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Learning Objectives

In this lesson, we will:

Recall state space models, and equilibrium and stability concepts

Learn about the essence of dissipation inequalities through
Lyapunov functions

Learn the fundamental notions of dissipativity, storage functions,
and supply rates

See how dissipativity can be used together with constraints on
system uncertainty to establish robust stability and performance
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State Space Models

Differential equation model for a nonlinear dynamical system:

z(t) € R™ : vector of state variables, e.g., position and velocity
. . I d
&(t) : shorthand for time derivative, an(t)

f :R™ — R" : function describing the evolution of the states,
typically derived from physical laws

n : number of state variables needed to describe the dynamics
("system order”)



State Space Models

Example: Pendulum

State variables: angle and angular velocity \£

o-[ig]

Dynamical model: \

\

\, mg
1(t) = z2(t) from definition of state variables
To(t) = —%982@) — % sinz1(t) from: mass x acceleration = force
To m €0 = mgsin 6 — k0
flz)= [ —%CCQ — 9 sinx; ]



State Space Models

Linear systems: special case where f(x) has no nonlinear terms

a11T1 + @122+ + A1n Ty
f() = s S (@)= Az

| Gp1T1 T Ap2T2 + - T ApnThn | A e R™*"™

Systems above are time-invariant, also called autonomous systems.

Time-varying (nonautonomous) systems: dynamics change in
time, e.g., rocket with reducing mass due to fuel consumption

z(t) = f(t,2(t))
Time-varying linear systems: (t) = A(t)x(t)

Going forward, time-invariant models unless otherwise stated.



State Space Models

Systems with inputs and outputs:
z(t) = f(z(t), u(?))
y(t) = h(z(t), u(?))
z(t) € R" u(t) e R™,y(t) € RP
Input, u: variables we can manipulate (“control”) or exogeneous
variables that affect the dynamics (“disturbance”)
Output, y: variables of particular interest, e.g., attitude of satellite

we would like to control

Linear case: f(z,u) = Az + Bu, h(z,u) = Cx + Du
A, B,C, D appropriately dimensioned matrices



State Space Models

History’s Mysteries

Why letter ‘U’ for input?
Possibly from Russian “Upravlenie” for “control.”

Before Sputnik, control theory in the East was driven by
mechanics and used the state space language. In the
West it emerged from circuit theory, dominated by input-
output language: transfer functions, frequency domain...




Equilibria and Stability

“Thermodynamicists get very excited when

nothing happens.”
Peter Atkins, chemist at Oxford




Equilibria and Stability

An equilibrium (or rest point) of a dynamical system & = f(x)
is a point z*such that f(z*) =0

If the state vector starts at =¥ it remains there because the time
derivative is zero: z(0) =2 = «x(t)=z*,t>0

Example: Pendulum

T2 1 : angle p
f(z) = kg 9 . _ “\ s
m¥2 — ¢Sl T2 : angular velocity
f(CB)ZO = 9 =0, sinz; =0 mgsin&\ m

Two equilibrium points: (z1,z3) = (0,0) pointingdown

(z1,x9) = (mw,0) pointing up ¢, g

10



Equilibria and Stability

For stability definitions we assume equilibrium at the origin:

f(0) =0

No loss of generality in this assumption: for nonzero equilibrium z
define shifted state £ = = — x™ so the equilibrium is now z = 0.

*

The equilibrium x = 0 is called stable if, for every € > 0 there
exists 0 > 0 such that T

2(0)| <6 = |z(t)| <e t>0

i.e., if trajectory starts close to the w3, ?
equilibrium, it remains close. /

Y

Called unstable if not stable.




Equilibria and Stability

The equilibrium x = 0 is called asymptotically stable if it is stable
and x(t) — 0 from initial conditions close to the origin.

Globally asymptotically stable if convergence guaranteed from
all initial conditions.

Example: Pendulum

Downward equilibrium is stable even without friction: 0
small perturbation leads to small amplitude oscillation. .

If there is friction, then asymptotically stable, but not O
globally: there are initial conditions from which trajectory
doesn’t converge to origin (e.g., upward equilibrium). \

Upward equilibrium: unstable. v




Equilibria and Stability

When is the origin (asymptotically) stable for linear system © = Ax?

Eigenvalue Test: Asymptotically stable if and only if all eigenvalues
of A have negative real parts. For linear systems asymptotic stability
is always global.

If at least one eigenvalue has positive real part, then unstable.

If no eigenvalue has positive real part, but some have zero real parts:
stable if and only if all eigenvalues with zero real part have Jordan
blocks of order one (trivially satisfied if no repeated eigenvalues).

Recall: A € C is an eigenvalue of square matrix A if
det(A\] — A) =0



Equilibria and Stability
Wake-up Problems

1) Which of the following eigenvalue configurations for a linear
system indicates (non-asymptotic) stability?

' Imaginary ! Imaginary t Imaginary

X X X

o Real . Regl Rgal

N\

X X X

2) Given scalar system & = f(x) where f is as shown below, which
equilibrium is asymptotically stable?

A




Lyapunov Functions

Solutions of general nonlinear systems not known explicitly. How to
establish stability of equilibria?

A. M. Lyapunov, The General Problem of the
Stability of Motion, 1892:

If we can find a function:

* zero at equilibrium, positive elsewhere

* whose value decreases along the
trajectories of the system,

then the equilibrium is stable.

We can show the function is decreasing
along the trajectory without knowing the Alexandr Mikhailovich
trajectory with a dissipation inequality. Lyapunov (1857-1918)




Lyapunov Functions

A scalar-valued function V' : R™ — R that is zero at zero is called
positive semidefinite if nonnegative everywhere:

x)>0 VxeR"
positive definite if strictly positive except at zero:

x) >0 Vr#0

and negative (semi)definite if —V is positive (semi)definite.
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Lyapunov Functions

Consider the nonlinear system:
= f(x), x € R"

and assume the origin is an equilibrium: f(0) =0
Given V : R™ = R and f :R"™ — R" define notation:
LV (z):=VV(z)' f(z)
Theorem (Lyapunov): If there exists positive definite function

V:R" - R st. LV is negative semidefinite, then the origin is
stable. If LV is negative definite, then asymptotically stable.

If, further, V() — oo as ||z|| — oo, then globally asymp. stable.



Lyapunov Functions

Proof idea: By the chain rule, negativity of L¢V V(x)
implies V is decreasing along trajectories:

%V(;p(t)) = VV (z(t))T f(x(2))

= L;V(z(t)) <0

Because of the decreasing L2 V(x) = cst
property above, sublevel o

sets of V trap trajectories: // D\\ o
If £(0) € {z: V(x) < c}then &?_//

() €{z:V(z)<cpve>o )




Lyapunov Functions

Recall the stability definition:

The equilibrium x = 0O is stable if, for
every € > 0 there exists § > 0 s.t.

2(0)| <8 = |z(@)|<e t>0

How does a Lyapunov function ensure this?

* We can find ¢ > 0 such that the sublevel
set {x : V(z) < c} fits into the outer ball in
the stability definition above.

* Trajectories starting in this sublevel set

are trapped there.
* Into this sublevel set we can fit an inner

ball, thus satisfying the stability definition.

\ 4

D




Lyapunov Functions

Key takeaways:

Existence of a positive definite function V decreasing along
trajectories guarantees stability of the origin.

We don’t need to know the trajectories to check the
decreasing property. Instead, verify the dissipation inequality:

LiV(z):=VV(z)' f(z) <0Vz € R"

which involves points in the state space, not trajectories.
In the rest of the course, we will discuss other dissipation
inequalities to certify properties besides stability.




Lyapunov Functions

Wake-up Problems
1) Which one is Lyapunov?




Lyapunov Functions

Wake-up Problems

2) Which one is a suitable Lyapunov function for the system below?

T, = —T1 + T2
j32 - —213? — T2
1 1
A) V(z)= 5:1:? + iazg

B) V(z)=z{ — x5

1 1 .
C) V(z) = 1517‘11 + 5-”35

D) V(z) = (z1 + z2)?



Special Case: Linear Systems

When f(z) = Ax the following statements are equivalent:

1. The origin is (globally) asymptotically stable

2. All eigenvalues of A have negative real parts

3. We can find a quadratic positive definite Lyapunov function
V(z) =z' Pz

such that L,V is negative definite.

Note: we write quadratic functions like z ' Pz with the convention
that P is symmetric: P' =P No~loss of generality: if P’ # P
z' Px = x' Px where P =0.5(P" + P)is symmetric.

Thus, quadratic Lyapunov functions are enough for linear systems.
In addition, when V' is quadratic, sois L¢V':

LiV(z)=VV(z) Az = (2Pz) Az =22 PAz = z' (PA+ A" P)z



Special Case: Linear Systems

Easy to determine sign definiteness of a quadratic function
T T
z Qr, Q=G

Compute eigenvalues of (), which are real since () is symmetric.

If all eigenvalues are positive, then CETQZE is positive definite
nonnegative positive semidefinite
negative negative definite
nonpositive negative semidefinite
of mixed signs sign indefinite.

We say that a symmetric matrix is positive/negative (semi)definite
if the corresponding quadratic function is such.

Notation: Q >0, @ >0, @ <0, Q@ X0



Special Case: Linear Systems

Examples: evalues:

0,2 —> pos.semidef.

ZE% + 2x1x9 + x% = [:Cl $2i|

—1,3 = signindefinite

:1:% + dx1x0 + x% = [:1:1 :1:2}

DO = = =
I}_LMIIH}_\I
&
[E-Y

1 0]
T1+ 225 = [11 2] [0 2] 2] 1,2 —> positive def.

Back to Lyapunov functions:

Suppose all eigenvalues of A have negative real parts. Then, for any
Q=Q" = 0 thereexists P = P' > 0 such that

PA+A'P=-Q (Lyapunov Equation)
MATLAB command lyap(A’, Q) returns P.
Thus, we can choose () and find V' that gives LV (x) = —z' Qx



Special Case: Linear Systems

Example: T1 = T
To = —axo — bxq a>0,b>0

A simple choice for Lyapunov function:

b 1 . .
V(z) = im% + 533% = L;V(z) = —ax5 (negative semidef.)

Let’s look for another Lyapunov function that makes L,V strictly
negative definite. We know we can find one because eigenvalues of

0 1
] S
are roots of characteristic polynomial det(A\] — A) = M +bh+a
which have negative real parts whena > 0,b > 0.



Special Case: Linear Systems

: 0
Pick Q = [S a] , €>0 so L;V(x)=—2'Qz = —ex] — ax;
(negative definite)

Look for P = {pl p2] satisfying PA+ A'P = —Q
p2 Ps3

0 1

Substituting A = [
—a —b

] we get

ATP+PA— |720P2 P1—apz—bps
* 2p2 — 2ap3

Matching this to —() we get three equations for three unknowns:

—2bpy = —€, p; —apa —bps =0, 2py—2ap; = —

b €
:>p:!p1 p2]:[§ +5 (% + ) 12b ]
D2 D3 7% 5+ 50



Special Case: Linear Systems

Instead of specifying (9 and solving the Lyapunov equation

PA+A'P=-Q
can use semidefinite programming (SDP) solvers to find P > 0 s.t.
A'"P+PA=<0 (%)
(or AP+ PA+¢eI <0, e>0 toensure A' P+ PA <0).

(%) is a Linear Matrix Inequality (LMI) in P.

General form of a LMI: max el r

reRY

q
S.t. szFr& — G j 0
i=1
(%) is feasibility problem (nothing to maximize) and  consists of
n(n + 1)/2 independent entries of P = P' € R™X"



Special Case: Linear Systems

Wake-up Problem

Match the quadratic Lyapunov functions below to the sublevel sets
shown at the bottom.

Vi(z) = 42% + 22, Va(zx) =27 + 4z, Vi(x) = 27 + 2122 + 25




Dissipativity

Jan Willems (1939-2013) was instrumental in
bridging the gap between input-output and
state space languages. His dissipativity theory
generalized Lyapunov functions to establish
state-space characterization of input-output
properties, such as L, gain and passivity.

Dissipative Dynamical Systems
Part I: General Theory

Jan C. WiLLEMS

Communicated by C. TRUESDELL

Contents

Dissipative Dynamical Systems
PartI1: Linear Systems with Quadratic Supply Rates

Jan C. WiLLEMS

Communicated by C. TRUESDELL
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Dissipativity

From “closed” to “open” systems with inputs and outputs:

T = f(x,u)
Yy = h(xvu)

Y «— «— U

The system above is said to be dissipative with supply rate s(u, y)
if there exists pos. semidef. “'storage function” V' : R™ — R s.t.

VV(z)' f(z,u) < s(u, h(z,u)) Vz,u.

Implication for trajectories: %V(x(t)) < s(u(t),y(t))

Thus, forany T > 0 in the interval of existence of solutions,

_V(2(0)) < V(2(T)) — V((0)) < / s(u(t), y(t))dt



Dissipativity

T
For zero initial conditions: / s(u(t),y(t))dt >0
0

Common supply rates:
* Passivity: s(u,y)=u'y = (u(-),y(-))r, >0

Output strict passivity:

s(wy)=u'y—ey'y, e>0 = (u(),y()r, >elly()7,
* Lygain: s(u,y) =7u'u—y'y = |ly()lr, <lul)lL,

These are quadratic supply rates:

s(u,y) = m X [Z] L= [%01 —%;1] X = PZI —OI]

* Input-to-state stability: s(u,z) = —a(|z]) + o(Ju|), a,0 € K



Dissipativity

Example 1: z=u, y==x
1
Take V(;(j) — QQ;TQ;
VV(z) flz,u)=2'u=9y"u

Therefore, passive (in fact “lossless” because of equality).

Example 2: ; = x5 — X1
mig = —exe — @' (r1) +u VA - p
Y= =T9 {_

¢(xz1) : potential energy of the spring

Passivity established with energy function V(z) = ¢(x1) + M 2

2 2

VV(z)' f(z,u) = W2 — ex5 — x%) + 2ou = —ey® + yu

33



Dissipativity

Does dissipativity imply stability when u = 0?
Suppose the supply rate is such that s(0,y) < 0 Vy, e.g.,
s(u,y) =u'y—ey'y,e >0, s(u,y) =7u'u—y'y

If, in addition, the storage function is positive definite, then we can
use it as a Lyapunov function and conclude stability of the origin.

Other observations:

* If a dynamical system is dissipative with supply rate s; and
s1(u,y) < so(u,y) Yu,y thenitis also dissipative with rate s,

* If a dynamical system is dissipative with supply rate s then

it is also dissipative with supply rate as, a > 0

 Output strict passivity implies finite L, gain vy = 1/¢, because

1 € e (1
u'y—ey'y < guTu —~ §yTy =3 (6—2uTu -~ yTy)



Dissipativity
Wake-up Problems

True of false?

1) If a dynamical system is dissipative with supply rates s; and s,
then is also dissipative with supply rate

S(’U,, y) — asl(u, y) + ,882(’11,, y)a (87 Z 07/8 Z 0

2) A passive dynamical system must satisfy:
u(t) 'y(t) >0 WVt




Constructing Storage Functions

Case 1: Linear systems
f(x,u) = Ax + Bu, h(z,u) = Cz + Du

Quadratic storage function: V(z) =z ' Pz

m] ! [ATP + PA PB] H

T . T _
VV(z) (Ax + Bu) = 2x' P(Ax + Bu) = [u BTp 0 | |y

Supply rate: . - T W
wa=l) Xl =[i & ol *le ol w

(1) < (2) Vx,u means:

B'P 0

[ATPJrPA PB]_[O I]TX[O I




Constructing Storage Functions

. : 110 I
F t bstitute: = _
or passivity substitute: X 5 [I 0]

Then LMI becomes:
A'P+PA PB-3C' ] _ |
B'P-1iC —-(D+D")| -

Note: when D = 0 (no “feedthrough”) this equivalent to:

1 ..
PB = §CT, ATP+PA j 0 Positive Real

(PR) Lemma
because: Q% @2 <0 & @:=0,Q: =0
Q: 0]~
Example 1: z=u, y=2 A=0,B=1,C=1,D=0
1 1
PB=-C' = P=_1I
2C = 2



Constructing Storage Functions

Example 2: ; = x5 — 1
MIy = —ELy — (/5,(331) +u — AN —
]
I




Constructing Storage Functions

2
For L, gain substitute X = [701 —OI] in:
ATP+pPA PB]' Jo 17" 0o I
[ BTP 0]_{0 D]XCDjO (LM
Simplify: [A'TP+PA+C'C PB+C'D
T T 2 Tl 20
B'P+D'C —v“I+D"'D
Note: when D = 0 this is equivalent to
1 Bounded Real
T T T
A P+PA+C C+ ?PBB P =<0 (BR) Lemma

by the Schur Complement Lemma: Given symmetric [Ql QZ] with

e Q] Qs
& Qj 20 & Q5<0, Q—0:07'QF <0

()3 invertible,[



Constructing Storage Functions

Case 2: Input-affine nonlinear systems with no feedthrough

z = f(z)+ g(z)u
y = h(z)
To establish passivity, we need a storage function I/ such that:

VV(z)' f(z) +VV(z) g(x)u < h(z) u—eh(z)" h(x)
Rewrite as:
LiV(z)+eh(z) " h(z) + (L,V(z) — h(z) " u < 0
which is equivalent to
LV (z)+eh(z) " h(z) <0, L,V(z)=h(z)'
Compare this to the PR Lemma...



Constructing Storage Functions

Example2 1; =z, o
revisited: 5, — —gpy — o' (1) +u mi e m U
Yy =2 -
0 1 oV
L Vig) = [V oV — — —— must match h(z) =
gV (z) [8m1 3«’132] [%] m 0o @) =
m
= V(z) =Vi(z1) + Ex%
x
Then, LfV(CU) = [Vll(xl) mxz] [—ixz —zl(b'(icl)

2

= (V{(z1) — ¢'(z1))z2 — €5
< —eh(x)
with the choice Vi (z1) = ¢(z1). Thus, V(z) = ¢(z1) + —z3




Constructing Storage Functions

Example 3: Show passivity of the scalar affine system

z = f(z)+g(z)u
y = h(z)
where zf(z) <0Vz € R, g(z) >0Vz € R, zh(x) >0 Vz #0

The constraint V'(z)g(z) = h(x) dictates the choice of V:

V(z) = /Om @ds

g(s)
Positive definite because (—) has the same sign as «
g(x
" h(x)
In addition, V' (z) f(z) = —= f(z) <0
@)f() = 3 /@

because f(x) has the opposite sign of



Constructing Storage Functions

Wake-up Problem

True of false? The system below is passive:

i =—2°+ (1+2°)u
y = tanh(x)




Robust Stability and Performance

— Here be dragons

Y Yy = (Qj,u) u

A: uncertain, hard-to-model, or nonlinear elements, described
broadly by input-output relations, rather than by a detailed model

e ) e

~~~~~~~




Robust Stability and Performance

A: uncertain, hard-to-model, or nonlinear elements, described
broadly by input-output relations, rather than by a detailed model

Robust stability: Suppose the system & = f(x,u) y = h(z,u) is
dissipative with supply rate s(u, y) and pos.def. storage function V.
If A satisfies the complementary constraint

s(u,y) <0
for all (u, y) such that u = A(y), then the origin is stable because
LV (z,u) <s(u,y) <O0.



Robust Stability and Performance

When s(u, y) is quadratic as in the passivity and L, gain supply
rates, we refer to s(u,y) < 0 as a quadratic constraint satisfied by
A. Later we will also use integral versions of quadratic constraints:

/T s(u(t),y(t)dt <0 YT >0

Example: Passive single-input single-output system in feedback
with a nonlinearity whose graph lies in the 2" and 4t" quadrants:

[u=A(y)

\_ §

Asymptotic stability can be guaranteed by strengthening the
dissipativity property or the constraint on A.

46



Robust Stability and Performance

vi—— A w
T = f(x,w,d)
6<__v:h(:c,w,d):__d
e =n(z,w,d)

“Performance” objective: dissipativity with a supply rate o(d, ), e.g.
o(d,e) = v*|d|* — |e|* for L, gain from disturbance d to output e.

Robust performance: If there exists storage function x — V() s.t.
LiV(z,w,d) < s(w,d;v,e)
Vx,w, d and A restricts (v, w) such that
s(w,d;v,e) < o(d,e)
then the interconnection is dissipative with supply rate o(d, e).



Robust Stability and Performance

Wake-up Problem

Suppose a single-input single-output system & = f(x,u) y = h(x,u)
is dissipative with supply rate s(u,y) = 72u2 — y2; thatis, it has L,
gain < ¥, and A below represents a nonlinearity. Describe the region
where the graph of A must lie foru = A(y)to satisfy s(u,y) < 0.




Summary

In this lesson:
* We reviewed state space models, equilibrium/stability concepts.

* We had a first glimpse of dissipation inequalities in Lyapunov
analysis: if the dissipation inequality
VV(z)' f(z) <0
holds for each point in the state space, we conclude V (z(t)) is

nonincreasing over trajectories, without knowledge of the
trajectories. This nonincreasing property guarantees stability.

 We introduced the notion of dissipativity, closely related to
Lyapunov analysis: a storage function satisfying a dissipation
inequality allows us to establish input/output relations.

* Married dissipation inequalities to complementary constraints on
uncertain block A for robust stability and performance criteria.



Kalman-Yakubovich-Popov (KYP) Lemma

A streamlined version of [2,3,4] from [1]:
Given A € R™*® BeR™™ I =TT ¢ Rvtmx(t+m) \yhere
det(jwl — A) # 0 Vw € R and (A, B) controllable, the following

statements are equivalent:
1) [(ij—A)—lB]* [(jw[—A)—lB
I t I

2) There exists P = P' € R™ ™ such that
A'P+PA PB
.<
[ Papa b ] FT =0
If all eigenvalues of A have negative real parts and upper left corner

of I' is positive semidefinite, then P = 0.

[1] Rantzer, On the Kalman-Yakubovich-Popov lemma, Syst. Control Lett., 1996
[2] Kalman, Canonical structure of linear dynamical systems, 1962

[3] Yakubovich, The solution of certain matrix inequalities in automatic control
theory, 1962
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Kalman-Yakubovich-Popov (KYP) Lemma

Recall the LMI for dissipativity of linear system (4, B, C, D) with
supply rate defined by matrix X:

ATP+PA PB] [0 1] [0 I]_,

B'P 0 C D C' D|—

o r
From KYP, this is equivalent to:

[ ! ])(l ! ]zo Vw € R U {00} (1)

H(jw) H(jw)
where H(jw) = C(jwI — A)~'B + Dis the frequency response.
Example: For passivity, i.e., X = % [? é], (1) becomes:

H(jw)* + H(jw) = 0
For SISO systems, this means nonnegative real part (“positive real”).



Kalman-Yakubovich-Popov (KYP) Lemma

Absolute stability studies in the 1960s derived frequency domain
criteria for a linear system in feedback with a nonlinearity lying in a
conic sector (special case of quadratic constraints in this workshop).
Prominent results include the Circle- and Popov-Criteria, and others
by Zames, Falb, Sandberg, Brockett, Willems, Narendra, Tsypkin...

Example: SISO linear system in feedback with a nonlinearity whose
graph lies in the 2" and 4t quadrants:

u = Ay)
> \ > Y
H(9 [
Ny (Jw) .

For this sector, the Circle Criterion restricts H (jw) to be positive real.
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Kalman-Yakubovich-Popov (KYP) Lemma

Today’s approach — presented in this workshop —is to leverage
time-domain dissipativity properties with numerical tools, such as
semidefinite programming and sum-of-square programming.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-16, NO. 6, DECEMBER 1971 621

Least Squares Stationary Optimal Control and the
Algebraic Riccati Equation
JAN C. WILLEMS, MEMBER, IEEE
Page 624: “The basic importance of the LMI
seems to be largely unappreciated. It would
be interesting to see whether or not it can
be exploited in computational algorithmes,
for example.”
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Self-Study Problems: True/False

1) If a dynamical system is dissipative with respect to supply rates
s1 and s,, then it is dissipative with respect to rate s; — s,.

2) For a dynamical system G, let —G denote the same system with
the sign of the output reversed. G is dissipative with respect to s
if and only if —G is dissipative with respect to —s.

3) Define the sum of two dynamical systems G; and G, as a
dynamical system whose responsetouisy = Gy(u) + G,(w).
If G4 is dissipative with supply rate s; and G, with supply rate s,,
then G4 + G is dissipative with supply rate s; + s5.

4) If G; is dissipative with supply rate fu,zTyZ 1 =1,2,then Gy + G5 is
dissipative with supply rate uTy

5) If £ = f(x,u),y = h(x,u) is dissipative, then so is the system
7 = f(x,u),y = h(x,u)with the same supply rate for any
T > 0.



Self-Study Problems: True/False

6) Consider N independent systems G;,i = 1, ..., N, each with input
output pair (u;, y;), and let u and y denote the concatenations
of u; and y; as shown below:

-yl- G1 —ul-
- G, .

y: ) €< . & U =

un. G un

If G; is dissipative with supply rate s;(u;,y;),i =1, ..., N, then
for any set of nonnegative weightsp; = 0,i = 1, ..., N, the
composite system is dissipative with supply rate:

N
S(U, Y) = Zi:l PiSi (Ui, Yi)




