step 1: Express the uncertain system as an 
LFT 𝐹:(𝑀, Δ) with the nonlinearity in  Δ.
• 𝑤	 = Δ(𝑣) and Δ is the nonlinearity.

•                         and

Step 2: Specify a static QC 𝐽 for Δ in the sector [1 − 𝑝, 1 + 𝑝].

The constraint also holds when scaled by any 𝜆 ≥ 	0:

This additional scaling reduces the conservatism in L2 gain bound.

40



Numerical Example 1: Sector-Bounded NL
Step 3: Write SDP to bound the gain from 𝑟 to 𝑒.
• A state-space model for 𝑀 is:

• Dissipation ineq. with 𝜆 ≥ 0, 𝑉(𝑥) = 𝑥)	𝑃	𝑥, 𝑃 ≥ 0 is:

• Equivalent LMI form of the dissipation inequality is:

This is a version of a classical result known as the “Circle Criterion”.
41



Numerical Example 1: Sector-Bounded NL
Step 3: Write SDP to bound the gain from 𝑟 to 𝑒.
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Numerical Example 1: Sector-Bounded NL
Step 3: Write SDP to bound the gain from 𝑟 to 𝑒. CVX code: 

% Form matrices used in SDP

Zwr = zeros(nw,nr); Zwx = zeros(nw,nx); Zw = zeros(nw);

Iw = eye(nw); Ir = eye(nr);
Lvw = [C1 D11 D12; Zwx Iw Zwr];

Le = [C2 D21 D22];

% Solve SDP using CVX

a = 1-p; b = 1+p;

J = [-2*a*b, (a+b); (a+b) -2];

cvx_begin sdp quiet
 variable P(nx,nx) semidefinite;

 variable gsq(1,1);

 variable lambda nonnegative;

 [Am'*P+P*Am P*B1 P*B2; B1'*P Zw Zwr; B2'*P Zwr' -gsq*Ir] ...

 +lambda*(Lvw’*J*Lvw) + Le'*Le <=0;

 minimize(gsq)

cvx_end
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Numerical Example 1: Sector-Bounded NL
Induced L2 gain vs. sector bound 𝒑. 
Note 𝑝 = 0	corresponds to the nominal case (Δ = 1). The red 
curve matches the nominal gain ||𝑆||? = 1.53 when 𝑝 = 0.
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Numerical Example 2: LTI Uncertainty
Consider the feedback system below with:

𝐾(𝑠) = .5..7	1'	-	327.9	1	-	.:'5
9.9'	1'	-	37.;	1

 and 𝐺 𝑠 = 0
1'-'.21-0

𝐾(𝑠) is a PID controller with approximate derivative. It is 
designed to achieve a loop bandwidth near 8 rad/sec. Assume Δ 
is a stable LTI uncertainty with ||Δ||? ≤ 𝛽 where 𝛽 represents 
the level of uncertainty.

We will study the effect of the uncertainty on the gain from 
reference r to error e.
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Numerical Example 2: LTI Uncertainty
Step 1: Express the uncertain system as an 
LFT 𝐹:(𝑀, Δ) with the uncertainty Δ.
• 𝑤	 = Δ(𝑣) and Δ is the uncertainty.

•                         and

where 𝑆 𝑠 = .
.-< 1 =(1) and 𝑇 𝑠 = < 1 =(1)

.-< 1 =(1) are the nominal 
sensitivity and complementary sensitivity.
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Numerical Example 2: LTI Uncertainty
Step 1: Express the uncertain system as an 
LFT 𝐹:(𝑀, Δ) with the uncertainty Δ.
• 𝑤	 = Δ(𝑣) and Δ is the uncertainty.

•                         and

Sanity check: If Δ = 0 then the 
closed-loop from 𝑟 to 𝑒 is the 

sensitivity 𝑆 𝑠 = (
(;< = >(=)

.
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Numerical Example 2: LTI Uncertainty
Step 1: Express the uncertain system as an 
LFT 𝐹:(𝑀, Δ) with the uncertainty Δ.
• 𝑤	 = Δ(𝑣) and Δ is the uncertainty.

•                         and

Sanity check: If Δ = 0 then the 
closed-loop from 𝑟 to 𝑒 is the 

sensitivity 𝑆 𝑠 = (
(;< = >(=)

.

𝐹:(𝑀, 0) matches 𝑆(𝑠) thus
verifying our construction. Note
that ||𝑆||? = 1.28.
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Numerical Example 2: LTI Uncertainty
Step 1: Express the uncertain system as an 
LFT 𝐹:(𝑀, Δ) with the uncertainty Δ.
• 𝑤	 = Δ(𝑣) and Δ is the uncertainty.

•                         and

Step 2: Specify an IQC 𝐽 for the gain bound  ||Δ||? ≤ 𝛽.
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Numerical Example 2: LTI Uncertainty
Step 1: Express the uncertain system as an 
LFT 𝐹:(𝑀, Δ) with the uncertainty Δ.
• 𝑤	 = Δ(𝑣) and Δ is the uncertainty.

•                         and

Step 2: Specify an IQC 𝐽 for the gain bound  ||Δ||? ≤ 𝛽.

The constraint also holds when scaled by any 𝜆 ≥ 	0:

This additional scaling reduces the conservatism in L2 gain bound.
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Numerical Example 2: LTI Uncertainty
Step 3: Write SDP to bound the gain from 𝑟 to 𝑒.
• A state-space model for 𝑀 is:

• Dissipation inequality with 𝜆 ≥ 0, 𝑉(𝑥) = 𝑥)	𝑃	𝑥, 𝑃 ≥ 0 is:

• Equivalent LMI form of the dissipation inequality is:

This is a version of a classical result known as the “Circle Criterion”.
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Numerical Example 2: LTI Uncertainty
Step 3: Write SDP to bound the gain from 𝑟 to 𝑒.

52



Numerical Example 2: LTI Uncertainty
Step 3: Write SDP to bound the gain from 𝑟 to 𝑒. CVX code: 

% Form matrices used in SDP

Zwr = zeros(nw,nr); Zwx = zeros(nw,nx); Zw = zeros(nw);

Iw = eye(nw); Ir = eye(nr);
Lvw = [C1 D11 D12; Zwx Iw Zwr];

Le = [C2 D21 D22];

% Solve SDP using CVX

J = [beta^2, 0; 0 -1];  % This is the only change from Example 1
cvx_begin sdp quiet

 variable P(nx,nx) semidefinite;
 variable gsq(1,1);

 variable lambda nonnegative;

 [Am'*P+P*Am P*B1 P*B2; B1'*P Zw Zwr; B2'*P Zwr' -gsq*Ir] ...

 +lambda*(Lvw’*J*Lvw) + Le'*Le <=0;

 minimize(gsq)

cvx_end
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Numerical Example 2: LTI Uncertainty
Induced L2 gain vs. uncertainty bound ||𝚫||? ≤ 𝜷. 
Note 𝛽 = 0	corresponds to the nominal case (Δ = 0). The red 
curve matches the nominal gain ||𝑆||? = 1.28 when 𝛽 = 0.
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Numerical Example 2: LTI Uncertainty
The IQC with 𝐽 = 𝛽" 0

0 −1
 holds for any system with L2 gain ≤ 𝛽 

(including NLTV systems).  We can reduce the conservatism by 
using a dynamic IQC.
Step 2: Specify two IQCs for LTI uncertainty with the gain bound  
||Δ||? ≤ 𝛽.

For illustration we choose 𝐷 𝑠 = .:
1-.:.

See posted code for implementation
of the corresponding SDP.
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Numerical Example 2: LTI Uncertainty
Induced L2 gain vs. uncertainty bound ||𝚫||? ≤ 𝜷. 
The use of IQC 1 and 2 together reduces conservatism (reduces 
the bound) as compared to using only IQC 1.
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Numerical Example 2: LTI Uncertainty
Induced L2 gain vs. uncertainty bound ||𝚫||? ≤ 𝜷. 
The use of IQC 1 and 2 together reduces conservatism (reduces 
the bound) as compared to using only IQC 1.

• The bound depends on the choice of 𝐷 𝑠 = !#
$%!#. This choice 

was made for illustration by a heuristic search over systems of 
the form 𝐷 𝑠 = &

$%&

• A more formal approach is to construct IQCs with many choices 
{𝐷* 𝑠 }*+(@  . Each IQC can be included in the dissipation 
inequality with its own non-negative  scaling	{𝜆*}*+(@ .

• The SDP will search for the “best” combination of scalings, i.e. 
search for the best combined IQC to minimize the bound.
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Numerical Example 2: LTI Uncertainty
Induced L2 gain vs. uncertainty bound ||𝚫||? ≤ 𝜷. 
The structured singular value (SSV), or 𝜇, is a robustness theory 
specialized for LTI uncertainty.  This can be used to compute a 
lower bound on the induced gain. The results below indicate that 
the IQC upper bound is not conservative.

58



Summary
In this lesson:
• We reviewed theory of convex optimization with a focus on the 

special class of semidefinite programs (SDPs).
• We introduced software tools for solving SDPs and related 

computational issues that arise when using these tools.
• We presented numerical examples that that demonstrate the use 

of dissipation inequalities and QCs/IQCs.

Next lesson: Miscellaneous topics related to dissipation inequalities 
and IQCs.
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Further Reading
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Convex Optimization / Semidefinite Programming:
• Boyd, Vandeberghe, Convex Optimization, Cambridge Univ. Press, 2004.
• Boyd, El Ghaoui, Feron, Balakrishnan, Linear Matrix Inequalities in System 

and Control Theory, SIAM 1994.

An (incomplete)  list of solvers/parsers
• CVX (for Matlab): https://cvxr.com/cvx/
• CVXPY (for Python): https://www.cvxpy.org/ 
• Mosek: https://www.mosek.com/ 
• SDPT3: https://github.com/sqlp/sdpt3 
• LMILab: https://www.mathworks.com/help/robust/lmis.html  

KYP Lemma: 
• Rantzer, On the Kalman—Yakubovich—Popov lemma, SCL, 1996

https://cvxr.com/cvx/
https://www.cvxpy.org/
https://www.mosek.com/
https://github.com/sqlp/sdpt3
https://www.mathworks.com/help/robust/lmis.html


Self-Study Problems
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A file with three numerical examples problems is posted on the Web 
site.  This also includes solutions for you to check your work.

sites.google.com/berkeley.edu/dissipation-iqc

https://sites.google.com/berkeley.edu/dissipation-iqc

