
Dissipation Inequalities and Quadratic Constraints
for Control, Optimization, and Learning

Lesson 4: Numerical Methods

International Graduate School on Control, Stuttgart, May 2024

Murat Arcak1 and Peter Seiler2

1 University of California, Berkeley
2 University of Michigan, Ann Arbor

Learning Objectives

In this lesson we will

• Briefly review theory of convex optimization with a focus on the
special class of semidefinite programs (SDPs).

• Discuss software tools for solving SDPs and related computational
issues that arise when using these tools.

• Present numerical examples that that demonstrate the use of
dissipation inequalities and QCs/IQCs.

2

Outline

1. Brief review of convex optimization and SDPs
2. Computational issues
3. Numerical examples

3

Finite-Dimensional Optimization
We will consider a finite-dimensional optimization of the form:

where:
• 𝑥 ∈ ℝ! is the vector of optimization (decision) variables.
• 𝑓": ℝ! → ℝ is the objective function
• 𝑆 is the set of feasible decision variables. This is often described by a

collection of (possibly nonlinear) inequality and equality constraints.

Definition: 𝑥∗ ∈ ℝ" is (globally) optimal if 𝑥∗ ∈ 𝑆 and 𝑓#(𝑥∗) ≤
𝑓#(𝑥)	for any other 𝑥 ∈ 𝑆. The optimal cost is 𝑝∗ = 𝑓#(𝑥∗).

Definition: 𝑥̅ ∈ ℝ" is locally optimal if for some 𝑅 > 0,

4

Finite-Dimensional Optimization
We will consider a finite-dimensional optimization of the form:

where:
• 𝑥 ∈ ℝ! is the vector of optimization (decision) variables.
• 𝑓": ℝ! → ℝ is the objective function
• 𝑆 is the set of feasible decision variables. This is often described by a

collection of (possibly nonlinear) inequality and equality constraints.

Comments:
• We define 𝑝∗ = +∞ if there are no feasible values (𝑆 = ∅).
• An optimization can have zero, one, or many optimal points.
• We will show that our DI+IQC conditions can be formulated as a

special type of (convex) optimization: a semidefinite program.

5

Convex Sets
Definition: A set 𝑆 ⊆ ℝ! is convex if

holds for all 𝑥", 𝑥# ∈ 𝑆 and all 𝜆 ∈ 0,1 .

In other words, a convex set is one that contains the line
segment that connects any two points in the set.

 Convex Not Convex
6

𝑥1
𝑥2 𝑥1

𝑥2

Convex Functions
Definition: A function 𝑓:ℝ! → ℝ is convex if

holds for all 𝑥", 𝑥# ∈ ℝ! and all 𝜆 ∈ 0,1 .
f is concave if -f is convex.

 Convex Not Convex
7

x

𝑥1 𝑥2

𝑓(𝑥) 𝑓(𝑥)

𝑥
𝑥1 𝑥2

Convex Functions
There are many conditions to verify convexity of a function
𝑓:ℝ" → ℝ including:
1. First-order condition: The function 𝑓 is differentiable and

where 𝛻𝑓 𝑥̅ = !"
!#!

𝑥̅ … !"
!#"

𝑥̅
$

.

Convex functions are lower bounded by first-order (linear)
approximations.

8

𝑥
𝑥̅

𝑓(𝑥)
𝑓 𝑥̅ + 𝛻𝑓!(𝑥 − 𝑥̅)

(𝑥̅, 𝑓 𝑥̅)

Convex Functions
There are many conditions to verify convexity of a function
𝑓:ℝ" → ℝ including:
1. First-order condition: The function 𝑓 is differentiable and

2. Second-order condition: The function 𝑓 is twice differentiable
and the Hessian 𝛻$𝑓(𝑥) is an 𝑣×𝑣 positive semidefinite matrix
for all 𝑥 ∈ ℝ". The (𝑖, 𝑗) entry of the Hessian is %&'

%()%(*
(&).

9

Convex Functions
There are many conditions to verify convexity of a function
𝑓:ℝ" → ℝ including:
1. First-order condition: The function 𝑓 is differentiable and

2. Second-order condition: The function 𝑓 is twice differentiable
and the Hessian 𝛻$𝑓(𝑥) is an 𝑣×𝑣 positive semidefinite matrix
for all 𝑥 ∈ ℝ". The (𝑖, 𝑗) entry of the Hessian is %&'

%()%(*
(&).

3. 1D Restriction: The function 𝑓 is convex when restricted to any
line: if 𝑔:ℝ → ℝ is defined by 𝑔 𝑡 ≔ 𝑓(𝑥(+ 𝑡𝑥$) for any
𝑥(, 𝑥$ ∈ ℝ" then 𝑔 is a convex function of 𝑡.

There are many other similar conditions, e.g. functions with a
restricted domain, conditions for strict convexity, etc.

10

Convex Sets and Functions

11

Wake-up Problems
1) Which of the following functions is convex?
a) ReLU, 𝑤 = 𝑓 𝑣 :=	max 	𝑣, 0	
b) 𝑤 = 𝑓 𝑣 = −𝑣$

c) 𝑤 = trace(𝑀𝑉) where M = 1 2
2 3 and 𝑉 = 𝑉)

2) Which of the following sets is convex?
a) 𝑆 ≔ {𝑧 ∈ ℂ ∶ 𝑧 ≤ 1}
b) 𝑆 ≔ {𝑧 ∈ ℂ ∶ 𝑧 = 1}
c) 𝑆 ≔ {𝑥 ∈ ℝ$ ∶ 𝑥($ + 𝑥$$ ≤ 1}

d) 𝑆 ≔ 𝑣
𝑟 ∈ ℝ" ∶ 𝑣" ≤ 𝑟

Convex Optimization
Again, consider a finite-dimensional optimization of the form:

Definition: This is a convex optimization if the objective 𝑓#: ℝ" →
ℝ is a convex function and the feasible set 𝑆 is convex.

A key property is that every locally optimal point of a convex
optimization is also globally optimal.
• Any algorithm that computes a local optima, e.g. gradient

descent, computes a global optima.
• There are fast and reliable software for certain classes of

convex optimizations.

12

Linear Matrix Inequalities (LMIs)
Definition: Let symmetric matrices 𝐹* *+#" ⊂ ℝ,×, be given. An
LMI is a constraint on 𝑥 ∈ ℝ" of the form:

𝐹 𝑥 ≔ 𝐹# + 𝑥(𝐹(+⋯+ 𝑥"𝐹" ≤ 0
In other words, 𝐹(𝑥) is negative semidefinite.

Fact: The set 𝑆 ≔ 𝑥 ∈ ℝ" ∶ 𝐹 𝑥 ≤ 0 is convex.
Proof: Take any 𝑥(, 𝑥$ ∈ 𝑆 so that 𝐹 𝑥(≤ 0 and 𝐹 𝑥$ ≤ 0.
Define 𝑥 = 𝜆𝑥(+ 1 − 𝜆 𝑥$ where 𝜆 ∈ 0,1 . Then,

𝐹 𝑥 = 𝜆	𝐹 𝑥(+ 1 − 𝜆 	𝐹 𝑥$ ≤ 0	 ⟹ 	 𝑥 ∈ 𝑆

Fact: Two LMI constraints 𝐺 𝑥 ≤ 0 and 𝐻 𝑥 ≤ 	0 can be
combined into a single, equivalent LMI constraint:

𝐹 𝑥 ≔ 𝐺 𝑥 0
0 𝐻 𝑥 ≤ 0

13

Linear Matrix Inequalities (LMIs)
Example: Let a 2-by-2 matrix 𝐴 be given. Consider the following
set of 2-by-2 symmetric matrices:

𝑆 ≔ {𝑃 = 𝑃) ∶ 𝑃 ≥ 𝐼	and	𝐴)𝑃 + 𝑃𝐴 ≤ 0}
This set can be expressed by an LMI as follows:

1. Express 𝑃 =
𝑥% 𝑥&
𝑥& 𝑥' where 𝑥(, 𝑥$, 𝑥. are scalar variables.

2. Combine the two LMIs as: 𝐴
$𝑃 + 𝑃𝐴 0
0 𝐼 − 𝑃

≤ 0

3. Define a basis for 2-by-2 symmetric matrices:
𝐸%: =

1 0
0 0 , 𝐸&: =

0 1
1 0 , 𝐸': =

0 0
0 1

4. Expand the single LMI in step 2 using the basis in step 3:
0 0
0 𝐼 + 𝑥!

𝐴"𝐸! + 𝐸!𝐴 0
0 −𝐸!

+ 𝑥#
𝐴"𝐸# + 𝐸#𝐴 0

0 −𝐸#
+ 𝑥$

𝐴"𝐸$ + 𝐸$𝐴 0
0 −𝐸$

≤ 0

14

Linear Matrix Inequalities (LMIs)
Example: Let a 2-by-2 matrix 𝐴 be given. Consider the following
set of 2-by-2 symmetric matrices:

𝑆 ≔ {𝑃 = 𝑃) ∶ 𝑃 ≥ 𝐼	and	𝐴)𝑃 + 𝑃𝐴 ≤ 0}
This set can be expressed by an LMI as follows:

𝑆 ≔ {𝑥 ∈ ℝ. ∶ 	𝐹 𝑥 ≔ 𝐹# + 𝑥(𝐹(+ 𝑥$𝐹$ + 𝑥.𝐹. ≤ 0}
where:

𝐹# ≔
0 0
0 𝐼

𝐹$ ≔
𝐴!𝐸$ + 𝐸$𝐴 0

0 −𝐸$
𝐹" ≔

𝐴!𝐸" + 𝐸"𝐴 0
0 −𝐸"

𝐹% ≔
𝐴!𝐸% + 𝐸%𝐴 0

0 −𝐸%

15

Semidefinite Programs (SDPs)
Definition: A semidefinite program is an optimization with a linear
objective function and an LMI constraint:

where 𝑐 ∈ ℝ" and symmetric matrices 𝐹* *+#" ⊂ ℝ,×, are given.

Comments:
1. The linear objective function is convex and the LMI constraint
defines a convex feasible set ⟹ An SDP is a convex optimization.
2. Equality constraints Ax=b can also be added to the problem.
3. There are many parsers and solvers that can efficiently solve
this class of problems (with “moderate” size). The most common
algorithms use primal-dual formulations.

16

Semidefinite Programs (SDPs)
Example: Let a 2-by-2 matrix 𝐴 be given. Define the optimization:

This can be expressed as an SDP as follows:

1. Express 𝑃 =
𝑥% 𝑥&
𝑥& 𝑥' where 𝑥(, 𝑥$, 𝑥. are scalar variables.

2. Combine the two LMIs as: 𝐴
$𝑃 + 𝑃𝐴 0
0 𝐼 − 𝑃

≤ 0

3. Define a basis for 2-by-2 symmetric matrices:
𝐸%: =

1 0
0 0 , 𝐸&: =

0 1
1 0 , 𝐸': =

0 0
0 1

4. Expand the single LMI in step 2 using the basis in step 3:
0 0
0 𝐼 + 𝑥!

𝐴"𝐸! + 𝐸!𝐴 0
0 −𝐸!

+ 𝑥#
𝐴"𝐸# + 𝐸#𝐴 0

0 −𝐸#
+ 𝑥$

𝐴"𝐸$ + 𝐸$𝐴 0
0 −𝐸$

≤ 0

5. Rewrite the objective as trace 𝑃 = 𝑐$𝑥 where 𝑐 = 1, 0, 1 $.
17

Semidefinite Programs (SDPs)
Example: Let a 2-by-2 matrix 𝐴 be given. Define the optimization:

This can be expressed as an SDP as follows:

where:
𝑐 = 1, 0, 1 $

𝐹(≔
0 0
0 𝐼

𝐹% ≔
𝐴$𝐸% + 𝐸%𝐴 0

0 −𝐸%
𝐹& ≔

𝐴$𝐸& + 𝐸&𝐴 0
0 −𝐸&

𝐹' ≔
𝐴$𝐸' + 𝐸'𝐴 0

0 −𝐸'
18

Convex Optimization / SDPs

19

Wake-up Problem
Consider the following nonlinear system:
𝑥̇ 𝑡 = −3𝑥(𝑡) + 𝜙(𝑥(𝑡)) where 𝜙:ℝ → ℝ is in the sector −2,2 .

The system can be expressed as:
 𝑥̇ 𝑡 = −3𝑥(𝑡) + 𝑤(𝑡) and 𝑤(𝑡) = 𝜙(𝑥(𝑡))

A) Define a matrix 𝐽 = 𝐽) such that:
B) If ∃ 𝜆 ≥ 0 and 𝛼 > 0 such that 𝑉(𝑥) = 𝑥$ satisfies the following
along all trajectories:

then 𝑥 𝑡 → 	0 exponentially with rate 𝛼.
Write an SDP to find the maximal 𝛼 subject to this condition.
C) Solve this SDP analytically for the maximal 𝛼∗.

Computational Issues
There are many available solvers for SDPs including Mosek,
Sedumi, SDPT3, and LMILab.

We often express the LMI constraints using matrix variables, e.g.
𝑃 ≥ 	𝐼 or 𝐴)𝑃	 + 	𝑃𝐴 ≤ 	0. However, solvers often require the
SDP to have a single LMI expressed in standard form:

𝐹 𝑥 ≔ 𝐹# + 𝑥(𝐹(+⋯+ 𝑥"𝐹" ≤ 0

It can be cumbersome and time-consuming to convert this to
standard form. Numerous parsers have been developed to aid in
this conversion process, e.g. CVX or YALMIP.

There is a vast literature on numerical algorithms. The next few
slides will highlight a few key issues with these tools.

20

User Interface / Parsers

21

To make this concrete, consider the following SDP with A given:

The constraint 𝐴)	𝑃	 + 	𝑃	𝐴 ≤ 	0 is called a Lyapunov inequality.

User Interface / Parsers

22

To make this concrete, consider the following SDP with A given:

CVX code to implement this in Matlab is:
 cvx_begin sdp

 variable P(n,n) symmetric;

 P >= eye(n);

 (A'*P+P*A) <= 0;

 minimize(trace(P));
 cvx_end

The code almost exactly matches the SDP at the top of the page.
This can also be implemented in Python using CVXPY.
CVX converts this to a standard form for an SDP solver (selected
by the user), calls the solver, and transforms the solution back.

User Interface / Parsers

23

To make this concrete, consider the following SDP with A given:

Contrast this with the code to efficiently implement this SDP
using a typical solver, e.g. Matlab code for Sedumi is:
 K.s = [n n];
 lidx = find(tril(ones(n,n)));
 bs = A’+A;
 bs = bs(lidx);
 I = eye(n);
 At = A’;
 tmp = kron(A',eye(n))+kron(eye(n),A’);
 As = [-reshape(tmp,[n^2,n^2]) -speye(n^2)];
 As = As(lidx,:);
 cs = speye(n);
 cs = [cs(:); sparse(n^2,1)];
 [xs,ys,infos] = sedumi(As,bs,cs,K);

User Interface / Parsers

24

To make this concrete, consider the following SDP with A given:

Comments:
• User interfaces make it very easy to implement and solve SDPs.
• However, the conversion may not yield the best

implementation in terms of computational cost, memory, and
numerical conditioning.

User interfaces, e.g. CVX and Yalmip, are useful tools for
prototyping or “one-off” implementations. A direct solver
implementation should be used when high re-use or high
efficiency is required.

Computational Complexity
Consider an SDP in standard form with 𝑣 variables and an 𝑚×	𝑚
LMI constraint:

Section 11.8.3 of Boyd & Vandeberghe estimate that the number
of floating point operations for a general primal/dual algorithm
to solve this problem is (order of magnitude):

max(𝑣𝑚., 	𝑣$𝑚$, 	𝑣.)

Specialized solvers can be faster for problems with sparsity or
structure but this provides a good estimate for general problems.

25

Computational Complexity
Consider again the following SDP with A given:

This problem has 𝑣 = +(+-.)
' = 𝑂 𝑛$ scalar decision variables

corresponding to the entries of 𝑃. The two constraints can be
stacked into a single LMI of dimension 𝑚 = 2𝑛 = 𝑂 𝑛 .

The number of floating point operations to solve this SDP scales
roughly as follows (neglecting constants):

max 𝑣𝑚., 	𝑣$𝑚$,	𝑣. 	~max 𝑛7, 𝑛8, 𝑛8 ~	𝑂(𝑛8)

26

Computational Complexity
Consider again the following SDP with A given:

The number of floating point operations scales as 𝑂(𝑛8).

For comparison, consider the Lyapunov equation with A given:
𝐴)𝑃 + 𝑃𝐴 = −𝐼

If A is Hurwitz then P>0.

Note: The solution of the Lyapunov equation is not necessarily
the same as the min trace solution (even after accounting for a
constant scaling). However, it does provide a useful comparison.

27

Computational Complexity
Consider again the following SDP with A given:

The number of floating point operations scales as 𝑂(𝑛8).

For comparison, consider the Lyapunov equation with A given:
𝐴)𝑃 + 𝑃𝐴 = −𝐼

If A is Hurwitz then P>0. This is a linear equation in P and the
algorithm by Bartels & Stewart (‘72 ACM) scales as 𝑂(𝑛.).

SDPs are much more expensive to solve than typical equations
that arise in control problems (Lyapunov, Riccati, etc). However,
they are still relatively efficient and can be used to solve
problems even as the dimension grows to a few hundred.

28

Computational Complexity
Computation time vs. problem size n on a standard laptop.
The Lyapunov equation can be solved in <100 seconds for 𝑛 =
	6000 while the SDP solve time is >1000 seconds for 𝑛 = 	200.

 Lyapunov Equation Lyapunov SDP with CVX+SDPT3

29

Computational Complexity
Computation time vs. problem size n on a standard laptop.
The plots below compare CVX with both Mosek and SDPT3. The
scaling is similar for both solvers.

 Lyapunov SDP with CVX+Mosek Lyapunov SDP with CVX+SDPT3

30

Strict vs. Non-strict Inequalities
We posed SDPs in standard form with non-strict inequalities:

𝑥 is feasible if 𝐹(𝑥) is a negative semidefinite matrix.

31

Strict vs. Non-strict Inequalities
We posed SDPs in standard form with non-strict inequalities:

Issue:
• Most solvers enforce LMIs using non-strict inequalities. LMILab is one

exception which enforces LMIs with strict constraints.
• However, Lyapunov conditions typically require strict inequalities, e.g.
𝑃 > 0 and 𝐴!	𝑃	 + 	𝑃	𝐴	 < 	0.

• This may appear to be a minor technical issue. However, numerical
errors can cause solvers to return slightly infeasible solutions, e.g. a
Lyapunov matrix P with a slightly negative eigenvalue.

• These errors can lead to incorrect stability/performance conclusions.

Solutions:
• Enforce constraints as 𝐹 𝑥 ≤ −𝜖	𝐼 for some “small” 𝜖 > 0.
• Use a solver that strictly enforces constraints, e.g. LMILab.

32

History: Numerical Algorithms

33

Convex Optimization / SDPs

34

Wake-up Problem
Download and install CVX if you don’t already have it installed.
Run the following test example:

A = [-2 20; 0 -2];

n = size(A,1);

cvx_begin sdp

 variable P(n,n) symmetric;

 P >= eye(n);

 (A'*P+P*A) <= 0;

 minimize(trace(P));
cvx_end

Your optimal P should be (up to numerical errors):
P = 1.0000 0.0001

 0.0001 25.0000

Numerical Example 1: Sector-Bounded NL
Consider the feedback system below with:

𝐾9 = 20 and 𝐺 𝑠 = 0
1'-21-3

Assume Δ is a static, memoryless nonlinearity in the sector [1	 −
	𝑝, 1	 + 	𝑝] where 𝑝 represents the level of nonlinearity.

We will study the effect of the nonlinearity on the gain from
reference r to error e.

35

Numerical Example 1: Sector-Bounded NL
Step 1: Express the uncertain system as an
LFT 𝐹:(𝑀, Δ) with the nonlinearity in Δ.
• 𝑤	 = Δ(𝑣) and Δ is the nonlinearity.

• and

36

Numerical Example 1: Sector-Bounded NL
Step 1: Express the uncertain system as an
LFT 𝐹:(𝑀, Δ) with the nonlinearity in Δ.
• 𝑤	 = Δ(𝑣) and Δ is the nonlinearity.

• and

Sanity check: If Δ = 1 then the
closed-loop from 𝑟 to 𝑒 is the

sensitivity 𝑆 𝑠 = (
(;< = >4

.

37

Numerical Example 1: Sector-Bounded NL
Step 1: Express the uncertain system as an
LFT 𝐹:(𝑀, Δ) with the nonlinearity in Δ.
• 𝑤	 = Δ(𝑣) and Δ is the nonlinearity.

• and

Sanity check: If Δ = 1 then the
closed-loop from 𝑟 to 𝑒 is the

sensitivity 𝑆 𝑠 = (
(;< = >4

.

𝐹:(𝑀, 1) matches 𝑆(𝑠) thus
verifying our construction. Note
that ||𝑆||? = 1.53.

38

Numerical Example 1: Sector-Bounded NL
Step 1: Express the uncertain system as an
LFT 𝐹:(𝑀, Δ) with the nonlinearity in Δ.
• 𝑤	 = Δ(𝑣) and Δ is the nonlinearity.

• and

Step 2: Specify a static QC 𝐽 for Δ in the sector [1 − 𝑝, 1 + 𝑝].

39

Numerical Example 1: Sector-Bounded NL
Step 1: Express the uncertain system as an
LFT 𝐹:(𝑀, Δ) with the nonlinearity in Δ.
• 𝑤	 = Δ(𝑣) and Δ is the nonlinearity.

• and

Step 2: Specify a static QC 𝐽 for Δ in the sector [1 − 𝑝, 1 + 𝑝].

The constraint also holds when scaled by any 𝜆 ≥ 	0:

This additional scaling reduces the conservatism in L2 gain bound.

40

Numerical Example 1: Sector-Bounded NL
Step 3: Write SDP to bound the gain from 𝑟 to 𝑒.
• A state-space model for 𝑀 is:

• Dissipation ineq. with 𝜆 ≥ 0, 𝑉(𝑥) = 𝑥)	𝑃	𝑥, 𝑃 ≥ 0 is:

• Equivalent LMI form of the dissipation inequality is:

This is a version of a classical result known as the “Circle Criterion”.
41

Numerical Example 1: Sector-Bounded NL
Step 3: Write SDP to bound the gain from 𝑟 to 𝑒.

42

Numerical Example 1: Sector-Bounded NL
Step 3: Write SDP to bound the gain from 𝑟 to 𝑒. CVX code:

% Form matrices used in SDP

Zwr = zeros(nw,nr); Zwx = zeros(nw,nx); Zw = zeros(nw);

Iw = eye(nw); Ir = eye(nr);
Lvw = [C1 D11 D12; Zwx Iw Zwr];

Le = [C2 D21 D22];

% Solve SDP using CVX

a = 1-p; b = 1+p;

J = [-2*a*b, (a+b); (a+b) -2];

cvx_begin sdp quiet
 variable P(nx,nx) semidefinite;

 variable gsq(1,1);

 variable lambda nonnegative;

 [Am'*P+P*Am P*B1 P*B2; B1'*P Zw Zwr; B2'*P Zwr' -gsq*Ir] ...

 +lambda*(Lvw’*J*Lvw) + Le'*Le <=0;

 minimize(gsq)

cvx_end

43

Numerical Example 1: Sector-Bounded NL
Induced L2 gain vs. sector bound 𝒑.
Note 𝑝 = 0	corresponds to the nominal case (Δ = 1). The red
curve matches the nominal gain ||𝑆||? = 1.53 when 𝑝 = 0.

44

Numerical Example 2: LTI Uncertainty
Consider the feedback system below with:

𝐾(𝑠) = .5..7	1'	-	327.9	1	-	.:'5
9.9'	1'	-	37.;	1

 and 𝐺 𝑠 = 0
1'-'.21-0

𝐾(𝑠) is a PID controller with approximate derivative. It is
designed to achieve a loop bandwidth near 8 rad/sec. Assume Δ
is a stable LTI uncertainty with ||Δ||? ≤ 𝛽 where 𝛽 represents
the level of uncertainty.

We will study the effect of the uncertainty on the gain from
reference r to error e.

45

Numerical Example 2: LTI Uncertainty
Step 1: Express the uncertain system as an
LFT 𝐹:(𝑀, Δ) with the uncertainty Δ.
• 𝑤	 = Δ(𝑣) and Δ is the uncertainty.

• and

where 𝑆 𝑠 = .
.-< 1 =(1) and 𝑇 𝑠 = < 1 =(1)

.-< 1 =(1) are the nominal
sensitivity and complementary sensitivity.

46

Numerical Example 2: LTI Uncertainty
Step 1: Express the uncertain system as an
LFT 𝐹:(𝑀, Δ) with the uncertainty Δ.
• 𝑤	 = Δ(𝑣) and Δ is the uncertainty.

• and

Sanity check: If Δ = 0 then the
closed-loop from 𝑟 to 𝑒 is the

sensitivity 𝑆 𝑠 = (
(;< = >(=)

.

47

Numerical Example 2: LTI Uncertainty
Step 1: Express the uncertain system as an
LFT 𝐹:(𝑀, Δ) with the uncertainty Δ.
• 𝑤	 = Δ(𝑣) and Δ is the uncertainty.

• and

Sanity check: If Δ = 0 then the
closed-loop from 𝑟 to 𝑒 is the

sensitivity 𝑆 𝑠 = (
(;< = >(=)

.

𝐹:(𝑀, 0) matches 𝑆(𝑠) thus
verifying our construction. Note
that ||𝑆||? = 1.28.

48

Numerical Example 2: LTI Uncertainty
Step 1: Express the uncertain system as an
LFT 𝐹:(𝑀, Δ) with the uncertainty Δ.
• 𝑤	 = Δ(𝑣) and Δ is the uncertainty.

• and

Step 2: Specify an IQC 𝐽 for the gain bound ||Δ||? ≤ 𝛽.

49

Numerical Example 2: LTI Uncertainty
Step 1: Express the uncertain system as an
LFT 𝐹:(𝑀, Δ) with the uncertainty Δ.
• 𝑤	 = Δ(𝑣) and Δ is the uncertainty.

• and

Step 2: Specify an IQC 𝐽 for the gain bound ||Δ||? ≤ 𝛽.

The constraint also holds when scaled by any 𝜆 ≥ 	0:

This additional scaling reduces the conservatism in L2 gain bound.

50

Numerical Example 2: LTI Uncertainty
Step 3: Write SDP to bound the gain from 𝑟 to 𝑒.
• A state-space model for 𝑀 is:

• Dissipation inequality with 𝜆 ≥ 0, 𝑉(𝑥) = 𝑥)	𝑃	𝑥, 𝑃 ≥ 0 is:

• Equivalent LMI form of the dissipation inequality is:

This is a version of a classical result known as the “Circle Criterion”.
51

Numerical Example 2: LTI Uncertainty
Step 3: Write SDP to bound the gain from 𝑟 to 𝑒.

52

Numerical Example 2: LTI Uncertainty
Step 3: Write SDP to bound the gain from 𝑟 to 𝑒. CVX code:

% Form matrices used in SDP

Zwr = zeros(nw,nr); Zwx = zeros(nw,nx); Zw = zeros(nw);

Iw = eye(nw); Ir = eye(nr);
Lvw = [C1 D11 D12; Zwx Iw Zwr];

Le = [C2 D21 D22];

% Solve SDP using CVX

J = [beta^2, 0; 0 -1]; % This is the only change from Example 1
cvx_begin sdp quiet

 variable P(nx,nx) semidefinite;
 variable gsq(1,1);

 variable lambda nonnegative;

 [Am'*P+P*Am P*B1 P*B2; B1'*P Zw Zwr; B2'*P Zwr' -gsq*Ir] ...

 +lambda*(Lvw’*J*Lvw) + Le'*Le <=0;

 minimize(gsq)

cvx_end

53

Numerical Example 2: LTI Uncertainty
Induced L2 gain vs. uncertainty bound ||𝚫||? ≤ 𝜷.
Note 𝛽 = 0	corresponds to the nominal case (Δ = 0). The red
curve matches the nominal gain ||𝑆||? = 1.28 when 𝛽 = 0.

54

Numerical Example 2: LTI Uncertainty
The IQC with 𝐽 = 𝛽" 0

0 −1
 holds for any system with L2 gain ≤ 𝛽

(including NLTV systems). We can reduce the conservatism by
using a dynamic IQC.
Step 2: Specify two IQCs for LTI uncertainty with the gain bound
||Δ||? ≤ 𝛽.

For illustration we choose 𝐷 𝑠 = .:
1-.:.

See posted code for implementation
of the corresponding SDP.

55

Numerical Example 2: LTI Uncertainty
Induced L2 gain vs. uncertainty bound ||𝚫||? ≤ 𝜷.
The use of IQC 1 and 2 together reduces conservatism (reduces
the bound) as compared to using only IQC 1.

56

Numerical Example 2: LTI Uncertainty
Induced L2 gain vs. uncertainty bound ||𝚫||? ≤ 𝜷.
The use of IQC 1 and 2 together reduces conservatism (reduces
the bound) as compared to using only IQC 1.

• The bound depends on the choice of 𝐷 𝑠 = !#
$%!#. This choice

was made for illustration by a heuristic search over systems of
the form 𝐷 𝑠 = &

$%&

• A more formal approach is to construct IQCs with many choices
{𝐷* 𝑠 }*+(@ . Each IQC can be included in the dissipation
inequality with its own non-negative scaling	{𝜆*}*+(@ .

• The SDP will search for the “best” combination of scalings, i.e.
search for the best combined IQC to minimize the bound.

57

Numerical Example 2: LTI Uncertainty
Induced L2 gain vs. uncertainty bound ||𝚫||? ≤ 𝜷.
The structured singular value (SSV), or 𝜇, is a robustness theory
specialized for LTI uncertainty. This can be used to compute a
lower bound on the induced gain. The results below indicate that
the IQC upper bound is not conservative.

58

Summary
In this lesson:
• We reviewed theory of convex optimization with a focus on the

special class of semidefinite programs (SDPs).
• We introduced software tools for solving SDPs and related

computational issues that arise when using these tools.
• We presented numerical examples that that demonstrate the use

of dissipation inequalities and QCs/IQCs.

Next lesson: Miscellaneous topics related to dissipation inequalities
and IQCs.

59

Further Reading

60

Convex Optimization / Semidefinite Programming:
• Boyd, Vandeberghe, Convex Optimization, Cambridge Univ. Press, 2004.
• Boyd, El Ghaoui, Feron, Balakrishnan, Linear Matrix Inequalities in System

and Control Theory, SIAM 1994.

An (incomplete) list of solvers/parsers
• CVX (for Matlab): https://cvxr.com/cvx/
• CVXPY (for Python): https://www.cvxpy.org/
• Mosek: https://www.mosek.com/
• SDPT3: https://github.com/sqlp/sdpt3
• LMILab: https://www.mathworks.com/help/robust/lmis.html

KYP Lemma:
• Rantzer, On the Kalman—Yakubovich—Popov lemma, SCL, 1996

https://cvxr.com/cvx/
https://www.cvxpy.org/
https://www.mosek.com/
https://github.com/sqlp/sdpt3
https://www.mathworks.com/help/robust/lmis.html

Self-Study Problems

61

A file with three numerical examples problems is posted on the Web
site. This also includes solutions for you to check your work.

sites.google.com/berkeley.edu/dissipation-iqc

https://sites.google.com/berkeley.edu/dissipation-iqc

