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Learning Objectives

In this lesson, we will:

* Learn how to leverage dissipativity for modular analysis of
stability and performance of interconnected systems

* Learn about computational methods to aid in the analysis

* Introduce variants of dissipativity to enable complete modularity

* Develop a deeper understanding with application examples
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Stability of Interconnections

Recall the robust stability test from Lesson I:

Robust stability: Suppose the system & = f(x,u) y = h(z,u) is
dissipative with supply rate s(u, y) and pos.def. storage function V.
If A satisfies the complementary constraint

s(u,y) <0
for all (u, y) such that u = A(y), then the origin is stable because
LV (z,u) <s(u,y) <O0.



Stability of Interconnections

Repurpose this criterion to study the interconnection:

— F — A
& =)
Gl | i=fru) |
GN G
Gi . xz — fz(xzauz) View x,u,y,f(x,u),h(a:,u) as
v = hi(x;, u;) concatenations i = 1, ..., N of

E : interconnection matrix iy, Uiy Yy, fz’(xi, Ui), hz’(%,ui)




Stability of Interconnections

Repurpose this criterion to study the interconnection:

— F — A
G -
Go e ZI?:f(iC,’LL) e
Y U y | y=nhz,u) |y
Gn

If each G; is dissipative with supply rate s;(u;, ¥;) and pos.def. V;
then G is dissipative with

N
S(’LL, y) — Zi:l pisi(ui7yi)a Di > Oa
and V (z) = Eivzl p;Vi(x;) is a pos.def. storage function.
e



Stability of Interconnections
Thus, the condition s(u,y) < 0 to be satisfied by A becomes:
dp; > 0  s.t. Z 4 pzsz(uz,yz)|u _py <0 Yy

\
S(u, Y) .

For quadratic supply rates s;(u;, ¥;) = [uZ] X; [u”] we can turn this
S . Yi Yi
condition into an LMI:

4T _ -
U1 uy
Y1 1 X1 Y1
N . :
Zi:l pisi(uiayz’) — .
un | | PNXN| [un
YN _ YN _

Define a permutation matrix S to sort inputs and outputs: = S [ ]




Stability of Interconnections

Then, oL X

S pisi(ui, yi) = [Z'] ST g [u]

i PNXN

Substitute u = Ey: . X, ]
—y' [I] gT

i pNXN_
Thus, if we can find p; > 0,2 =1,--- , N, such that
_ple 1
i s
S

I

E
S [I] <0 (LMI)

I PNXN_
then the origin is stable for the interconnection and a Lyapunov
function is V(x) = Z,‘Z\Ll i Vi(z;)

s



Stability of Interconnections

Special Case 1: Small Gain

2
When X; = [%’ 0

0 _1] , (LMI) simplifies to:

(TE)TP(TE) — P <0
where I' = diag(vy1, - ,vn), P = diag(p1,--- ,pN)

Example: Uy n lF

Topel B1-F 0
Y2 G U2 U2 1 0 Y2

'~

Apply criterion above: we can find p; > 0,p, > 0 such that

2 2 L
D275 0 . P1 0 <0 <:>p272_p1 o 2<&<L
[ 0 p1712] [0 PJ - p17;i < po T2 = =
if and only if 7172 < 1. This is the well-known small-gain criterion.



Stability of Interconnections

Special Case 2: Passivity

1
When X, = [8 277 ], (LMI) simplifies to:
2 — I

P(E-H)+(E-H)'P=<0
where H :dlag(nla 777N)7 P = dlag(pb 7pN)

This holds with P = I when 7; > 0 Vi and E is skew-symmetric:
E+E' =0

Example: U n 1

\
- Gl u1 B [ 0 _1 | [yll
Y2 G U2 U9 1 0 Yo

~

E is skew-symmetric; thus, negative feedback interconnection of
two passive systems is stable (known as “Passivity Theorem”).

10



Stability of Interconnections

Wake-up Problems

Consider now a positive feedback interconnection:
E

G, Y1 —
4+ ur| _ |0 1}y
Y2 up M [1 0] [yz]
G2 <

)

1) Let each system be passive withn; = 0,i.e., H = 0. Can you find

2= [%1 ;] ~0 st. P(E—H)+(E—H)"P=<0 ?
2

2) Now suppose G1 and G, have L, gains y1,Y,. How does the
condition (I'E) ' P(TE) — P < 0, where

Y1 O
I =
[0 72]
restrict the gains?



Application Examples

Internet Congestion Control
81.\\ N O D> //E D1
= = = \Q
Sz.// S:© | \ D3

User Control Routing Matrix: —
q R 1 ifz'usesl%EZO —R
R . X “7 1 0 otherwise R O
Link Control
p IR

Skew symmetry of E key to stability with broad classes of user and
link control protocols with passivity properties (Wen, Arcak, 2004)



Application Examples

Multiagent Robotic Systems

Passivity intrinsic to Euler-Lagrange models of mobile robots, ships,
satellites, etc. We exploit this property for motion coordination.

U . [

X

X

—DDT

D: incidence matrix of
—>

communication graph

—

J
> DTE |

[0 DT
“I-D o0
J

—D

E is again skew
symmetric! Stability
descends from this
structure and
passivity of blocks.



Application Examples

Multiagent Robotic Systems

Structural property in previous slide and extensions leveraged in
(Bai, Arcak,Wen, 2011) for systematic cooperative control design.

Communications and Control Engineering TNEE
imN
|

He Bai
Murat Arcak
John Wen

Cooperative
Control Design

A Systematic, Passivity-Based Approach

UAVs cooperatively carrying a suspended load
— experiments at the Norwegian University of
Science and Technology (Klausen, Meissen,

@Springer
Fossen, Arcak, Johansen, 2020)




Application Examples

Cyclic Interconnections

0
02

0

0

0

ON

01
0

0

; = —1 (Negative
feedback)

Canonical examples: ring oscillator circuits and biological analogues

Secant Criterion (Arcak, Sontag, 2006): Given output strictly passive
systems withn; > 0,2 = 1,..., N and interconnection E above

Ip; >0,i=1,...,N st. PIE—H)+(E—-H)"P=<0
where H = diag(n,--- ,nn), P = diag(p1,--- ,pn), if and only if

(m -+ )" < sec(m/N)Y

The bound is oo for N = 2 (recovers Passivity Thm), 8 for N = 3, and
decreasesto 1 as N — oo (always less restrictive than small gain).



Application Examples

Example: three-stage ring oscillator circuit

M v
C, = G C; =

T~ °I~ °I
, Decompose into subsystems:
T&1 = —x1 — hg(x3) :
: Til; = —%; T Uy
ToX2 = —T2 — h1($1)
. yi = hi(z;)
T3&3 = —x3 — ha(x2)
. i =1,2,3, w/ interconnection:
TiZRiCi,Z=1,2,3 L _ -
9 Uq 0 0 —1 U1
I.e., sector [0, 52'] U3 0O -1 0 Y3




Application Examples

From Lesson 1, the subsystems are passive with storage function:

Vi(z;) = 7 /0 " ha(s)ds
Vi (@) (=i 4+ us) /i = hi(2:) (=2 + wi) = —zshs(23) + wiys
Recall from Lesson 2: if nonlinearity h(-) belongs to sector [, 3]
[ z ]T[—Zaﬁ a+5] [ z ]>0
h(x) a+pB =2 | |h(zx)| =
With o = 0 we get: —x;h;(x;) < —5i_lh7;(:cz-)2. Thus,
Vi (@:)(—2s +w) /70 < —miyi +usyi, mi = B;

Secant criterion guarantees stability if (717213) ™" = B1 8203 < 8



Application Examples

Wake-up Problems

1) Consider the ring oscillator example and suppose
h;(x;) = Btanh(z;), i1 =1,2,3, (<2
What is a Lyapunov function resulting from the method discussed?

(You can look up integrals on line.)

2) Now take h;(xz;) = Bx;, which is a linear approximation around
the origin, and let 7, = 1,72 = 1, 2, 3. Write the model

T1&1 = —¢1 — hz(z3)
Toky = —xo — hi(x1)
T3L3 = —x3 — ho(T2)

as © = Az. How does the eigenvalue test restrict 3 for stability?



Performance of Interconnections

Recall the robust performance test from Lesson |, where
the performance criterion is dissipativity with a supply rateos(d, e)

v —f A

t = f(z,w,d)
e < |V =h(z,w,d)
e =n(z,w,d)

<——

L d

Robust performance: If there exists storage function x — V() s.t.
LiV(z,w,d) < s(w,d;v,e)

Vx,w, d and A restricts (v, w) such that

s(w,d;v,e) < o(d,e)
then the interconnection is dissipative with supply rate o(d, e).



Performance of Interconnections

Now adapt to interconnection:

%E

Go v

Gy

G
As before, each G; is dissipative with supply rate s;(u;,y;) and

storage function V;. Thus, G is dissipative with supply rate
N
8(“7 y) — Zi:l pisi(uiayi)7 Di Z 0
and V() = Zivzl p; Vi (x;) is a storage function.



Performance of Interconnections

Moreover, the interconnection restricts 4,y to:
u=w+d=Fe+d, y=e

Thus, the performance condition becomes:

N
3Z?’L Z O s.t. Zi:l p’is’i(ui7 y’i)|u=Ee+d’y=e S O.(d7 6)

-
For quadratic supply rates s;(u;,¥;) = [Zz] X [ZZ]

-P1X1
U U
Zﬁ\; pisi(uiayi) = [y] St S [y]
i pPNXN | _

|
<
—

where § is the permutation matrix defined before:




Performance of Interconnections

e ) =

] e s

If o(d,e) is also quadratic: o(d,e) = [

I 0
E" I

|

I E
0 I

e
p1X1

—Pl X1

PNXN.

€

PNXN.

[d] the performance condition becomes:

oy 1] <o

-
d]z

d
[e] we get the LMI:

I E
[ ] n o

If dp; > 0 such that this inequality holds, then the interconnection
satisfies the performance criterion defined by supply rate o(d, e)



Performance of Interconnections

Example: utl o~ |91 o : E |
! _ ' ] U1 0 -1 U1 dl
Y2 U us| [T 0 Y + d
e < a, |2 do 2 2 2
. : L{0 I| .
Suppose each subsystem is passive: X; = 511 ol = 1,2
Then the LMI on previous slide with P = I becomes:
110 1
2 [I ET + E] =0
: T . . . 110 I
Since E' 4+ E =0 the inequality holds with > = 511 0

Thus, the negative feedback interconnection of two passive systems
is itself passive — a variant of Passivity Thm with exogeneous inputs



Performance of Interconnections

Wake-up Problem

Consider the interconnection of N single-input, single-output
systems, each dissipative with supply rate

1
el

5 T
Then the performance criterion simplifies to
110 P
2 [P P(E—H)—I—(E—H)TP] -2 =0

where H = diag(ny,--- ,nn), P = diag(p1,--- ,pn)

Suppose we know E + E' < 0. Whatis a X that satisfies the
inequality above? What performance property does this .
describe for the interconnection?



Searching through Supply Rates

So far we used a fixed supply rate {Xi},fil for each subsystem and
looked for weights {p; }Y_, satisfying a matrix inequality:
g(E;plea T 7pNXN) = 0

Limited flexibility. Can we search for supply rates, not just weights?
Find {V;, X;};*, suchthat G(E;X;,---,Xn) <0 (1)

D;(Vi, Xi3&§u) <0 V(&u)  (2)
T

) X | )

The search for {V;, X; }, can be formulated as a LMI for linear

systems (Lesson 1) and for polynomial systems (Lesson 5), but the
combined LMI becomes intractable for large N.

Note: (2) consists of N independent constraints, coupled only by (1)

where D;(V;, X;;&,u) := VVi(€) ' fi(&, u) — [h-




Searching through Supply Rates

Distributed Optimization Formulation:

min d(z) + g() z2=(Z1,"+,Zn)
sit. Ar + Bz =c IV =Y oo otherwise

r = (V17X1;“' 7VN7XN)

d(:l?) :dl(xl)—l—"'—FdN(:UN) Z, = X,
i) ={ 3 Dna i o) =06

oo otherwise

ADMM algorithm: z**! = argmin d(z) + ||Az + Bz* — ¢+ s*||?

2"l = argmin g(2) + ||Az" ™ + Bz — c + s*||?
z

skHL — gk o Apktl 4 Bkl _



Searching through Supply Rates

Adapting to our problem (Meissen et. al, 2015):
X; updates i =1,--- ,N:
Xt = argminXs.t.ah(X)zO”X — 77 + Sf”i,

Zy,--+,ZN updates:

N
k41 : k41 k|12
ZEN =argmingg, . zoyoe om=0 D |1 XET = Zi+ 87|,
i=1
S updates:

S+l — x Pkt _ zk+1 4 gk

enforces

7, = X, z,] | x, Zn| Xy
Vl,Xl c VNaXN




Searching through Supply Rates

Example: We randomly generated 100 interconnection matrices
E € R?0%50 oatisfying E + E' = 0 and applied ADMM for

. —€; 1 0
T = T + U;

-1 e i=1,...,50
yi = |0 1} X

The systems are passive and skew symmetry guarantees stability.
We chose €; > 0 small for large L, gains, so not many other supply
rates can satisfy the stability test.

In each trial, ADMM converged to the passivity supply rate:
l———

0.8

0.6 |-

0.4}
0.2
0

0 5 1015 20 25 30 35 40 45 50 55 60 65 Iterations to convergence

Fraction of trials

28



Searching through Supply Rates

Wake-up Problem

True or False? Given linear systems
fi(&,u) = AE + Bu, h;(£,u) = C€+ Du
with V;(€) = ¢ P;€, the condition
D;(Vi, Xi;&,u) <0 V(& u) .
where D;(V;, Xi;€,u) :== VV;(€) T fi(€,u) — [h (§,u)] X; [hi(g, u)]

is a LMI with decision variables P;, X;.




Equilibrium-Independent Dissipativity

Stability and performance tests discussed appear to be modular:
we can add/remove new components without having to analyze
the interconnection from scratch. Instead, we use:

|) dissipativiy of blocks as abstractions of detailed dynamics;

2) LMI based on interconnection matrix for stability/performance.

A hidden obstacle to modularity:

Dissipativity of components depends on equilibrium, which itself
depends on the interconnection. Do we have to analyze dissipativity
all over after a change in interconnection, therefore equilibrium?

Example: Lotka-Volterra population model for interacting species

T; = )\i—’yi:ci—i—Zeij:cj z;,, t=1,...,N
JF#0
Equilibrium depends on the interconnection coefficients €;;.



Equilibrium-Independent Dissipativity

A stronger property that eliminates this problem (Hines et.al, 201 |):

Equilibrium-Independent Dissipativity (EID): Dissipativity relative to
any point that may become an equilibrium under an input bias.

y=hlzu) [ 7

Suppose, for all £ € X C X there exists unique @ s.t. f(Z, %) = 0.

We call the system EID if 3 storage function V : X x X — Rxg s.t.
Vee X,z e X, ucl,

V(z,2) =0, V,V(z,z)' f(z,u) < s(u—1a,y

)
where 1,y are functions of Z through f(Z,u) =0, § = h(Z,u).



Equilibrium-Independent Dissipativity

Example: 2 =u, y=z, € X =R"

Forevery z € X =R", @ =0 is unique sol'n to f(z,u) =u =0
1

Let V(z,Z) = §||:1: — z||%. Then, V,V(z,Z) =2 —Z =y — ¥ and

VoV(2,2) ' u=(y-7) u=(y-9 " (u—12)

Example: Linear system
t=Ax+ Bu x€R",ueR™
y = Cx + Du

Take X to be projection of the null space of [A, B] onto the span
of first n unit vectors in R"*™. If B has full column rank, then for
each z € X there exists unique u s.t. Ax + Bu = 0.



Equilibrium-Independent Dissipativity

Note from Ax + Bu =0, y =Cx + Du :
Az + Bu=A(x — %) + B(u — u)
y—y=C(zx—2Z)+ D(u—a)
Suppose the LMI for standard dissipativity from Lesson 1 holds:
ATP+PA PB]' _[o I|' [0 Il ., @
B'P o] [C D] [C D]—
V(z,Z) = (x — %) P(x — %) gives V,V(z,Z) = 2P(x — %) and,
from (1)-(2):

(1)

i AT
_ r—z| [ATP+PA PB||z—z
V.V (z,Z)' (Az + Bu) = T [ BT P 0 ] [u—ﬁ]
I )
< [ H X[“_l_‘]
Y-y y—vy

Thus dissipativity equivalent to EID for linear systems.



Equilibrium-Independent Dissipativity

Example: &= f(z)+g(x)u, y=h(x), r€ X =R
equilibrium-independent dissipative with supply rate X = {(1) 5]
2

’ 1

| N[

if g(x) > 0Vz, |h increasing, ¢ = = 4 €h nonincreasing function:
[T — k(@)
Vie 2= /x 0
VoV (o) 0) = L () + gl
y — Y has same Z(y—g)(%Jru—%—ﬂ)

oppostt fo that | =~ D6) ~6@) +u i~ cly - 5)
of ¢(z) — ¢(2) <@-9u-2)-ely-9)°

35



Equilibrium-Independent Dissipativity
Wake-up Problem

Consider the following system, defined on X = (0, 0c0):
T=(A—vx+u)x
Yy==x
Find f, g, h such that this system is in the form:
z = f(z)+ g(z)u
y = h(z)
What is the largest € such that ¢ = = 4+ €h is nonincreasing, so

) —E&

Can you show that the dissipation inequality holds with equality?

1
that the system is EID with supply rate defined by X = [(1) 2 ]?



Equilibrium-Independent Stability Test

%A

Suppose the system & = f(z,u), y = h(x,u) is EID with supply rate s
and storage function V such that V(z,Z) > 0 = # Z, and A satisfies

S(U—ﬂ,y—g)go

for all (u, y) such that u = A(y) and for all (4, §) corresponding to
aZT € X. If £™ is an equilibrium for the interconnection then it is
stable and V' (-, ™) is a Lyapunov function.



Equilibrium-Independent Stability Test

Adapt to:

FE : interconnection matrix

G;: &; = fi(zi,u;)

Gy Yi = h’L(x’La uZ)
Go each one EID with supply rate
Yy S u [uz — ﬂz] i |:’U,z — ﬂz]
G g | Xl —a
N Yi — Y; Yi — Y;
G
Then, G is EID with following supply rate for p; > 0,2 =1,...,N:
AT 11X - _
F I S
y—vy y—vy
PNXN|

Substitute u = Fy, u = Evy : = [I] (¥ —9)




Equilibrium-Independent Stability Test

p1X1

=(-7)" [?]TST S[ﬂ (y - 9)

PNXN.

Theorem: Suppose each subsystem is EID with quadratic supply rate
defined by X; and storage function V; s.t. V;(z;,%;) > 0,x; # Z; .

Suppose, further, there exist p; > 0,2 =1,--- , N, such that
T -ple ]
Bl gT sl <0 ()
I I| —
L PNXN_

Under these conditions, if the interconnection admits an equilibrium
x*, then it is stable with Lyapunov function

V(z) =3 piVi(ms, o)



Equilibrium-Independent Stability Test

Example: Lotka-Volterra population model for interacting species

T; = )\i—'yz-:ci—l—Zeij:cj z;,, t=1,...,N

JF#
E = (es;)
RN R 7) .
Gi: ;=N — vz +ui);
G1 Yi = Iy
Go From “wake-up problem,” EID with
: N 1
Y . (i 0 3
X, = 2
G z [% —%]

Vi, %) :/ : hi(S)_hi(l’i)dS:/ S—ZUidS

; gi(s) ; S




Equilibrium-Independent Stability Test
LMI with this supply rateis: P(E —T') + (E — I‘)TP <0
where ' = diag(qq, e ,WN),P — diag(pla T 7Z?N)

If p, >0,2=1,..., N exist solving this LMI, and if the model
Zi?i: )\z-—'yiwi—l—Zeijxj X, ’LZ].,,N
JFu
admits an equilibrium z* then it is stable with Lyapunov function
N .
Vi) = Rr,—xF—xfln | = ,
() ;p {az T, — T, n(x:‘)}

If LMI holds with strict inequality, then =™ is asymptotically and the

region of attraction is the positive orthant (0, 00)" .



Equilibrium-Independent Stability Test

Special case: Predator-prey model e12e27 < 0

Note FF —I' = [_% 612] and take P = [|621| 0 ] Then,
€21 —72 0 |eio|
P(E-T)+(E-T)"P= [_27”621' 0 ] <0
0 —2’72|612| o

If an equilibrium x™ in positive quadrant exists, it is stable:

2
Viz) = Zpi {xz —x; —z; In (%)}
i=1 i

If v1 > 0,9 > 0then globally asymptotically stable with respect
to the positive quadrant.

In the classical predator-prey model v; = 9 = 0; thus

PE-T)+(E-T)'P=0



Equilibrium-Independent Stability Test

In addition, the subsystems are “lossless” (dissipation inequality
holds with equality). Thus, the Lyapunov function

2
x.
V(z) = isx; —xf —xin [ —
@ =3n ()}
is constant along trajectories. Contours of V' are periodic orbits:

o |




Equilibrium-Independent Stability Test

Lotka-Volterra in the Wild

The Hudson Bay Company’s pelt records from 1845 to 1935 indicated
oscillations in Canadian lynx and snowshoe hare populations.

Researchers have used this data to justify the Lotka-Volterra model
and to fit parameters.
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Case Study: Vehicle Platoon

Velocities and positions of vehicles: = 1,--- , N governed by:
0i(t) = —vi(t) + v + ui(t)
T (t) = v;(t)
Introduce undirected graph s.t. vertices ¢ and j are connected
with an edge if ¢« and j have access to relative position ; — ;.
Select one end of edge to be head, the other to be the tail, and
define the incidence matrix:

(1 if vertex ¢ is the head of edge [
D;; =< —1 if vertex 7 is the tail of edge [
0 otherwise

\

Then the vector of relative positions is given by z = D'z



Case Study: Vehicle Platoon

Coordination feedback:

hi(z1)
uw=-—D : L : # of edges
| hr(zn)
hy :R—-R,¢=1,...,L ontoand increasing functions that

play the role of “virtual” spring forces.

Example: ; 2 30 SR




Case Study: Vehicle Platoon

Relative position evolves according to:

. T . "
z2=D"v=:w w : vector of relative velocities

_hl (21)
Define y := : and rewrite controller as u = —Dy. Then...
hr(zr)
Closed-loop System: ]
u —‘\\ (V) . 0
N subsystems for . o Ui = U U Y
vehicle velocities ]

L subsystems for
relative positions Y W zp = wy, Yo = he(ze)




Case Study: Vehicle Platoon

=15 ]

Equivalently:

E is skew symmetric. Thus, if an equilibrium (v™, 2*) exists, then
stability follows from equilibrium-independent passivity of the

subsystems: . . _
Ui = —v;+v; +u, t=1,--- N

Zo=wy, Yo =he(ze), £=1,--- L



Case Study: Vehicle Platoon

These subsystems are indeed equilibrium-independent passive:
1
Recall: £ = f(z) + g(x)u, y = h(x) is EID with X = [? 25]
L -
if g(x) > 0Vz, h increasing, ¢ = = + eh nonincreasing function
g

Storage function: V(z,z) = / is) = @) ds

T g(s)
V; = —U; + vg +u;, 1 =1,---,N satisfies these with ¢; = 1
Zo =wy, Yo = he(zy), £=1,---, L satisfies them with g, =0

(LMI) holds with P = I. Thus, a Lyapunov function is

:%Z(vi—v -I-Z/ (he(s) — he(z7))ds



Case Study: Vehicle Platoon

Existence of (unique) equilibrium: if (v*, z*) exists, it must satisfy
hi(27) ]
0=—-v*"+v"—D : (1)

0=D"v* (2)
For a connected graph D'v* =0 = v* = al
Substitute v* = a1 in (1) and multiply from the leftby 1" :
0=—al1T14+1T00 = —aN + 3% 29

Thus, a = % Zz v and (1) becomes:

— LSV W+ = Yy Dihe(z) =0 i=1,...,N

For acyclic graphs we can solve for hy(z;) from this, then find z;.



Case Study: Vehicle Platoon
Why Platoons?

Platoons increase utilization of road and intersection
capacities by enabling safe tailgating! The prevailing
approach is to further safeguard a controller like this
one, or an MPC control, with control barrier functions.

/i .' ! "%‘ 4 .ff A

“ x~§%:




Delta Dissipativity

Dissipativity with respect to input/output derivatives (1, y):

. f C = f(z,u) Yi|d .
v i= U —> |y = bz, ) I = w
G

The system G is delta dissipative if there exists storage function
S: X xU — Rsq suchthat S(z,u) =0« f(z,u) =0 and

VeS(z,u) f(z,u) + V,S(z,u) v < s(v,w) Vz,u,v
where w := V h(z,u) ' f(z,u) + Vih(z,u) ' v.

Note: In EID, the storage function V' (-, ) depends on the equilibrium
candidate. Here, it depends on input and vanishes when f(x,u) = 0.
Thus, equilibrium independence is implicit.



Delta Dissipativity
Example: Linear system & = Az 4+ Bu, y = Cz + Du

Take S(z,u) = (Az + Bu) " P(Az + Bu) and check the condition

w w

.
V.S(z,u)" (Az + Bu) + V,S(z,u) v < [v] X [v] (1)
where w = C(Axz + Bu) + Dwv.

Right side of (1): [Axz 4+ Bu| T 0 I i X 0 I|[Az+ Bu
i v | _C D C D v
Left side of (1):  [Az+ Bu]' [ATP+ PA PB] [Az + Bu
v BTP 0 v

Thus, (1) boils dowr-1 to the sa_me I:MI as dissipativity anEJI EID:
ATP+PA PB] _[o I]' [0 I]_,
B'P 0 C D C D|-—



Delta Dissipativity

Stability from Delta Dissipativity

Assumption: A is a static map
and the interconnection is well
posed; thatis, u = A(h(z,u)) &= f(z,u)
has implicit solution u = g(z). y | y=nh

(wu) [u

Suppose the system & = f(x,u) y = h(x,u) is delta dissipative with
supply rate s and storage function S, and A satisfies the constraint
s(u(t),y(t)) <0 V¢

for all differentiable signals u(-), v(-) s.t. u(t) = A(v(t)). Under
these conditions, if the interconnection has an equilibrium, then
it is stable and a Lyapunov function is given by V (z) = S(z, g(x)).

Note: since S(z, u) nonnegative and vanishes only when f(z,u) = 0
V(z) > 0 except when f(z,g(xz)) =0, i.e., when at equilibrium.



Delta Dissipativity

Adapt to:

E : interconnection matrix

Gi: 2, = fi(x;,u;)

G Yi = h’L(x’La uZ)
G delta dissipative with supply
Yy u rate = T .
Cn H X; H
G Yi Yi
Then, forany p; > 0,2 =1,..., N, G is delta dissipative with:
AT p1X1 :
i & d
Yy Yy
pPNXN|[ ——

: . El .
Substitute u = By, u = Ey : =[ ]y




Delta Dissipativity

E T -ple | B
s [
i PNXN |

Thus, we arrive at the same condition for stability of the equilibrium
of the interconnection: there exist p; > 0,2 =1,---, N, s.t.

B T -ple ] £

=
s s[fl<o0
I PNXN.

Lyapunov function: V(z) = 5%, p;Si(xs, gs(z))
where g is obtained from the solution u = g(z) of u = Eh(x, u).

Although EID and delta dissipativity may appear interchangeable,
there are systems where one holds but not the other (Lesson 6).



Delta Dissipativity

Origins of Delta Dissipativity in Game Theory

Delta passivity was introduced in a study of “population games”:

* Fox and Shamma, Population games, stable games, and passivity,
Games, vol.4, pp. 561-583, 2013

This notion is implicit in a proof of convergence to Nash equilibria in:

 Hofbauer and Sandholm, Stable games and their dynamics,
J. of Econ. Theory, vol.144, pp. 1665-1693, 2009

By making the connection to passivity, Fox and Shamma opened the
door to new results for population games, discussed in Lesson 6.




Delta Dissipativity

Origins of Delta Dissipativity in Game Theory

Delta passivity was introduced in a study of “population games”:

* Fox and Shamma, Population games, stable games, and passivity,
Games, vol.4, pp. 561-583, 2013

This notion is implicit in a proof of convergence to Nash equilibria in:

 Hofbauer and Sandholm, Stable games and their dynamics,
J. of Econ. Theory, vol.144, pp. 1665-1693, 2009

By making the connection to passivity, Fox and Shamma opened the
door to new results for population games, discussed in Lesson 6.

Outside of game theory, an identical notion appeared later in:

e Kosaraju, Kawano and Scherpen, "Krasovskii’s passivity", IFAC-PapersOnline,
vol. 52, no. 16, pp. 466-471, 2019

Stability/performance criteria for interconnections derived in:

* Schweidel and Arcak, Compositional analysis of interconnected systems using
delta dissipativity, L-CSS, vol.6, pp. 662-667, 2022



Summary

In this lesson:

Key features of the methodology:

We leveraged dissipativity for compositional stability/performance
verification of interconnected systems

Introduced computationally efficient methods: LMIs, ADMM, etc.

Achieved complete modularity of the method with new notions:
equilibrium independent dissipativity, delta dissipativity
Presented examples from congestion control, multiagent systemes,
oscillator circuits, ecological models.

Modularity (by dissipativity & variants) jdEHIS= ﬁ
Scalability (by decomposition, ADMM) [ ‘ |

=

Substitutability: can replace subsystems ||

Hapafj Lioyd||

without losing system-level guarantees

o
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dissipativity theory, IEEE Control Systems Mag., vol.42, no.2, pp. 51-62, 2022

* Wen and Arcak, A unifying passivity framework for network flow control, IEEE
Trans. Automatic Control, vol.49, no.2, pp. 162-174, 2004

* Bai, Arcak, Wen, Cooperative Control Design, Springer, 2011

* Klausen, Meissen, Fossen, Arcak, Johansen, Cooperative control for multirotors
transporting an unknown suspended load under environmental disturbances,
IEEE Trans. Control Systems Technology, vol.28, no.2, pp. 653-660, 2020

* Arcak, Sontag, Diagonal stability of a class of cyclic systems and its connection
with the secant criterion, Automatica, vol.42, no.9, pp.1531-1537, 2006

* Hines, Arcak, Packard, Equilibrium-independent passivity: A new definition and
numerical certification. Automatica, vol.47, no.9, pp. 1949-1956, 2011

* Meissen, Lessard, Arcak, Packard, Compositional performance certification of
interconnected systems using ADMM, Automatica, vol.61, pp. 55-63, 2015

e Schweidel and Arcak, Compositional analysis of interconnected systems using
delta dissipativity, L-CSS, vol.6, pp. 662-667, 2022



Self-Study Problems

1) Antelopes, hyenas, and lions:
Consider the Lotka-Volterra model for three species, where

species 2 and 3 both prey on species 1:
e19<0 e3<0 ey >0 e31>0

but they are neutral to each other:
€23 = €32 =0
Recall also that the diagonal entries of E are zero. Investigate
whether a diagonal P > 0 exists such that
PE-T)+(E-I)'P=<0
where I' = 0 is a diagonal matrix of parameters appearing in
the model. Your answer should not depend on specific values

of E and I', but only their sparsity and sign structure.



Self-Study Problems

2) A cyclic interconnection
Consider the system

Ty = f(x2) — h(z1)

Ty = f(x2) — h(z2)
where f is a strictly decreasing function and h is an increasing
function. If f is onto, there exists a unique equilibrium.
a) Decompose this system into a cyclic interconnection of three
first order subsystems.
b) Provide a condition on f and h such that the equilibrium is
guaranteed to be stable (without knowledge of where the
equilibrium is).



