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Learning Objectives

In this lesson we will

• Introduce a basic concept, the linear fractional transformation 
(LFT), for modeling systems with uncertainties and nonlinearities.

• Learn to bound the input/output behavior of 
uncertainties/nonlinearities using quadratic constraints (QCs) and 
integral quadratic constraints (IQCs).

• Learn to assess stability and performance using dissipation 
inequalities and QCs/IQCs.
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Outline

1. Basic uncertainty modeling leading to LFTs

2. Static quadratic constraints (QCs)

3. Time-domain Integral Quadratic Constraints (IQCs)

4. Constructing storage functions using IQCs
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The basic modeling concept separates the system into 2 pieces:

1. Known “nominal” part 𝑀: This part contains dynamics that are 
typically easy to analyze, e.g., LTI dynamics:

2. “Uncertainty” or “perturbation” Δ: This contains components 
that have unknown variations and/or components that are 
difficult to analyze, e.g. nonlinearities. 

The feedback interconnection, denoted 𝐹𝑈(𝑀, Δ),  is called a 
Linear Fractional Transformation (LFT). This separation is a general 
object that greatly facilitates the analysis.

General Representation for Uncertain Systems
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Example: Actuator Saturation

Consider the classical feedback diagram below with actuator 
saturation. Typical goals are to assess the closed-loop stability 
and analyze the gain from reference to error.
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Example: Actuator Saturation

Consider the classical feedback diagram below with actuator 
saturation. Typical goals are to assess the closed-loop stability 
and analyze the gain from reference to error.

This system can be expressed as an LFT 𝐹𝑈(𝑀, Δ) where:

• 𝑤 = Δ(𝑣) and Δ is the saturation.

•                            and 
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Example: Uncertain Parameters

It is common to have uncertainty in various model parameters, 
e.g. masses, spring constants, etc. As a simple example:

ሶ𝑥 𝑡 = 𝑎 𝑥 𝑡 + 𝑏 𝑢(𝑡) where 𝑎 ∈ [−3, −1] and 𝑏 ∈ 4,6 .

7



Example: Uncertain Parameters

It is common to have uncertainty in various model parameters, 
e.g. masses, spring constants, etc. As a simple example:

ሶ𝑥 𝑡 = 𝑎 𝑥 𝑡 + 𝑏 𝑢(𝑡) where 𝑎 ∈ [−3, −1] and 𝑏 ∈ 4,6 .

This can be expressed as 𝐹𝑈(𝑀, Δ) where:

• 𝑤 = Δ(𝑣) and  Δ =
𝑏 0
0 𝑎

•                         and
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Linear Fractional Transformations (LFTs)
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Wake-up Problems
 True of false?  

1) Consider LFTs 𝐹𝑈 𝑀1, Δ1  and 𝐹𝑈(𝑀2, Δ2) where

The two LFTs represent the same uncertain system.

2) Consider LFTs 𝐹𝑈 𝑀1, Δ1  and 𝐹𝑈(𝑀2, Δ2) where

The two LFTs represent the same uncertain system.



Example: Nonparametric Uncertainty

A simplified model 𝐺0 is often used for control design.

10

Voice Coil Motor

Nominal design model (red dashed)



Example: Nonparametric Uncertainty

A simplified model 𝐺0 is often used for control design.

• Actual dynamics are complex and have part-to-part variation.

• We lose model fidelity as we go to higher frequencies.
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Experimental responses (blue): 

Courtesy of Seagate and 

normalized for proprietary reasons.



Example: Nonparametric Uncertainty

The unmodeled dynamics are captured by bounding the error 
in the frequency domain. This is an “additive” uncertainty.
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Example: Nonparametric Uncertainty

The unmodeled dynamics are captured by bounding the error 
in the frequency domain. This is an “additive” uncertainty.

This can be expressed as an LFT 𝐹𝑈(𝑀, Δ):

• 𝑤 = Δ(𝑣)

 

•                           and
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Example: Nonparametric Uncertainty

Alternatively, we can bound the relative (percent) error. This 
leads to a “multiplicative” uncertainty.
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Example: Nonparametric Uncertainty

Alternatively, we can bound the relative (percent) error. This 
leads to a “multiplicative” uncertainty.

This can also be expressed as an LFT 𝐹𝑈(𝑀, Δ):

• 𝑤 = Δ 𝑣

•                        and

Multiplicative uncertainty uses a non-dimensional error 
bound, e.g. a bound of 0.1 corresponds to 10% uncertainty.
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Generic LFT Formula
We can express the LFT 𝐹𝑈(𝑀, Δ) based on the uncertainty Δ and 
the partitioned nominal system 𝑀:

Combine the first plant equation with the uncertainty equation:

Substitute this into the second plant equation:

This gives the following general expression 

for the uncertain system:

This expression appears in various derivations.
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Linear Fractional Transformation
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A linear fractional transformation in complex analysis refers to an 
invertible function 𝑓: ℂ → ℂ of the form:

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ and 𝑎𝑑 − 𝑏𝑐 ≠ 0 so that 𝑓 is invertible.

This function is a transformation from 𝑧 to 𝑓(𝑧) defined by a fraction 
(ratio) where the numerator and denominator are linear in z.

Our LFT is a generalization:

It simplifies to the form above when Δ ∈ ℂ and 𝑀 ∈ ℂ2×2.



Interconnections of LFTs

An important property of LFTs is that typical algebraic 
operations preserve LFT structure, e.g.

• frequency response,

• inverses,

• cascade (serial) connections,

• parallel connections, and

• feedback connections

A few examples are given on the following slides.

Hence, typical interconnections of LFTs are still in the form 
of an LFT. For this reason, the LFT is an excellent choice for 
a general hierarchical representation of uncertainty.
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Cascade (Serial) Connections of LFTs

Consider the serial connection of LFTs 𝐹𝑈(𝐿, Δ1) and 𝐹𝑈(𝑁, Δ2).

The output of the first LFT is the input to the second, i.e. 𝑑2 = 𝑒1.
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Cascade (Serial) Connections of LFTs

Consider the serial connection of LFTs 𝐹𝑈(𝐿, Δ1) and 𝐹𝑈(𝑁, Δ2).

The individual LFTs are:

The combined LFT 𝐹𝑈(𝑀, Δ) is:
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Cascade (Serial) Connections of LFTs

Consider the serial connection of LFTs 𝐹𝑈(𝐿, Δ1) and 𝐹𝑈(𝑁, Δ2).

Uncertainties Δ1 and Δ2 in the individual LFTs combine into a 
single uncertainty Δ with block diagonal structure.  

In other words, component level uncertainty leads to 
“structured” uncertainty at the system level. 
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Feedback Connections of LFTs

Consider the feedback connection of an LFT 𝐹𝑈(𝐿, Δ).

The LFT output is connected to the input via negative feedback.
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Feedback Connections of LFTs

Consider the feedback connection of an LFT 𝐹𝑈(𝐿, Δ).

The individual LFT is:

The combined LFT is:

There are some additional technical (well-posedness) conditions 
required for the inverses to exist.
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Linear Fractional Transformations (LFTs)

Wake-up Problem
Consider the parallel connection of LFTs FU(L, Δ1) and FU(N, Δ2).

Express the combined LFT in terms of the  individual LFTs:
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Example: SISO Feedback System

• Unstable plant with uncertain 
pole and input gain:

• First-order actuator with 
additive dynamic uncertainty

• Proportional-Integral control
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Example: SISO Feedback System

• Unstable plant with uncertain 
pole and input gain:

• First-order actuator with 
additive dynamic uncertainty

• Proportional-Integral control

Separate the known from the 
uncertain to create 𝐹𝑈(𝑀, Δ).
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Uncertainty Normalization

The uncertainty can be normalized as follows:

This normalization often performed but is not necessarily 
required for our analyses later.

This yields an LFT in normalized 

form, 𝐹𝑈( ෩𝑀, ෩Δ).
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Numerical Algorithms and Software
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% Unstable plant with parametric uncertainty

a = ureal('a’,0.95, 'Range', [0.8  1.1]);

b = ureal('b’,2.15, 'Range', [1.7  2.6]);

P = tf(b, [1 -a]);

% Actuator with non-parametric (dynamic) unc.

nomAct = tf(10, [1 10]);

DeltaA = ultidyn('DeltaA',[1 1],'Bound',0.1);

A = nomAct + DeltaA;

% Uncertain closed-loop (d->e) with PI control

C = tf([3 4.5],[1 0]);

Td2e = feedback(-P, A*C);

% Extract LFT model with normalized uncertainty

[M,DeltaNormalized] = lftdata(Td2e);

Reliable software to create uncertainty models & perform analyses.

• Matlab’s Robust Control Toolbox (Safonov & Chiang), (Balas, Doyle, Glover, 
Packard, & Smith), (Gahinet, Nemirovski, Laub, & Chilali)

• ONERA’s Systems Modeling, Analysis and Control Toolbox (Biannic, 
Burlion, Demourant, Ferreres, Hardier, Loquen, & Roos)

Example Matlab code to 

assess robustness of 

simple feedback loop.



Static Quadratic Constraints (QCs)

We introduced the LFT with Δ containing components that have 
unknown variations and/or are difficult to analyze. 

The next step is to bound the input / output behavior Δ.  A useful 
starting point is a static quadratic constraint on (𝑣, 𝑤).

Definition: Δ satisfies the static QC defined by a matrix 𝐽 = 𝐽⊤ ∈

ℝ 𝑛𝑣+𝑛𝑤 ×(𝑛𝑣+𝑛𝑤) if each input/output pair 𝑤 = Δ(𝑣) satisfies:

Static QCs will provide useful bounds to 

combine with dissipation inequalities. 
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Example: Saturation

30



Example: Saturation
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Example: First/Third Quadrant Nonlinearity
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The function is passive 

(pointwise in time).



Example: Sector-bounded Nonlinearity 
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Example: Sector-bounded Nonlinearity 
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Static QCs

Wake-up Problems
Specify a sector that contains each function 𝑤 = 𝑓(𝑣) below.

a) Unit Deadzone:   𝑤 = ቐ
0 if 𝑣 ≤ 1

𝑣 − 1 𝑣 ≥ 1
𝑣 + 1 𝑣 ≤ −1

b) ReLU:  𝑤 = max( 𝑣, 0 )

c) Leaky ReLU: 𝑤 = ቊ
𝑣 if 𝑣 ≥ 0

𝜖𝑣 𝑣 < 0
    where 0 < 𝜖 < 1.

d) Cubic nonlinearity: 𝑤 = 𝑣3
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Example: Time-Varying Real Parameter
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Example: Time-Varying Real Parameter
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General Static QCs

A QC with 𝐽 ∈ ℝ2×2 defines a set of input/output pairs:

A) 𝐽22 ≥  0: For each 𝑣 the QC is satisfied as 𝑤 → ±∞, e.g. 𝐽 =
0 1
1 0

 corresponds to functions in the first/third quadrant.
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General Static QCs

A QC with 𝐽 ∈ ℝ2×2 defines a set of input/output pairs:

A) 𝐽22 ≥  0: For each 𝑣 the QC is satisfied as 𝑤 → ±∞, e.g. 𝐽 =
0 1
1 0

 corresponds to functions in the first/third quadrant.

B) 𝐽22 <  0: We can scale  𝐽22 = −2 without loss of generality. It 
can also be shown the set 𝑆 is non-empty if and only if 𝐽12

2 +
2𝐽11 ≥ 0. If this condition holds then define:

Then −∞ < 𝛼 ≤ 𝛽 < ∞ and 𝐽 =
−2𝛼𝛽 𝛼 + 𝛽
𝛼 + 𝛽 −2

.  Every nontrivial 

QC with 𝐽22 < 0 corresponds to a finite sector bound.
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Motivation: Integral Quadratic Constraints (IQCs)

Static QCs are useful to bound the I/O behavior pointwise in time.  
However, if a system has memory then the output 𝑤 at time 𝑡 
typically cannot be bounded by the input 𝑣 at time 𝑡.
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Motivation: Integral Quadratic Constraints (IQCs)

Static QCs are useful to bound the I/O behavior pointwise in time.  
However, if a system has memory then the output 𝑤 at time 𝑡 
typically cannot be bounded by the input 𝑣 at time 𝑡.

This motivates the more general constraint defined below. 

Definition: Δ satisfies the IQC defined by a matrix 𝐽 = 𝐽⊤ ∈

ℝ 𝑛𝑣+𝑛𝑤 ×(𝑛𝑣+𝑛𝑤) if every 𝑣 ∈ 𝐿2 and 𝑤 = Δ(𝑣) satisfies:

Here 𝐿2 denotes the set of signals with bounded

𝐿2 norm, i.e. 𝑣 ∈ 𝐿2 if
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Example: Passive Systems

A system Δ is passive if every 𝑣 ∈ 𝐿2 and 𝑤 = Δ(𝑣) satisfies

The system can possibly be nonlinear and time-varying.

This is equivalent to:

A system is passive if and only if it satisfies the IQC defined by 

𝐽 =
0 𝐼
𝐼 0

.
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Example: L2 Bounded Systems

A system Δ has 𝐿2 gain ≤ 𝛽 if every 𝑣 ∈ 𝐿2 and 𝑤 = Δ(𝑣) satisfies

Again, the system can possibly be nonlinear and time-varying.

This is equivalent to:

A system has 𝐿2 gain ≤ 𝛽 if and only if it satisfies the IQC defined 

by 𝐽 = 𝛽2𝐼 0
0 −𝐼

.
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Integral Quadratic Constraints

Wake-up Problems
 1) True or False? A system 𝑤 = Δ(𝑣) generated the input/output 
pair below on the left. The system could be passive.

 2) True or False? A system 𝑤 = Δ(𝑣) generated the input/output 
pair below on the right. The system could have 𝐿2 gain ≤ 1.
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Dynamic IQCs

We can further enlarge the class of IQCs by allowing constraints on 
filtered input/output signals. This allows the IQC to capture additional 
system properties, e.g. time-invariance.

Definition: Δ satisfies the IQC defined by a stable filter Ψ and a matrix 

𝐽 = 𝐽⊤ ∈ ℝ 𝑛𝑣+𝑛𝑤 ×(𝑛𝑣+𝑛𝑤) if every 𝑣 ∈ 𝐿2 and 𝑤 = Δ(𝑣) satisfies:

If Ψ = 𝐼 then 𝑧 =
𝑣
𝑤

 and this simplifies

to our previous IQC definition.

45



Example: Norm-bounded LTI Uncertainty

Consider a stable, causal, SISO, LTI system Δ with

Here ||Δ||∞ is the 𝐻∞ norm.  The peak on a Bode magnitude plot 
is ≤ 1 and the Nyquist plot lies within the unit circle.  

This was used previously to capture unmodeled dynamics / non-
parametric uncertainty.
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Example: Norm-bounded LTI Uncertainty

We need to recall a few additional facts to express the bound 
||Δ||∞ ≤ 1 as a time-domain IQC.

1. Fourier Transforms (FTs): If 𝑣 ∈ 𝐿2 then we can define its FT and 
Inverse Fourier Transform (IFT):

2. Parseval’s (Plancheral’s) theorem: Assume 𝑢, 𝑣 ∈ 𝐿2 and let ො𝑢, ො𝑣 
be their Fourier Transforms. The time and frequency domain inner 
products are equal:

3. Linear system Response: Assume Δ is a stable, causal LTI system. 
Let 𝑣 ∈ 𝐿2 be an input with (zero IC) output 𝑤 = Δ 𝑣. The FTs are 
related by:
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Example: Norm-bounded LTI Uncertainty

Consider a stable, causal, SISO, LTI system Δ with

Every 𝑣 ∈ 𝐿2 and 𝑤 = Δ(𝑣) satisfies

     This quadratic constraint holds  

                                                    pointwise in frequency.
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Example: Norm-bounded LTI Uncertainty

Consider a stable, causal, SISO, LTI system Δ with

Every 𝑣 ∈ 𝐿2 and 𝑤 = Δ(𝑣) satisfies

         Integrate over frequency to obtain a 

         frequency domain IQC. 
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Example: Norm-bounded LTI Uncertainty

Consider a stable, causal, SISO, LTI system Δ with

Every 𝑣 ∈ 𝐿2 and 𝑤 = Δ(𝑣) satisfies

                                          Use Parseval’s theorem to convert to an 

                   infinite-horizon, time-domain IQC. This is

                                          sometimes called a “soft” IQC. 
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Example: Norm-bounded LTI Uncertainty

Consider a stable, causal, SISO, LTI system Δ with

Every 𝑣 ∈ 𝐿2 and 𝑤 = Δ(𝑣) satisfies

By causality, the constraint holds over all finite-time horizons. 

Thus, Δ satisfies the (“hard”) IQC defined by Ψ = 𝐼 and 𝐽 =
1 0
0 −1

.
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Example: Norm-bounded LTI Uncertainty

Consider a stable, causal, SISO, LTI system Δ with

Every 𝑣 ∈ 𝐿2 and 𝑤 = Δ(𝑣) satisfies

This is just the IQC for a norm-bounded uncertainty. 

Next, we exploit the fact that Δ is LTI. 
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Example: Norm-bounded LTI Uncertainty

Consider a stable, causal, SISO, LTI system Δ with

Let 𝐷(𝑠) be a bi-proper LTI system with all poles/zeros in the LHP, 
i.e. both 𝐷(𝑠) and 𝐷−1(𝑠) are stable and proper.
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Example: Norm-bounded LTI Uncertainty

Consider a stable, causal, SISO, LTI system Δ with

Let 𝐷(𝑠) be a bi-proper LTI system with all poles/zeros in the LHP. 
SISO, LTI systems commute:

𝐷 𝑠 Δ 𝑠 = Δ 𝑠 𝐷 𝑠  ⟹ Δ 𝑠 = 𝐷 𝑠 Δ 𝑠 𝐷−1(𝑠)

Thus ||Δ||∞ ≤ 1 implies ||DΔD−1||∞ ≤ 1 for any such 𝐷.

Every 𝑣𝐷 ∈ 𝐿2 and 𝑤𝐷 = (DΔD−1)(𝑣𝐷) satisfies
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Example: Norm-bounded LTI Uncertainty

Consider a stable, causal, SISO, LTI system Δ with

Let 𝐷(𝑠) be a bi-proper LTI system with all poles/zeros in the LHP. 
Every 𝑣𝐷 ∈ 𝐿2 and 𝑤𝐷 = (DΔD−1)(𝑣𝐷) satisfies

Note that 𝑤𝐷 = 𝐷 𝑤 and 𝑣𝐷 = 𝐷 𝑣.   

Δ satisfies the IQC defined by 𝐽 = 1 0
0 −1

 and Ψ = 𝐷 0
0 𝐷

 for any 

such D. This is called a “D-scale” in the 𝜇/SSV literature.
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Partial Dictionary of IQCs [1]

Uncertainty/Nonlinearity

1. Sector-bounded [𝛼, 𝛽]

2. Passive system

3. 𝐿2 gain-bounded by 𝛽

4. Stable, LTI with ||Δ||∞ ≤ 𝛽

56

Reference

[1] Megretski & Rantzer, System analysis via IQCs, TAC, 1997. [IQCs derived based on much prior literature]

QC/IQC

There are many more IQCs in the literature for delays, 
slope-restricted nonlinearities, etc.



Integral Quadratic Constraints

Wake-up Problems
Consider a stable, SISO, system 𝑤 = Δ(𝑣). We defined the system to 
be passive if: 

a) If 𝑣, 𝑤 ∈ 𝐿2 then their FTs exist. Use Parseval’s theorem to express 
the passivity constraint as a frequency domain constraint on ො𝑣, ෝ𝑤

b) Suppose Δ is LTI in addition to being stable, SISO and passive. Use 
part a) to specify a constraint on the system transfer function Δ(𝑗𝜔).
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Constructing storage functions using IQCs

The analysis procedure consists of the following steps:

1. Express the uncertain system as an LFT 𝐹𝑈(𝑀, Δ) 

with the uncertainty/nonlinearity in  Δ.

2. Specify an IQC (𝐽, Ψ) for Δ. This bounds the 

Input/output characteristics of Δ.
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Constructing storage functions using IQCs

The analysis procedure consists of the following steps:

1. Express the uncertain system as an LFT 𝐹𝑈(𝑀, Δ) 

with the uncertainty/nonlinearity in  Δ.

2. Specify an IQC (𝐽, Ψ) for Δ. This bounds the 

Input/output characteristics of Δ.

3. Append the IQC dynamics to the system. The

appended system has the dynamics of M and Ψ.

4. Write a dissipation inequality on the

appended system exploiting the IQC. (See next slide.)

Note: Multiple uncertainties/nonlinearities can be combined into 
Δ=diag(Δ1, … , Δ𝑛) and each block can have multiple IQCs.
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Constructing storage functions using IQCs

The appended system has the form:

Suppose there is a storage function 𝑉(𝑥𝑒) = 𝑥𝑒
⊤ 𝑃 𝑥𝑒  with 𝑃 ≥ 0 such 

that the dissipation inequality (DI) holds along trajectories:
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Constructing storage functions using IQCs

The appended system has the form:

Suppose there is a storage function 𝑉(𝑥𝑒) = 𝑥𝑒
⊤ 𝑃 𝑥𝑒  with 𝑃 ≥ 0 such 

that the dissipation inequality (DI) holds along trajectories:

Integrating from 𝑡 = 0 to 𝑡 = 𝑇 yields:

If 𝑥𝑒(0) = 0, 𝑑 ∈ 𝐿2 then we can let 𝑇 → ∞ to obtain ||𝑒||2 ≤ 𝛾||𝑑||2.

The DI + IQC verifies the uncertain system 𝐹𝑈(𝑀, Δ) has 𝐿2 gain ≤  𝛾. 
With a few additional technical details, we can prove 𝑥𝑒 𝑡 →  0.
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Constructing storage functions using IQCs

The appended system has the form:

Suppose there is a storage function 𝑉(𝑥𝑒) = 𝑥𝑒
⊤ 𝑃 𝑥𝑒  with 𝑃 ≥ 0 such 

that the dissipation inequality (DI) holds along trajectories:

This DI can be expressed as an LMI:

We’ll revisit the numerical aspects of this LMI in a later lesson.
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Summary
In this lesson:

• We used the linear fractional transformation (LFT) to model 
systems with uncertainties and nonlinearities.

• We introduced static quadratic constraints (QCs) defined by a 
symmetric matrix J:

     These are pointwise-in-time constraints on the I/O behavior of Δ.

• We defined integral quadratic constraints (IQCs). These bound the 
I/O behavior of of Δ when integrated over any finite time horizon.  

• We combined dissipation inequalities with QCs/IQCs to assess the 
stability and performance of uncertain systems. 

Next lesson: Applications to networks and differential algebraic 
equations (DAEs).
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Further Reading
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Uncertainty Modeling:
• Zhou, Doyle, Glover, Robust and Optimal Control, 1995.

• Skogestad, Postlethwaite, Multivariable Feedback Control, 2005.

• Dullerud, Paganini, A Course in Robust Control Theory, 2010.

Integral Quadratic Constraints (IQCs):
• Yakubovich, S-procedure in nonlinear control theory, VLU, 1971.

• Megretski, Rantzer, System analysis via IQCs, TAC, 1997. 

• Seiler, Stability Analysis with Dissipation Inequalities and Integral Quadratic 
Constraints, TAC, 2015.

• Veenman, Scherer, Köroğlu. Robust stability and performance analysis 
based on IQCs, EJC, 2016. 

• Hu, Lacerda, Seiler, Robustness Analysis of Uncertain Discrete-Time System 
with … IQCs, IJRNC, 2016.

• Scherer, Dissipativity and Integral Quadratic Constraints: Tailored 
Computational Robustness Tests for Complex Interconnections, CSM, 2022.



Self-Study Problems
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1) Express the SISO feedback diagram below as an LFT 𝐹𝑈(𝑀, Δ).

2) Consider the following state-space system:

      

Show that the transfer function 𝐺 𝑠 = 𝐶 𝑠𝐼 − 𝐴 −1𝐵 + 𝐷 can be 
expressed as an LFT 𝐹𝑈(𝑀, 1

𝑠
 𝐼) where:

M =
𝐴 𝐵
𝐶 𝐷

 



Self-Study Problems
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3) A stable, SISO, LTI system Δ satisfies the IQC defined by 𝐽 =
diag 1, −1 , and Ψ = diag 𝑊, 1  where 𝑊 𝑠 = 2𝑠+0.1

𝑠+1
. What is 

the uncertainty bound at 𝜔 = 0? What is the uncertainty bound 
as 𝜔 →  ∞?

4) True or False? A SISO system Δ satisfies the IQC defined by 𝐽 =
diag 1, −1 , and Ψ =I.  The system −Δ satisfies the IQC defined 
by 𝐽 = diag −1,1 , and Ψ =I. 

5) True or False? A system Δ satisfies the IQCs defined by (𝐽1, Ψ1) 
and (𝐽2, Ψ2). For any non-negative 𝜆1, 𝜆2, Δ satisfies the IQC with: 

                 𝐽 =
𝜆1𝐽1 0

0 𝜆2𝐽2
 and Ψ =

Ψ1

Ψ2
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